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ABSTRACT PPD. This is done by passimgessages on the variable states along
' . a graph [13-15]. This message passing algorithm (MPA) operatin
Ove_r_sampled filter banks perform _S|multan_e0usly subband deco%?earl)fie[ld is si]milar to MPA fgr If)DPC c?odgs Which(work)inginite ’
prc])smont agd red:‘mldtancy |rk1)tr?dlrJ]ctlon.| .Th's. redu?danﬁy h?hs beq‘_ Ids [16]. The exact implementation of BP for dense mixing matri-
E (r)xjvn Cr’ t? l:femlijtt %C(\)/mr a\A(l:iralnne |annar:rr}1en S\;\/V\III en enstli”ges is computationally very complex as it involves high-dimensional
ands are transmitled over a Wireless channel, as well as qua %ﬂfegrations for the PPD calculation. Implementations of BP based

tion n0|§e._Th|s_, paper descrl_bes an_lmplementatlon O.f the MaxIMUil), Gaussian approximations have proven to be efficient and accu-
a posteriori estimator of the input signal from the noisy quantized

subbands obtained at the output of some transmission channel. T%Xl\ié{?arl;éﬁtwﬂ?lge Generalized Approximate Message Passing
relations petwee_n the input samples a_nd the noisy_ supband SaMPIES \\hen the length of the impulse response of the filters involved in
are described using afagtor graph. Bellef propagation is then _appll ﬁe OFB is not too large, thé& matrix associated to the OFB may be
to get the posterior marginals of the input samples. The experimenta ite sparse Approxim‘ate implementation of the BP algorithm us-
results show that when the channel is clear, a least-squares estimgye . - . . .
. S ML ng discretized probability density functions becomes then tractable
is satisfying. But, the proposed approach performs significantly bet: .
. - .~ ~“and has been considered here.
ter than a least-squares reconstruction when the channel is noisy:"a The rest of the paper is organized as follows. The considered
gain interms of channel SNR of more thawiB is observed. communication scheme is presented in Section 2. The link between
input estimation of OFBs from noisy subbands and linear mixing
1. INTRODUCTION estimation problems is detailed in Section 3. The MAP estimation
using BP is then described in Section 4. Finally, preliminary ex-

Recently a growing interest has been dedicated to communicatiqfrimental results are described in Section 5 before drawing some
systems performing jointly source and channel coding [2]. Suchgnclusions in Section 6.

schemes cope better with unknown and changing channel charac-

teristics than the classical tandem schemes. In this context, multi-

rate systems and more particularly Oversampled Filter Banks (OFB) 2. TRANSMISSION SCHEME
[3,4] are attractive solutions since they provide an overcomplete rep-

resentation of the input signal by introducing some structured redunthe communication scheme considered here is depicted in Figure 1.
dancy among the output subbands. OFB may then be seen as errbfie random input vectax € R™ has i.i.d. components with prior
correcting codes in the real field as evidenced in [6-8]. OFB may

correct transmission errors left by channel decoders and mitigate a_ 2 s b y 2

part of the quantization noise [9]. Specific decoding techniques have | ,pp | 1> Q(z) —> M(s) —> channel[{—> MAP | »
been developed for OFB. Hypotheses testing and maximum likeli- ___ i estimator
hood estimation are considered in [6]. Kalman filtering is consid- quantization - modulation 11y channel
ered in [8]. A consistent reconstruction technique accounting for the

bounded nature of the quantization noise is introduced in [10]. Py1=(yilz0)
This work considers the maximumposteriori (MAP) estima- ) o
tion of the input of an OFB, when its output subbands are quantized Fig. 1. Transmission scheme based on an OFB
and transmitted over a noisy channel. The computation of the exact
MAP estimator is intractable in general, even for moderate-size inprobability density function (pdfyx (x;), j € {0,...,n—1}. This

put signals. When the OFB consists of finite impulse response filtersector passes first through an OFB introducing a redundaney

a factor graph may describe the relations between the input samples/n. The resulting vectoz € R™ is then quantized to get a vec-
and the noisy subband samplegelief propagation (BP) may then  tor of quantization indexes. The quantization function is denoted

be used to compute the posterior probability distribution (PPD) oby Q(z) and the modulation function by/(s). The modulated se-
each entry of the input vector knowing the noisy subbands. Thiguence corresponding toand denoted by is transmitted over a
approach is inspired from [11, 12] where the problem of estimatingnemoryless channel. Finally the observatjoof real (or complex)
some input vectok € R" from noisy observationg € R™ of lin- values is obtained at the output of this channel.

ear measurements = ®x of x has been addressed with BP. This In the particular case of a scalar quantization with the same rate
problem is known as inear mixing estimation problem. ViaBP, the R for each subband sample and a BPSK modulation, each quantized
linear relations between the variables are exploited to update theindexs;,: € {0, ...,m—1} of sis represented by a binary sequence



b, of R elements and the observatigne R™* % is formed bym whereE;, [ = 0,...,L is a sequence oM x N matrices that

vectorsy; € R” representing the componenisof z. The problem  can be constructed froP[hm}{f;O1 [17]. The following polyphase

is then to evaluate the MAP estimatef x: notations are used for the vector&ndz:
x:arg)r(ré%)&p(ﬂy) (1) X:{m‘o,...,:L'N71,...,:L'kN,...,:L'kN_»,_N_l,...,:L'nfl}
The exact estimation of is intractable in practice when considering 2= {20,y EM 1y TEM+ oy TRMAM 15+ - > Zm—1}

high-dimensional input vectors. We show in the next section that th'?vherek refers to the current instant. At each instarthe input of

problem can be seen as a particular linear mixing problem for whic : P T .
a suboptimal solution can be evaluated using the BP algorithm. }_ﬂh'e OFB is thke vector™ = (e, - ’m]}”“J“N_.l) and its output
is the vectorz® = (znk, - - -, 2mE+m—1)  Obtained as follows:
3. LINEAR MIXING PROBLEM L
Zk _ Z Elxk—l _ EL;oxkiL:k, (3)
3.1. General Scheme 1=0
A general linear mixing problem is presented in Figure 2. The vector Lk b INT i T\T . .
x goes through am. x n matrix & where x = (""" ... ") ) contains all in-
put samples on which the OFB output at tinkedepend and
z = ox @  Ep, = (EL,...,Eo) isaM x (L + 1)N matrix. One can

The output vectow is then transmitted over a separable measurethen write the whole OFB operations as the linear mixing problem
ment channel characterized by its conditional probalikty; (y:|z;) ~ Presented in (2), where
and delivering the measuremegtsHere the quantization and mod-

ulation operations, assumed to be separable are incorporated into the P‘:’]L E : - Eo E()] g g
measurement channel. The difficulty in the estimatiox &how- & — L - : - 0
mxn py|z 0 . 0 Er . . . . Eo
The MAP estimation problem formulated in (1) can then be solved
Fig. 2. General linear mixing estimation problem using the BP algorithm.

ingy is that® mixesx to getz. The evaluation of the posteriori pdf 4. MAXIMUM A POSTERIORI ESTIMATIONWITH

of each element;,j € {0,...,n — 1} orz;,i € {0,...,m — 1} BEL | EF PROPAGATION

involves a high-dimensional integral that is difficult to evaluate.

Such an estimation problem may be solved using BP, provided thatBelief propagation is an iterative message passing algorithm [16]
graph representing the dependencies between the variables is avéilat associates to a transform matfixa factor or Tanner graphGs .
able. BP updates then the PPD of these variables via a messa@e example of such a graph is presented in Figure 4. The gfaph
passing procedure along the edges of this graph [13, 16].

pj—i(Z;)
3.2. OFB-based scheme E—— Yo
An OFB is a filter bank whose number of output subbands is greater xo
than the downsampling ratio. These subbands form then a redun-
dant representation of the input signal. A typiddl- band OFB yi
with a downsampling factor oV < M such thatp = M/N, is 7
presented in Figure 3. This OFB is formed by FIR analysis fil-
x TNk 2Mk y2
> ¢N > >
2t . ¢N TNE+1 . . ZME+1 Tp_1
Y E(2)
: : —
- : pi—j(x;) 1 Ym-1
L1 ' INk+N-1 ZMk+M—1
L, > — . . . N
¢ N Fig. 4. Factor graph for the linear mixing estimation problem
Fig. 3. Oversampled filter bank is a bipartite graph formed by two kind of nodes: the variable nodes
j =10,...,n — 1 corresponding to the input variables and the
ters{hm}ﬁf;é with maximal lengthV x (L + 1). The polyphase factor nodes = 0, ..., m — 1 corresponding to the output measure-
representation of this OFB is the matrix: mentsy; . An edge between the nogeand the node means that the

L entry®;; is non-zero and thus the variablesandy; are involved in
E(z) = Z Bz alinear relation. The set of variable nodes that are connected to the
— factor node is denoted byV,..(7). Similarly the set of factor nodes



connected to the variable noglés denoted byV;,, (7). The different 5. Incrementation:

nodes talk to each other by sending messabese(s) on the states

of each input variable;; and the corresponding probabilities. (@ k=Fk+1
The messaggi—;(z;) is sent by the factor nodeto the vari-

able nodej. It is a vector of the same dimension as the number of

states in whiche; can be. Each component pf,;(z;) evaluates

how likely the measurement; is obtained at nodewhen the input In order to estimate the input signalof an OFB from its noisy

variablez; belongs to the corresponding state. In a similar way, thgeceived subbands, the direct implementation of this BP algorithm

message; i (z;) sent byj to i expresses the beliefs of the variable perform the MAP estimation is possible as the correspondant ma-
node; about the states in whick; could be and their corresponding iyix & is relatively sparse.

probabilities. Wherjs does not contain any cycle and after enough
iterations, this series of message-passing is likely to converge to a
consensus that determines the true margi(a| |y ). 5. EXPERIMENTAL RESULTS
The steps of the BP algorithm in real field are inspired by the
ones presented by Rangan in [11]. They are resumed as follows: |n this section we present the preliminary results obtained when us-

(b) Return to step 2. until a sufficient number of iterations
is performed.

1. Initialization: ing the MAP estimation based on the BP. We have considered an
) ) input vectorx € R®. The components of are i.i.d. zero-mean
(a) Setthe current iteration= 1. Gaussian with variance? = 1. The OFB used is based on the

(b) For each variable nodgand factor node forming an  Haar filters withM = 6, N = 4, andL = 1. The corresponding
edge ofGs set the messages to the a priori distribution transform matrix® is

of the random variabl&;:
| E1r Eo Ogxs

p;?_”'(k,l'j) :p;(k,l'j) :pxj(l'j) (4) e = Ogxa Eq Eo
2. Linear Mixing: where
(a) Assume that the random variabl&s are independent
and thatX; ~ p?_,, (k,z;) 8 8 (1) (1) (1) (1) 8 8
(b) Compute the distributionsy_, ; (k, zi ;) andp; (k, z:) 11lo o o o 11211 0 0
of the random variables: E, = ﬁ 0 0 0 1 and Eg = 711 00 0
Tisi = ;i X, 5 0 1 1 0 0 0 0 O
o Z,, ®) 0 -1 1 0 0 0 0 0
TE€Nout (1)\J
and The vectorz € R'? obtained at the OFB output is quantized using
Zi= Y. ®uX, (6)  a scalar quantization functiof(z) with a rateR = 4 bits with a
7€ Nout (i) guantization step
respectively.

R
3. Output update: A= (20.)/(27 = 1)
Quantized samples are then BPSK modulated and transmitted over
an AWGN channel with a SNR betwedéndB and 13 dB. The
number of noise realizations has been s&iO@).
pisi(k,wi) =P(Yi =yilZi = Zimj + us) The MAP estimation using BP is compared to the reference
least-squares (LS) approach.

For each variable nodg¢ and factor node forming an edge
of Go compute the likelihood probability function

evaluated on each point.
4. Input update: 5.1. Referenceestimation approach

(a) For each variable nogeand factor nodeé forming an  The reference estimation approach that is considered is presented
edge ofYs update the message sentip i in Figure 5. A classical decodé(.) takes hard decisions on the

Pisi(ktl,2)) = apx(z;)  [[  pit;(k, ®yxy)

y b s Z x
1EN, ()\i S D(y) M1 (b) Q™'(s) LS f—
wherec is a normalization constant obtained by impos-
ing thatpj_,;(k + 1, ;) should sum up to 1. Fig. 5. Least Squares Estimation
(b) For each variable nodeupdate the distribution
R . received measuremernys After demodulation and inverse quantiza-
pj(k+1,2;) = Bpx(z;) H pissj(t, i) tion, the received vectaris obtained. Finally the LS reconstruction
LEN;n (5) 8 is performed:

. o . \ = (") "
whereg is a normalization constant obtained by impos- x=( ) z ©
ing thatp§ (k + 1, ;) should sum up to 1.
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butions. The range that has been considered for the input variables

x; isfrom—10to 10. The number of points on which the probability

distribution functions are evaluated has been sd0t. The con-

sidered resolution is then @/1024. The total number ofiterations  [1] ¢. E. Shannon, “A mathematical theory of communication,”

of the BP algorithm is equal td0. At each iteration, the messages Bell Syst. Tech. J., vol. 27, pp. 379-423, 1948.

pj—:(k,xz;) andpi, ;(k,u;) are vectors ofl024 entries where the o

probability distribution is evaluated. [2] A. K. K_atsaggelos and F. ZhaiJoint Source-Channel Video
The distribution computations in Step 2 are performed in two Transmission, Morgan Claypool, 2007.

steps. First, the quantized distribution of the random variables[3] H. Bolcskei and F. Hlawatsch, “Oversampled filterbanks: Op-
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