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ABSTRACT

Oversampled filter banks perform simultaneously subband decom-
position and redundancy introduction. This redundancy has been
shown to be useful to combat channel impairments, when the sub-
bands are transmitted over a wireless channel, as well as quantiza-
tion noise. This paper describes an implementation of the maximum
a posteriori estimator of the input signal from the noisy quantized
subbands obtained at the output of some transmission channel. The
relations between the input samples and the noisy subband samples
are described using a factor graph. Belief propagation is then applied
to get the posterior marginals of the input samples. The experimental
results show that when the channel is clear, a least-squares estimate
is satisfying. But, the proposed approach performs significantly bet-
ter than a least-squares reconstruction when the channel is noisy: a
gain in terms of channel SNR of more than2 dB is observed.

1. INTRODUCTION

Recently a growing interest has been dedicated to communication
systems performing jointly source and channel coding [2]. Such
schemes cope better with unknown and changing channel charac-
teristics than the classical tandem schemes. In this context, multi-
rate systems and more particularly Oversampled Filter Banks (OFB)
[3,4] are attractive solutions since they provide an overcomplete rep-
resentation of the input signal by introducing some structured redun-
dancy among the output subbands. OFB may then be seen as error-
correcting codes in the real field as evidenced in [6–8]. OFB may
correct transmission errors left by channel decoders and mitigate a
part of the quantization noise [9]. Specific decoding techniques have
been developed for OFB. Hypotheses testing and maximum likeli-
hood estimation are considered in [6]. Kalman filtering is consid-
ered in [8]. A consistent reconstruction technique accounting for the
bounded nature of the quantization noise is introduced in [10].

This work considers the maximuma posteriori (MAP) estima-
tion of the input of an OFB, when its output subbands are quantized
and transmitted over a noisy channel. The computation of the exact
MAP estimator is intractable in general, even for moderate-size in-
put signals. When the OFB consists of finite impulse response filters,
a factor graph may describe the relations between the input samples
and the noisy subband samples.Belief propagation (BP) may then
be used to compute the posterior probability distribution (PPD) of
each entry of the input vector knowing the noisy subbands. This
approach is inspired from [11, 12] where the problem of estimating
some input vectorx ∈ R

n from noisy observationsy ∈ R
m of lin-

ear measurementsz = Φx of x has been addressed with BP. This
problem is known as alinear mixing estimation problem. Via BP, the
linear relations between the variables are exploited to update their

PPD. This is done by passingmessages on the variable states along
a graph [13–15]. This message passing algorithm (MPA) operating
in real field is similar to MPA for LDPC codes which work in finite
fields [16]. The exact implementation of BP for dense mixing matri-
ces is computationally very complex as it involves high-dimensional
integrations for the PPD calculation. Implementations of BP based
on Gaussian approximations have proven to be efficient and accu-
rate as for example the Generalized Approximate Message Passing
(GAMP) algorithm [12].

When the length of the impulse response of the filters involved in
the OFB is not too large, theΦ matrix associated to the OFB may be
quite sparse. Approximate implementation of the BP algorithm us-
ing discretized probability density functions becomes then tractable
and has been considered here.

The rest of the paper is organized as follows. The considered
communication scheme is presented in Section 2. The link between
input estimation of OFBs from noisy subbands and linear mixing
estimation problems is detailed in Section 3. The MAP estimation
using BP is then described in Section 4. Finally, preliminary ex-
perimental results are described in Section 5 before drawing some
conclusions in Section 6.

2. TRANSMISSION SCHEME

The communication scheme considered here is depicted in Figure 1.
The random input vectorx ∈ R

n has i.i.d. components with prior
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Fig. 1. Transmission scheme based on an OFB

probability density function (pdf)pX(xj), j ∈ {0, . . . , n−1}. This
vector passes first through an OFB introducing a redundancyρ =
m/n. The resulting vectorz ∈ R

m is then quantized to get a vec-
tor of quantization indexess. The quantization function is denoted
by Q(z) and the modulation function byM(s). The modulated se-
quence corresponding tos and denoted byb is transmitted over a
memoryless channel. Finally the observationy of real (or complex)
values is obtained at the output of this channel.

In the particular case of a scalar quantization with the same rate
R for each subband sample and a BPSK modulation, each quantized
indexsi, i ∈ {0, . . . ,m−1} of s is represented by a binary sequence



bi of R elements and the observationy ∈ R
m×R is formed bym

vectorsyi ∈ R
R representing the componentszi of z. The problem

is then to evaluate the MAP estimatex̂ of x:

x̂ = arg max
x∈Rn

p(x|y) (1)

The exact estimation of̂x is intractable in practice when considering
high-dimensional input vectors. We show in the next section that this
problem can be seen as a particular linear mixing problem for which
a suboptimal solution can be evaluated using the BP algorithm.

3. LINEAR MIXING PROBLEM

3.1. General Scheme

A general linear mixing problem is presented in Figure 2. The vector
x goes through anm× n matrixΦ:

z = Φx (2)

The output vectorz is then transmitted over a separable measure-
ment channel characterized by its conditional probabilitypY|Z(yi|zi)
and delivering the measurementsy. Here the quantization and mod-
ulation operations, assumed to be separable are incorporated into the
measurement channel. The difficulty in the estimation ofx know-

Fig. 2. General linear mixing estimation problem

ingy is thatΦ mixesx to getz. The evaluation of the posteriori pdf
of each elementxj , j ∈ {0, . . . , n − 1} or zi, i ∈ {0, . . . ,m − 1}
involves a high-dimensional integral that is difficult to evaluate.
Such an estimation problem may be solved using BP, provided that a
graph representing the dependencies between the variables is avail-
able. BP updates then the PPD of these variables via a message
passing procedure along the edges of this graph [13,16].

3.2. OFB-based scheme

An OFB is a filter bank whose number of output subbands is greater
than the downsampling ratio. These subbands form then a redun-
dant representation of the input signal. A typicalM− band OFB
with a downsampling factor ofN ≤ M such thatρ = M/N , is
presented in Figure 3. This OFB is formed byM FIR analysis fil-
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Fig. 3. Oversampled filter bank

ters{hm}M−1
m=0 with maximal lengthN × (L + 1). The polyphase

representation of this OFB is the matrix:

E(z) =

L
∑

l=0

Elz
−l

whereEl, l = 0, . . . , L is a sequence ofM × N matrices that
can be constructed from{hm}M−1

m=0 [17]. The following polyphase
notations are used for the vectorsx andz:

x = {x0, . . . , xN−1, . . . , xkN , . . . , xkN+N−1, . . . , xn−1}

z = {z0, . . . , zM−1, . . . , xkM , . . . , xkM+M−1, . . . , zm−1}
wherek refers to the current instant. At each instantk the input of
the OFB is the vectorxk = (xNk, . . . , xNk+N−1)

T and its output
is the vectorzk = (zMk, . . . , zMk+M−1)

T obtained as follows:

z
k =

L
∑

l=0

Elx
k−l = EL:0x

k−L:k, (3)

where xk−L:k =
(

(

xk−L
)T

, . . . ,
(

xk
)T

)T

contains all in-

put samples on which the OFB output at timek depend and
EL:0 = (EL, . . . ,E0) is a M × (L + 1)N matrix. One can
then write the whole OFB operations as the linear mixing problem
presented in (2), where

Φ =

⎡

⎢

⎢

⎢

⎣

EL . . . . E0 0 0 0

0 EL . . . . E0 0 0

. . . . . . . . .

. . . . . . . . .
0 . 0 EL . . . . E0

⎤

⎥

⎥

⎥

⎦

The MAP estimation problem formulated in (1) can then be solved
using the BP algorithm.

4. MAXIMUM A POSTERIORI ESTIMATION WITH
BELIEF PROPAGATION

Belief propagation is an iterative message passing algorithm [16]
that associates to a transform matrixΦ a factor or Tanner graphGΦ.
An example of such a graph is presented in Figure 4. The graphGΦ

Fig. 4. Factor graph for the linear mixing estimation problem

is a bipartite graph formed by two kind of nodes: the variable nodes
j = 0, . . . , n − 1 corresponding to the input variablesxj and the
factor nodesi = 0, . . . ,m−1 corresponding to the output measure-
mentsyi . An edge between the nodej and the nodei means that the
entryΦij is non-zero and thus the variablesxj andyi are involved in
a linear relation. The set of variable nodes that are connected to the
factor nodei is denoted byNout(i). Similarly the set of factor nodes



connected to the variable nodej is denoted byNin(j). The different
nodes talk to each other by sending messages (beliefs) on the states
of each input variablexj and the corresponding probabilities.

The messagepi→j(xj) is sent by the factor nodei to the vari-
able nodej. It is a vector of the same dimension as the number of
states in whichxj can be. Each component ofpi→j(xj) evaluates
how likely the measurementyi is obtained at nodei when the input
variablexj belongs to the corresponding state. In a similar way, the
messagepj→i(xj) sent byj to i expresses the beliefs of the variable
nodej about the states in whichxj could be and their corresponding
probabilities. WhenGΦ does not contain any cycle and after enough
iterations, this series of message-passing is likely to converge to a
consensus that determines the true marginalp(xj |y).

The steps of the BP algorithm in real field are inspired by the
ones presented by Rangan in [11]. They are resumed as follows:

1. Initialization:

(a) Set the current iterationk = 1.

(b) For each variable nodej and factor nodei forming an
edge ofGΦ set the messages to the a priori distribution
of the random variableXj :

pxj→i(k, xj) = pxj (k, xj) = pXj
(xj) (4)

2. Linear Mixing:

(a) Assume that the random variablesXj are independent
and thatXj ∼ pxj→i(k, xj)

(b) Compute the distributionspzi→j(k, zi→j) andpzi (k, zi)
of the random variables:

Zi→j =
∑

r∈Nout(i)\j

ΦirXr (5)

and
Zi =

∑

r∈Nout(i)

ΦirXr (6)

respectively.

3. Output update:

For each variable nodej and factor nodei forming an edge
of GΦ compute the likelihood probability function

pui→j(k, ui) = P (Yi = yi|Zi = Zi→j + ui)

evaluated on each pointui.

4. Input update:

(a) For each variable nodej and factor nodei forming an
edge ofGΦ update the message sent byj to i

pxj→i(k+1, xj) = αpX(xj)
∏

l∈Nin(j)\i

pul→j(k,Φljxj)

(7)
whereα is a normalization constant obtained by impos-
ing thatpxj→i(k + 1, xj) should sum up to 1.

(b) For each variable nodej update the distribution

pxj (k + 1, xj) = β pX(xj)
∏

l∈Nin(j)

pul→j(t,Φljxj)

(8)
whereβ is a normalization constant obtained by impos-
ing thatpxj (k + 1, xj) should sum up to 1.

5. Incrementation:

(a) k = k + 1

(b) Return to step 2. until a sufficient number of iterations
is performed.

In order to estimate the input signalx of an OFB from its noisy
received subbandsy, the direct implementation of this BP algorithm
to perform the MAP estimation is possible as the correspondant ma-
trix Φ is relatively sparse.

5. EXPERIMENTAL RESULTS

In this section we present the preliminary results obtained when us-
ing the MAP estimation based on the BP. We have considered an
input vectorx ∈ R

8. The components ofx are i.i.d. zero-mean
Gaussian with varianceσ2

x = 1. The OFB used is based on the
Haar filters withM = 6, N = 4, andL = 1. The corresponding
transform matrixΦ is

Φ =

[

E1 E0 06×4

06×4 E1 E0

]

where

E1 =
1√
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 1
0 1 1 0
0 −1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and E0 =
1√
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0
0 0 0 0
−1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

The vectorz ∈ R
12 obtained at the OFB output is quantized using

a scalar quantization functionQ(z) with a rateR = 4 bits with a
quantization step

∆ = ( 2 σx ) / ( 2R − 1 ).

Quantized samples are then BPSK modulated and transmitted over
an AWGN channel with a SNR between0 dB and 13 dB. The
number of noise realizations has been set to1000.

The MAP estimation using BP is compared to the reference
least-squares (LS) approach.

5.1. Reference estimation approach

The reference estimation approach that is considered is presented
in Figure 5. A classical decoderD(.) takes hard decisions on the

Fig. 5. Least Squares Estimation

received measurementsy. After demodulation and inverse quantiza-
tion, the received vector̂z is obtained. Finally the LS reconstruction
is performed:

x̂ = (ΦTΦ)−1ΦT
z (9)



5.2. Performances of the MAP estimation using BP

The BP algorithm described in Section 4 is performed by consider-
ing probability mass functions approximating the continuous distri-
butions. The range that has been considered for the input variables
xj is from−10 to10. The number of points on which the probability
distribution functions are evaluated has been set to1024. The con-
sidered resolution is then of20/1024. The total number of iterations
of the BP algorithm is equal to10. At each iteration, the messages
pxj→i(k, xj) andpui→j(k, ui) are vectors of1024 entries where the
probability distribution is evaluated.

The distribution computations in Step 2 are performed in two
steps. First, the quantized distribution of the random variables
ΦirXr are computed using the fact that

aX ∼ 1

|a|pX(X/a) (10)

Then the convolution product is evaluated to determine the quantized
distribution of the random variablesZi→j andZi.

The experimental results that have been obtained are presented
in Figure 6. One can see that the gain brought by the MAP estimation
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Fig. 6. The reconstruction SNR as a function of the channel SNR.

using BP reaches more than5 dB in terms of the reconstruction SNR
for a channel SNR equal to6 dB. For a channel SNR greater than
10 dB the LS estimator performs better, its gain is about2 dB in
reconstruction SNR.

6. CONCLUSION

In this work we have presented an implementation of the MAP es-
timation based on BP to estimate the input signal of an OFB from
noisy subbands. The experimental results show that when the chan-
nel is noisy, this approach performs better in terms of reconstruction
SNR than classical least-squares reconstruction.

The final version of this paper will evaluate the performance of
GAMP in the considered context and consider OFBs with longer im-
pulse responses, to evaluate the impact of the sparsity of the matrix
representing the OFB.
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