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ABSTRACT

This paper focuses on the performance of a Wyner-Ziv coding
scheme for which the correlation between the source and the
side information is modeled by a hidden Markov model with
Gaussian emission. Such a signal model takes the memory of
the correlation into account and is hence able to describe the
bursty nature of the correlation between sources in applica-
tions such as sensor networks, video coding etc.

This paper provides bounds on the rate-distortion perfor-
mance of a Wyner-Ziv coding scheme for such model. It pro-
poses a practical coding scheme able to exploit the memory
in the correlation. Finally, the contribution to each part of the
coding and decoding scheme is analysed.

Index Terms— Wyner-Ziv coding, Hidden Markov
Model, Rate-distortion analysis, MCMC

1. INTRODUCTION

Bonjour

Although results on the theoretical performance of lossy
distributed source coding schemes are since long estab-
lished [1, 2], many efforts remain to be made towards the
characterization of setups involving real sources. This pa-
per aims to account for the potentially bursty nature of the
correlation between sources in Wyner-Ziv setups.

Bursty correlation may appear, for example, in the context
of sensor networks [3]. Two closely located sensors measure
some physical quantity (temperature, pressure). The respec-
tive readings Xk and Yk are, in general, strongly correlated,
but perturbations in the local sensing environment may oc-
casionally cause bursts of weakly correlated pairs. Simple
correlation models for Xk and Yk, such as Gaussian [4] or
Gauss-Markov [5], may not be sufficient to capture such a
behavior.

The instantaneous correlation level (good, bad) between
Xk and Yk is represented in this paper by the realization of
some hidden state variable Sk. The state sequence {Sk}+∞k=1,
as detailed in Section 2, is modeled as a Markov process,
which allows to account for the temporal dependence of con-
secutive correlation levels. Similar signal representations
have been already considered in the context of lossless source
coding [6]. For the binary case, in particular, the dependence
between the sources has been modeled using a Gilbert-Elliot

channel [7] and practical coding solutions have been pro-
posed [8, 9]. To the best of our knowledge no performance
analysis or practical coding schemes have been proposed for
the asymmetric lossy setup.

The rest of the paper is organized as follows. The sig-
nal model is introduced in Section 2. In Section 3 the rate-
distortion function of the Wyner-Ziv setup is characterized,
establishing an upper bound to the rate loss with respect to
a genie-aided setup, where the instantaneous realization of
the state variable is available at the encoder and at the de-
coder. In Section 4 the implementation of practical solutions
is discussed, and a Monte-Carlo Markov Chain (MCMC) [10]
decoder based on a Minimum Mean Square Error (MMSE)
estimator is proposed. Its performance is compared to the
theoretical bounds in Section 5.

2. SIGNAL MODEL

The two correlated sources generate real-valued symbols,
corresponding to the realizations of the random sequences
{Xk}+∞k=1 and {Yk}+∞k=1. Let Xk and Yk represent the source
and the side information symbols, respectively. Their instan-
taneous dependence is modeled using the additive channel
Xk = Yk + Zk. The correlation noise Zk and the side
information Yk are assumed independent. The symbols in
{Yk}+∞k=1 are independent, identically distributed according
to N (0, σ2

y). The correlation noise sequence {Zk}+∞k=1 is dis-
tributed according to a hidden Markov model, with hidden
state Sk and Gaussian emission. The state variable Sk takes
values in {0, 1}. The sequence {Sk}+∞k=1 is a time-invariant
Markov process with transition probability matrix P , with

Pij = Pr(Sk = j|Sk−1 = i) ∀(i, j) ∈ {0, 1}2, (1)

and with stationary probability pi = Pr(Sk = i). Let
σ2
i be the variance associated with the realization S = i,

so that (Zk|Sk = i) is distributed according to N (0, σ2
i ).

It is assumed σ2
0 < σ2

1 . In the following, let X1:N =
(X1 . . . XN ). We consider the quadratic distortion measure
d(X1:N , X̂1:N ) = 1

N ‖X1:N − X̂1:N‖2.
This signal model extends the one considered in [11],

where {Zk}+∞k=1 is a Bernoulli-Gaussian process.
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Fig. 1. Setup 1 (K closed) and Setup 2 ( K open).

3. BOUNDS FOR THE RATE-DISTORTION
CHARACTERISTIC

The aim of this section is the analysis of the Wyner-Ziv rate-
distortion function RX|Y (D) for the signal model presented
in Section 2. The Wyner-Ziv setup (Setup 2) is depicted in
Figure 1, for Switch K open. Since RX|Y (D) cannot be ex-
pressed in closed form, we characterize the upper bound to
the rate loss in RX|Y (D) with respect to the theoretical per-
formance RX|Y,S(D) of a genie-aided setup, where the re-
alization of Sk is made available both at the encoder and at
the decoder. The genie-aided setup (Setup 1) is depicted in
Figure 1, for Switch K closed.

Remarking that the random sequences defined in Sec-
tion 2 are stationary and ergodic processes, the per-symbol
rate-distortion function RX|Y,S(D) for Setup 1 is derived
from [12] as

RX|Y,S(D) = lim
N→∞

1

N
RX1:N |Y1:N ,S1:N

(D), (2)

where RX1:N |Y1:N ,S1:N
(D) is defined by

RX1:N |Y1:N ,S1:N
(D) = inf I(X1:N ; U1:N |Y1:N ,S1:N ).

(3)
The minimization in (3) is on the pairs (fU|X,S(u|x, s),
FD(·, ·, ·)) such that the Markov chain U ↔ (X,S) ↔
(Y,S) is satisfied, and E [d(X, FD(U,Y,S)] ≤ D holds.
Let RM

X|Y,S(D) be the rate-distortion function associated to
Setup 1 when the state variable S is assumed memoryless,
Bernoulli distributed, as in [11].

Similarly, the rate-distortion functionRX|Y (D) for Setup 2
is defined as

RX|Y (D) = lim
N→∞

1

N
RX1:N |Y1:N

(D) (4)

where

RX1:N |Y1:N
(D) = inf I(X1:N ; U1:N |Y1:N ). (5)

The minimization in (5) is on the pairs (fU|X(u|x), FD(·, ·))
such that the Markov chain U ↔ X ↔ Y is satisfied, and
E [d(X, FD(U,Y)] ≤ D holds. Let RM

X|Y (D) be the rate-
distortion function associated to Setup 2 when the state vari-
able S is assumed memoryless, Bernoulli distributed.

3.1. Setup 1, closed-form expression of RX|Y,S(D)

Proposition 1 For the signal model defined in Section 2,

RX|Y,S(D) =
∑

i∈{0,1}

pi max

(
0,

1

2
log2

(
σ2
i

D′

))
, (6)

Fig. 2. Proposed coding scheme

where D′ is such that
∑
i∈{0,1} pi min(D′, σ2

i ) ≤ D.

The proposition follows from the fact that the condition-
ing on S1:N in (3) breaks the temporal dependence between
the symbols in the sequence X1:N . As a result,RX|Y,S(D) =
RM
X|Y,S(D). The closed-form expression ofRM

X|Y,S(D) is de-
rived in [11]. This setup does not suffer rate loss compared
to the joint coding case. Such a result is difficult to derive for
Setup 2, as we only have an upper bound on performance.

3.2. Setup 2, rate loss for RX|Y (D)

A lower bound to the rate-distortion function RX|Y (D) for
Setup 2 is naturally provided by the performance of the genie-
aided setup (Setup 1), RX|Y,S(D).

Proposition 2 For the signal model defined in Section 2,

RX|Y (D) ≤ RX|Y,S(D) + LX|Y (D) + ΛX|Y (7)

with

LX|Y (D) =
1

2
log2

(
1 +D/σ2

0

)
(8)

ΛX|Y = min
(
H(Sk|Sk−1), h(Z)− h(Zk|Sk)

)
, (9)

and where h(Z) is the differential entropy rate h(Z) =
limN→∞

1
N h(Z1:N ).

The rate loss term (8) vanishes as D → 0, and is due to the
fact that no rate adaptation is possible at the encoder when the
realization of Sk is not available. The rate loss term (9) is due
to the uncertainty on Sk at the decoder side.

Sketch of the proof to Proposition 2 Consider a particular
test-channel

(
fU|X(u|x), FD(·, ·)

)
chosen in the minimiza-

tion set of (5). The probability density function fU|X(u|x) is
chosen as Gaussian, by letting U1:N = X1:N + Φ1:N , with
Φ1:N independent on X1:N . The symbols Φk are indepen-
dent, identically distributed according to N (0, σ2

Φ).
Since the MMSE estimator of X1:N from (U1:N ,Y1:N )

is not known in closed form, the reconstruction function
X̂1:N = FD(U1:N ,Y1:N ) is chosen as the LMMSE estima-
tor. The variance σ2

Φ is chosen to match the target distortion
D. The right part of (7) is obtained by evaluating the mutual
information in (5) for this test channel, and taking the limit as
N →∞ as in (4).

4. TOWARDS A PRACTICAL SETUP

The coding chain for the model introduced in Section 2 is de-
picted in Figure 2. It works on source sequences of length



N . We first apply a square invertible mixing matrix A ∈
RN×N . The encoder then produces a quantized version U1:N

of AX1:N

U1:N = AX1:N + Φ1:N . (10)

We assume a dithered lattice quantizer [13] in high resolution
regime. Let σ2

φ denote the second moment (per dimension)
of the lattice [13]. The encoder transmits the quantization
index without losses to the decoder. We assume an idealized
Slepian-Wolf (SW) coding chain, able to achieve the optimal
rate given in [14] for ergodic sources.

In this section we focus on the design of the decoder
which outputs the reconstruction X̂1:N of the source se-
quence. Since the distortion measure is quadratic, we con-
sider MMSE estimation. Although the MMSE estimator
cannot be characterized in analytical form, an asymptotically
optimal implementation can be achieved via MCMC based
methods. The decoder observes Y1:N and the noisy descrip-
tion (10) of the source. The estimator considers the elements
in Φ as Gaussian, i.i.d. distributed, with variance σ2

φ (worst-
case assumption). We want to jointly estimate X1:N and
S1:N from Y1:N and U1:N . The joint posterior distribution
can be expressed as

P (X1:N ,S1:N |Y1:N ,U1:N ) ∝
P (U1:N |X1:N )P (X1:N |Y1:N ,S1:N )P (S1:N ) (11)

with

P (U1:N |X1:N ) ∼ N
(
AX1:N , σ

2
φIN

)
(12)

P (X1:N |Y1:N ,S1:N ) ∼ N (Y1:N , Rs) (13)

P (S1:N ) = P (S1)

N∏
k=2

P (Sk|Sk−1) (14)

and Rs = E
[
Z1:NZT1:N |S1:N

]
. We estimate the joint pos-

terior mean using a Gibbs sampler from the family of the
MCMC algorithms. After a burning period, this algorithm
provide samples of the joint posterior law. It means that we
generate randomly sequences X1:N and S1:N according to
their joint posterior distribution. The posterior mean is then
estimated by avering over J samples. We cannot sample di-
rectly the joint posterior law (11) because it is too complex.
Thus we use a Gibbs sampler algorithm. The principle of the
Gibbs sampler is to sample under the conditional law itera-
tively. It is shown in [10] that asymptotically this algorithm
provides true samples under the joint law.

Each iteration j of the algorithm can be decomposed into
two steps described as follows.
1. Sample X(j)

1:N according to

P
(
X1:N |S1:N = s

(j−1)
1:N ,U1:N = u1:N ,Y1:N = y1:N

)
=

1

(2π)N/2R
1/2
x

exp

(
− (X1:N −mX)TR−1

x (X1:N −mX)

2

)

with

Rx =
(
ATA/σ2

φ +R−1
s

)−1

mX = Rx
(
ATu1:N/σ

2
φ +R−1

s y1:N

)
(15)

2. Sample S(j)
1:N sequentially in order to use the Markov chain

property of S1:N according to

P
(
S

(j)
1 = 1|X1 = x

(j)
1 , Y1 = y1, U1 = u1

)
=(

1 +
P (S1 = 1)

P (S1 = 0)

√
σ2

0

σ2
1

e

(
− 1

2

(
1

σ20
− 1

σ21

)
(x

(j)
1 −y1)2

))−1

and ∀k = 2 . . . N ,

P
(
S

(j)
k =1|Xk=x

(j)
k , Yk=yk, Uk= uk, Sk−1 =s

(j)
k−1

)
=(

1 +
P (Sk = 1|s(j)

k−1)

P (Sk = 0|s(j)
k−1)

√
σ2

0

σ2
1

e

(
− 1

2

(
1

σ20
− 1

σ21

)
(x

(j)
k −yk)2

))−1

The algorithm is initialized with a state sequence S
(0)
1:N sam-

pled symbol by symbol from the a priori distribution of S1:N

(see Section 2). To finish an approximation of the MMSE es-
timate X̂1:N is calculated from the sampled sequences X

(j)
1:N

as X̂1:N = 1
J

∑J
j=b X

(j)
1:N where J is the number of iterations

and b is the end of the burning period.

5. EXPERIMENTS

This section evaluates the performance of the proposed
MCMC decoding scheme. The memory of the state vari-
able S is characterized by µ = 1− p01 − p10, see [7], where
p01 = Pr(Sk = 1|Sk−1 = 0) and p10 = Pr(Sk = 0|Sk−1 =
1). The variance of Yk, is chosen as σ2

y = 1 and the param-
eters associated to source Sk are σ2

0 = 0.04, σ2
1 = 1, p0 =

0.9, µ = 0.8. The transition probability matrix is derived
from p0, p1 = 1 − p0 and µ. The matrix A is a DCT matrix.
Blocks of N = 100 source samples and J = 2000 iterations
are considered.

We aim at evaluating the performance of the proposed
decoder taking into account the characteristics of the cod-
ing scheme described in Figure 2. We assume asymptotic
dithered lattice quantization, with N → ∞. We first assume
that the SW chain achieves the theoretical performance for
ergodic sources, as in Section 4. As this assumption is not re-
alistic, we provide also comparison with the performance of a
system exploiting a state of the art SW chain for i.i.d. sources.

Under the assumption of ideal SW chain, the rate needed
to transmit U1:N = AX1:N+Φ1:N losslessly is given by [11]

R(σ2
φ) =

1

N
h(U1:N |Y1:N )− 1

2
log2(2πeσ2

φ) (16)

=
1

N
h(Z1:N + Φ1:N )− 1

2
log2(2πeσ2

φ). (17)



An upper bound to h(Z1:N + Φ1:N ) is evaluated numeri-
cally. For the fixed value σ2

φ, we hence evaluate the per-
formance of the estimator. We generate 500 realizations of
X1:N , Y1:N and Φ1:N , and we decode the sequence to ob-
tain X̂1:N . The distortion D(σ2

φ) is hence given by D(σ2
φ) =

1
500

∑500
i=1 ‖X1:N − X̂1:N‖22.

In the second case, the SW chain is designed to work with
i.i.d. sources, and regards Z1:N as composed by symbols
distributed according to N (0, σ2

z). This induce performance
loss due to the fact that the temporal correlation between con-
secutive Zk is not exploited to achieve further compression.
In this case, practical coding solutions exist, providing rate
R(σ2

φ) ≤ 1
2 log2

(
1 + σ2

z/σ
2
φ

)
. The distortion D(σ2

φ) is eval-
uated as before.

To finish, we also compare our MCMC based algorithm to
another solution that is a derived version of the Fast Bayesian
Matching Pursuit Algorithm (FBMP) [15] adapted to the case
with memory. All the results are presented in Figure 3 and
compared to the theoretical lower and upper bounds proposed
in (7). We observe only a little difference between the lower
bound and the upper bound, meaning both are close to the
true rate-distortion function. We see that the proposed decod-
ing algorithm induces no loss in performance when it follows
an ideal SW chain, unlike the FBMP algorithm. We also ob-
serve that the SW chain designed for the Gaussian approxi-
mation induces a loss of approximately 3 dB compared to the
ideal one. A practical solution adapted to our model may be
between the two curves.

6. CONCLUSION

This work introduces an HMM driven correlation model in
the context of lossy source coding with side information at
the decoder. This model may capture the bursty nature of
source correlation, e.g., in sensor networks. Bounds on the
rate-distortion function are obtained for this model, and a
practical decoder is proposed. It was evaluated by consid-
ering ideal quantizer and SW encoder and decoder.

Future work will be dedicated to the design of adapted
quantizer and SW chain to our model with memory. More-
over, until now, only the cases with either perfect estimate
of the states or no knowledge of the states have been consid-
ered. The next step may be to extend the results to imperfect
knowledge of the states, or imperfect knowledge of the source
correlation distribution.
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