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MAP ESTIMATION OF THE INPUT OF AN OVERSAMPLED FILTER BANK FROM NOISY SUBBANDS BY BELIEF PROPAGATION

Oversampled filter banks perform simultaneously subband decomposition and redundancy introduction. This redundancy has been shown to be useful to combat channel impairments, when the subbands are transmitted over a wireless channel, as well as quantization noise. This paper describes an implementation of the maximum a posteriori estimator of the input signal from the noisy quantized subbands obtained at the output of some transmission channel. The relations between the input samples and the noisy subband samples are described using a factor graph. Belief propagation is then applied to get the posterior marginals of the input samples. The experimental results show that when the channel is clear, a least-squares estimate is satisfying. But, the proposed approach performs significantly better than a least-squares reconstruction when the channel is noisy: a gain in terms of channel SNR of more than 2 dB is observed.

INTRODUCTION

Recently a growing interest has been dedicated to communication systems performing jointly source and channel coding [START_REF] Katsaggelos | Joint Source-Channel Video Transmission[END_REF]. Such schemes cope better with unknown and changing channel characteristics than the classical tandem schemes. In this context, multirate systems and more particularly Oversampled Filter Banks (OFB) [START_REF] Bölcskei | Oversampled filterbanks: Optimal noise shaping, design freedom and noise analysis[END_REF][START_REF] Cvetković | Oversampled filter banks[END_REF] are attractive solutions since they provide an overcomplete representation of the input signal by introducing some structured redundancy among the output subbands. OFB may then be seen as errorcorrecting codes in the real field as evidenced in [START_REF] Labeau | Oversampled filter banks as error correcting codes: theory and impulse correction[END_REF][START_REF] Redinbo | Decoding real-number convolutionnal codes: Change detection, Kalman estimation[END_REF][START_REF] Redinbo | Wavelet codes: Detection and correction using Kalman estimation[END_REF]. OFB may correct transmission errors left by channel decoders and mitigate a part of the quantization noise [START_REF] Goyal | Quantized overcomplete expansions in R n : Analysis, synthesis, and algorithms[END_REF]. Specific decoding techniques have been developed for OFB. Hypotheses testing and maximum likelihood estimation are considered in [START_REF] Labeau | Oversampled filter banks as error correcting codes: theory and impulse correction[END_REF]. Kalman filtering is considered in [START_REF] Redinbo | Wavelet codes: Detection and correction using Kalman estimation[END_REF]. A consistent reconstruction technique accounting for the bounded nature of the quantization noise is introduced in [START_REF] Kieffer | Consistent reconstruction of the input of an oversampled filter bank from noisy subbands[END_REF].

This work considers the maximum a posteriori (MAP) estimation of the input of an OFB, when its output subbands are quantized and transmitted over a noisy channel. The computation of the exact MAP estimator is intractable in general, even for moderate-size input signals. When the OFB consists of finite impulse response filters, a factor graph may describe the relations between the input samples and the noisy subband samples. Belief propagation (BP) may then be used to compute the posterior probability distribution (PPD) of each entry of the input vector knowing the noisy subbands. This approach is inspired from [START_REF] Rangan | Estimation with Random Linear Mixing, Belief Propagation and Compressed Sensing[END_REF][START_REF] Rangan | Generalized approximate message passing for estiamation with random linear mixing[END_REF] where the problem of estimating some input vector x ∈ R n from noisy observations y ∈ R m of linear measurements z =Φ x of x has been addressed with BP. This problem is known as a linear mixing estimation problem. Via BP, the linear relations between the variables are exploited to update their PPD. This is done by passing messages on the variable states along a graph [START_REF] Kschischange | Factor graphs and the sum-product algorithm[END_REF][START_REF] Loeliger | An Introduction to Factor Graph[END_REF][START_REF] Donoho | Message passing algorithm for compressed sensing[END_REF]. This message passing algorithm (MPA) operating in real field is similar to MPA for LDPC codes which work in finite fields [START_REF] Ryan | Channel Codes[END_REF]. The exact implementation of BP for dense mixing matrices is computationally very complex as it involves high-dimensional integrations for the PPD calculation. Implementations of BP based on Gaussian approximations have proven to be efficient and accurate as for example the Generalized Approximate Message Passing (GAMP) algorithm [START_REF] Rangan | Generalized approximate message passing for estiamation with random linear mixing[END_REF].

When the length of the impulse response of the filters involved in the OFB is not too large, the Φ matrix associated to the OFB may be quite sparse. Approximate implementation of the BP algorithm using discretized probability density functions becomes then tractable and has been considered here.

The rest of the paper is organized as follows. The considered communication scheme is presented in Section 2. The link between input estimation of OFBs from noisy subbands and linear mixing estimation problems is detailed in Section 3. The MAP estimation using BP is then described in Section 4. Finally, preliminary experimental results are described in Section 5 before drawing some conclusions in Section 6.

TRANSMISSION SCHEME

The communication scheme considered here is depicted in Figure 1. The random input vector x ∈ R n has i.i.d. components with prior values is obtained at the output of this channel.

In the particular case of a scalar quantization with the same rate R for each subband sample and a BPSK modulation, each quantized index si,i∈{0,...,m-1} of s is represented by a binary sequence bi of R elements and the observation y ∈ R m×R is formed by m vectors yi ∈ R R representing the components zi of z. The problem is then to evaluate the MAP estimate x of x:

x = arg max x∈R n p(x|y) (1) 
The exact estimation of x is intractable in practice when considering high-dimensional input vectors. We show in the next section that this problem can be seen as a particular linear mixing problem for which a suboptimal solution can be evaluated using the BP algorithm.

LINEAR MIXING PROBLEM

General Scheme

A general linear mixing problem is presented in Figure 2. The vector x goes through an m × n matrix Φ:

z =Φx (2) 
The output vector z is then transmitted over a separable measurement channel characterized by its conditional probability p Y|Z (yi|zi) and delivering the measurements y. Here the quantization and modulation operations, assumed to be separable are incorporated into the measurement channel. The difficulty in the estimation of x know-Fig. 2. General linear mixing estimation problem ing y is that Φ mixes x to get z. The evaluation of the posteriori pdf of each element xj,j ∈{ 0,...,n-1} or zi,i ∈{ 0,...,m-1} involves a high-dimensional integral that is difficult to evaluate. Such an estimation problem may be solved using BP, provided that a graph representing the dependencies between the variables is available. BP updates then the PPD of these variables via a message passing procedure along the edges of this graph [START_REF] Kschischange | Factor graphs and the sum-product algorithm[END_REF][START_REF] Ryan | Channel Codes[END_REF].

OFB-based scheme

An OFB is a filter bank whose number of output subbands is greater than the downsampling ratio. These subbands form then a redundant representation of the input signal. A typical Mband OFB with a downsampling factor of N ≤ M such that ρ = M/N,i s presented in Figure 3. This OFB is formed by M FIR analysis fil- 
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where E l ,l =0 ,...,L is a sequence of M × N matrices that can be constructed from {hm} M -1 m=0 [START_REF] Vaidyanathan | Multirate Systems and Filterbanks[END_REF]. The following polyphase notations are used for the vectors x and z:

x = {x0,...,xN-1,...,x kN ,...,x kN+N-1 ,...,xn-1} z = {z0,...,zM-1,...,x kM ,...,x kM+M -1 ,...,zm-1}

where k refers to the current instant. At each instant k the input of the OFB is the vector x k =( x Nk ,...,x Nk+N-1 ) T and its output is the vector z k =(z Mk ,...,z Mk+M -1 ) T obtained as follows:

z k = L l=0 E l x k-l = EL:0x k-L:k , (3) 
where x k-L:k = x k-L T ,..., x k T T contains all input samples on which the OFB output at time k depend and EL:0 =( EL,...,E0) is a M × (L +1 ) N matrix. One can then write the whole OFB operations as the linear mixing problem presented in [START_REF] Katsaggelos | Joint Source-Channel Video Transmission[END_REF], where The MAP estimation problem formulated in (1) can then be solved using the BP algorithm.

Φ= ⎡ ⎢ ⎢ ⎢ ⎣ EL ....

MAXIMUM A POSTERIORI ESTIMATION WITH BELIEF PROPAGATION

Belief propagation is an iterative message passing algorithm [START_REF] Ryan | Channel Codes[END_REF] that associates to a transform matrix Φ a factor or Tanner graph GΦ.

An example of such a graph is presented in Figure 4. The graph GΦ Fig. 4. Factor graph for the linear mixing estimation problem is a bipartite graph formed by two kind of nodes: the variable nodes j =0 ,...,n -1 corresponding to the input variables xj and the factor nodes i =0,...,m-1 corresponding to the output measurements yi . An edge between the node j and the node i means that the entry Φij is non-zero and thus the variables xj and yi are involved in a linear relation. The set of variable nodes that are connected to the factor node i is denoted by Nout(i). Similarly the set of factor nodes connected to the variable node j is denoted by Nin(j). The different nodes talk to each other by sending messages (beliefs) on the states of each input variable xj and the corresponding probabilities.

The message pi→j(xj) is sent by the factor node i to the variable node j. It is a vector of the same dimension as the number of states in which xj can be. Each component of pi→j (xj) evaluates how likely the measurement yi is obtained at node i when the input variable xj belongs to the corresponding state. In a similar way, the message pj→i(xj) sent by j to i expresses the beliefs of the variable node j about the states in which xj could be and their corresponding probabilities. When GΦ does not contain any cycle and after enough iterations, this series of message-passing is likely to converge to a consensus that determines the true marginal p(xj|y).

The steps of the BP algorithm in real field are inspired by the ones presented by Rangan in [START_REF] Rangan | Estimation with Random Linear Mixing, Belief Propagation and Compressed Sensing[END_REF]. They are resumed as follows:

1. Initialization:

(a) Set the current iteration k =1.

(b) For each variable node j and factor node i forming an edge of GΦ set the messages to the a priori distribution of the random variable Xj :

p x j→i (k, xj)=p x j (k, xj)=pX j (xj) (4) 
2. Linear Mixing:

(a) Assume that the random variables Xj are independent and that Xj ∼ p x j→i (k, xj) (b) Compute the distributions p z i→j (k, zi→j) and p z i (k, zi) of the random variables:

Zi→j = r∈Nout(i)\j ΦirXr (5) and Zi = r∈Nout(i) ΦirXr (6) respectively. 

Output update:

For each variable node j and factor node i forming an edge of GΦ compute the likelihood probability function

p u i→j (k, ui)=P (Yi = yi|Zi = Zi→j + ui)
evaluated on each point ui.

Input update:

(a) For each variable node j and factor node i forming an edge of GΦ update the message sent by j to i

p x j→i (k+1,xj)=αpX(xj) l∈N in (j)\i p u l→j (k, Φ lj xj) (7) 
where α is a normalization constant obtained by imposing that p x j→i (k +1,xj) should sum up to 1. (b) For each variable node j update the distribution

p x j (k +1,xj)=βpX (xj) l∈N in (j) p u l→j (t, Φ lj xj) (8) 
where β is a normalization constant obtained by imposing that p x j (k +1,xj) should sum up to 1.

Incrementation:

(a) k = k +1 (b) Return to step 2. until a sufficient number of iterations is performed.

In order to estimate the input signal x of an OFB from its noisy received subbands y, the direct implementation of this BP algorithm to perform the MAP estimation is possible as the correspondant matrix Φ is relatively sparse.

EXPERIMENTAL RESULTS

In this section we present the preliminary results obtained when using the MAP estimation based on the BP. We have considered an input vector x ∈ R 8 . The components of x are i.i.d. zero-mean Gaussian with variance σ 2

x =1 . The OFB used is based on the Haar filters with M =6 , N =4 , and L =1 . The corresponding transform matrix Φ is

Φ= E1 E0 06×4 06×4 E1 E0
where

E1 = 1 √ 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 000 0 001 1 000 0 000 1 011 0 0 -110 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ and E0 = 1 √ 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
11 0 0 00 0 0 -1100 10 0 0 00 0 0 00 0 0

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
The vector z ∈ R 12 obtained at the OFB output is quantized using a scalar quantization function Q(z) with a rate R =4bits with a quantization step ∆=(2σx ) / (2 R -1).

Quantized samples are then BPSK modulated and transmitted over an AWGN channel with a SNR between 0 dB and 13 dB. The number of noise realizations has been set to 1000. The MAP estimation using BP is compared to the reference least-squares (LS) approach.

Reference estimation approach

The reference estimation approach that is considered is presented in Figure 5. A classical decoder D(.) takes hard decisions on the Fig. 5. Least Squares Estimation received measurements y. After demodulation and inverse quantization, the received vector ẑ is obtained. Finally the LS reconstruction is performed:

x =(Φ T Φ) -1 Φ T z (9) 

Performances of the MAP estimation using BP

The BP algorithm described in Section 4 is performed by considering probability mass functions approximating the continuous distributions. The range that has been considered for the input variables xj is from -10 to 10. The number of points on which the probability distribution functions are evaluated has been set to 1024. The considered resolution is then of 20/1024. The total number of iterations of the BP algorithm is equal to 10. At each iteration, the messages p x j→i (k, xj) and p u i→j (k, ui) are vectors of 1024 entries where the probability distribution is evaluated.

The distribution computations in Step 2 are performed in two steps. First, the quantized distribution of the random variables ΦirXr are computed using the fact that

aX ∼ 1 |a| pX(X/a) (10) 
Then the convolution product is evaluated to determine the quantized distribution of the random variables Zi→j and Zi.

The experimental results that have been obtained are presented in Figure 6. One can see that the gain brought by the MAP estimation using BP reaches more than 5 dB in terms of the reconstruction SNR for a channel SNR equal to 6 dB. For a channel SNR greater than 10 dB the LS estimator performs better, its gain is about 2 dB in reconstruction SNR.

CONCLUSION

In this work we have presented an implementation of the MAP estimation based on BP to estimate the input signal of an OFB from noisy subbands. The experimental results show that when the channel is noisy, this approach performs better in terms of reconstruction SNR than classical least-squares reconstruction.

The final version of this paper will evaluate the performance of GAMP in the considered context and consider OFBs with longer impulse responses, to evaluate the impact of the sparsity of the matrix representing the OFB.
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 1 Fig. 1. Transmission scheme based on an OFBprobability density function (pdf) pX(xj),j ∈{0,...,n-1}. This vector passes first through an OFB introducing a redundancy ρ = m/n. The resulting vector z ∈ R m is then quantized to get a vector of quantization indexes s. The quantization function is denoted by Q(z) and the modulation function by M (s). The modulated sequence corresponding to s and denoted by b is transmitted over a memoryless channel. Finally the observation y of real (or complex) values is obtained at the output of this channel.In the particular case of a scalar quantization with the same rate R for each subband sample and a BPSK modulation, each quantized index si,i∈{0,...,m-1} of s is represented by a binary sequence
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 3 Fig. 3. Oversampled filter bank ters {hm} M -1 m=0 with maximal length N × (L +1). The polyphase representation of this OFB is the matrix:
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 6 Fig. 6. The reconstruction SNR as a function of the channel SNR.
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