Hassan Hijazi

Amadou Diallo

Michel Kieffer
email: michel.kieffer@lss.supelec.fr

Leo Liberti

Claudio Weidmann

A MILP approach for designing robust variable-length codes based on exact free distance computation

Keywords: joint source-channel variable-length codes, error correcting codes, mixed-integer linear programming

This paper addresses the design of joint source-channel variable-length codes with maximal free distance for given codeword lengths. While previous design methods are mainly based on bounds on the free distance of the code, the proposed algorithm exploits an exact characterization of the free distance. The code optimization is cast in the framework of mixed-integer linear programming and allows to tackle practical alphabet sizes in reasonable computing time.

Introduction

When designing joint source-channel Variable-Length Codes (VLCs), i.e.,s o u r c e codes robust to transmission errors, one wants to maximize the error correction capability for a given redundancy level. Redundancy is measured by the difference between average codeword length and source entropy [START_REF] C O V E Ra N Dj | Elements of Information Theory[END_REF], while the error correction capability is determined by the distance spectrum, mainly the free distance, see e.g. [START_REF] Buttigieg | Variable-Length Error Correcting Codes[END_REF].

Early work on robust VLC design focused on minimizing the average codeword length of reversible VLCs, without considering error correction performance, see [START_REF] Takishima | Reversible variable length codes[END_REF][START_REF] Tsai | On-constructing the Huffman-codes based reversible variable-length codes[END_REF][START_REF] Lakovic | An algorithm for construction of efficient fix-free codes[END_REF][START_REF] Tseng | Construction of symmetrical reversible variable length codes using backtracking[END_REF][START_REF] Wang | Iterative construction of reversible variable-length codes and variable-length error-correcting codes[END_REF], and [START_REF] Lin | Two algorithms for constructing efficient Huffman-code based reversible variable length codes[END_REF]. Techniques for evaluating the distance spectrum as well as bounds on the free distance of VLCs were introduced in [START_REF] Buttigieg | Variable-Length Error Correcting Codes[END_REF]. These bounds have then been extensively used in [START_REF] Buttigieg | Variable-length error-correcting codes[END_REF][START_REF] Lakovic | On design of error-correcting reversible variable length codes[END_REF][START_REF] Lamy | Optimised constructions for variable-length error correcting codes[END_REF][START_REF] Lin | Two algorithms for constructing efficient Huffman-code based reversible variable length codes[END_REF][START_REF] Maunder | Genetic algorithm aided design of component codes for irregular variable length coding[END_REF][START_REF] Thobaben | An efficient variable-length code construction for iterative sourcechannel decoding[END_REF] to develop robust VLC construction heuristics. Recently, Abedini et al. [START_REF] Abedini | A SAT-based scheme to determine optimal fix-free codes[END_REF] proposed an efficient SAT-based approach for designing robust VLCs with minimal redundancy properties, also based on the bounds in [START_REF] Buttigieg | Variable-Length Error Correcting Codes[END_REF]. Methods using these bounds impose a sufficient but not necessary condition to achieve a target free distance, thus they may disregard certain optimal solutions. The aim of this paper is to introduce a mixed-integer linear programming approach to design a VLC maximizing the free distance for a given set of codeword lengths. It will be shown that prefix, suffix, as well as distance constraints may be formulated as linear inequalities involving integer-valued as well as real-valued variables. Contrary to previous approaches, the exact free distance characterization is used in the algorithm, leveraging recent results on low-complexity free distance evaluation for VLCs proposed in [START_REF] Diallo | Efficient computation and optimization of the free distance of variable-length finite-state joint source-channel codes[END_REF].

Section 2 introduces some notations. Efficient free distance evaluation for VLCs is recalled in Section 3. The robust VLC construction problem is then cast in the framework of mixed-integer linear programing in Section 4. The main algorithm is proposed in Section 5, before reporting numerical results in Section 6.

Notations

Consider a discrete memoryless source X with alphabet A = {a 1 ,a 2 ,...,a n } and corresponding probability vector π =(π 1 ,π 2 ,...,π n), where π i =P r (X = a i). A binary VLC C for X maps A to a set of codewords C = {c 1 , c 2 ,...,c n },w h e r ec i is a codeword of ℓ i bits associated to a i . The redundancy of code C is ρ (C)= l (C) -H (X), where l (C)= n i=1 π i ℓ i denotes the average codeword length and H (X)=-n i=1 π i log 2 π i the source entropy [START_REF] C O V E Ra N Dj | Elements of Information Theory[END_REF]. The error correction performance of C is mainly determined by its free distance, defined as follows. Consider the set C ∞ = C∪C 2 ∪C 3 ∪ ... of all finite and semi-infinite sequences of codewords. The free distance d f (C) is the minimum Hamming distance d H (s 1 , s 2) between any two distinct sequences s 1 , s 2 in C ∞ of equal length in bits (denoted ℓ(s 1)=ℓ(s 2)), that is

d f (C)= min s 1 ,s 2 ∈C ∞ : ℓ(s 1)=ℓ(s 2) ∧ s 1 =s 2 d H (s 1 , s 2) . (1)
For given redundancy ρ, one is interested in designing a code C that maximizes d f (C). The design parameters are the length vector (the vector of codeword lengths) ℓ =(ℓ 1 ,...,ℓ n) and the bit assignment of each codeword of C.

Free distance evaluation

A VLC may be regarded as a nonlinear code generated by a trivial Finite-State Encoder (FSE). This section briefly recalls how FSEs provide an efficient way to evaluate the free distance of VLCs, as detailed in [START_REF] Diallo | Efficient computation and optimization of the free distance of variable-length finite-state joint source-channel codes[END_REF]. An FSE is a directed graph Γ(S, T), where S = {s 0 ,s 1 ,...,s k-1 } is the set of vertices (states) and T = {t 0 ,t 1 ,...,t m-1 } is the set of directed edges (transitions). For t ∈T, σ (t) ∈S and τ (t) ∈S denote the source and target states. A label (a i /c i) is attached to each edge t i , corresponding to the pair (input symbol/output codeword). In the simple case of a VLC, S contains a single state s 0 from which (to which) all transitions diverge (converge), see Figure 1(a). Any sequence of codewords in C ∞ may be represented by a path in Γ. A bit-clock FSE Γ b (S b , T b) is obtained by replacing each edge t i in Γ by a sequence of transitions t i,1 ,t i,2 ,...,t i,ℓ i with corresponding labels (a i /c i 1), (-/c i 2),...,(-/c i ℓ i) and intermediate states s i,1 ,s i,2 ,...,s i,ℓ i -1 . Each transition in T b has thus a single output bit, see Figure 1(b).

Free distance computation is simplified using the Pairwise Distance Graph (PDG) Γ P (S P , T P) introduced in [START_REF] Diallo | Efficient computation and optimization of the free distance of variable-length finite-state joint source-channel codes[END_REF], which is derived from the product graph Γ 2 b (S 2 b , T 2 b)o f the bit-clock FSE. Consider the set S div of states (s i ,s i) ∈S 2 b from which distinct transitions are diverging, as well as the set S conv of states to which distinct transitions are converging. One obtains S P by merging all states in S div into a single state s div and those in S conv into a single state s conv , as well as merging symmetric states (s i ,s j) and (s j ,s i), i<j , into a single state (s i ,s j). In the simple case of VLCs, one has s div =(s 0 ,s 0)ands conv =(s 0 ,s 0). Each transition t ij ∈T P is labeled by the Hamming distance d H (Out (t i) , Out (t j)) between the output bits of t i ∈T b and t j ∈T b .

Ap athp in Γ P is an ordered sequence of transitions p =(θ 1 ,θ 2 ,...,θ k) such that τ (θ i)=σ (θ i+1), 1 i<k , and represents a pair of equal-length paths in Γ b .T h e set of all paths from s div to s conv is denoted by P.T h ew e i g h tw H (p)o fap a t hp in Γ P is the sum of its edge labels. Thus w H (p) equals the Hamming distance between two sequences of the same length in bits generated by the original encoder. The free distance of a code C is then the smallest weight of a path in P,w h i c hm a yb e computed efficiently using Dijkstra's algorithm, see [START_REF] Diallo | Efficient computation and optimization of the free distance of variable-length finite-state joint source-channel codes[END_REF].

The structure of the PDG for a VLC may be obtained from the length vector ℓ, which yields a symbolic codebook

C = c 1 1 c 1 2 ...c 1 ℓ 1 ,c 2 1 c 2 2 ...c 2 ℓ 2 ,...,c n 1 c n 2 ...c n ℓn . (2)
When no bit of C is specified, instead of having a PDG with edges labeled by 0 or 1, one obtains symbolic labels such as

c i 1 j 1 ⊕ c i 2 j 2 (
where ⊕ is the exclusive-or operation), corresponding to the Hamming distance between two bits of codewords of C;s e e Figure 2 for the case

C = {c 1 1 ,c 2 1 c 2 2 ,c 3 1 c 3 2 c 3 3 }.
This is an important property, since it enables one to obtain a symbolic expression for the Hamming weight of any path from s div to s conv as a function of bits of C, without specifying any of those bits.

Mixed-Integer Linear Programming

A Mixed-Integer Linear Program (MILP) is an optimization problem described by a linear objective function and linear inequality constraints. A MILP can be written

s 2,3 s 0,1 s conv s div s 0,2 s 0,3 s 1,2 s 1,3 c 1 1 ⊕ c 1 2 c 1 1 ⊕ c 1 3 c 1 2 ⊕ c 1 3 c 1 2 ⊕ c 2 2 c 1 1 ⊕ c 2 2 c 2 2 ⊕ c 1 3 c 1 2 ⊕ c 2 3 c 1 3 ⊕ c 2 3 c 1 1 ⊕ c 2 3 c 2 2 ⊕ c 2 3 c 1 3 ⊕ c 3 3 c 1 2 ⊕ c 3 3 c 1 1 ⊕ c 1 3 c 2 3 ⊕ c 3 3 c 2 2 ⊕ c 3 3 Figure 2: Pairwise distance graph derived from the B-FSE of C = c 1 1 ,c 1 2 c 2 2 ,c 1 3 c 2 3 c 3 3
in canonical form as follows:

max x α T x s.t. Ax b, x 0, x ∈ R n , x I ∈ Z |I| (M)
where I ⊆{1, 2,...,n} is the set of indices corresponding to integer variables, α ∈ Q n represents the cost vector, A ∈ Q m×n is the coefficient matrix, and b ∈ Q n denotes the right hand side vector. The subvector x I contains all integer entries of x.V e r y efficient techniques based on continuous linear optimization theory are available to solve large-scale MILPs, see e.g. [START_REF] Wolsey | Integer and Combinatorial Optimization[END_REF]. Given a length vector ℓ corresponding to a code C, the aim in the remainder of this section is to cast the bit assignment problem into a MILP maximizing d f (C).

Objective function

The vector x I in (M) contains binary decision variables, which are the bit components of the codewords in C, as well as one integer variable d corresponding to the free distance to maximize. Thus

x I = d, c 1 1 ,...,c 1 ℓ 1 ,...,c n 1 ,...,c n ℓn T . Without loss
of generality, one may choose x I to form the first entries of x. The cost vector is then α =(1, 0,...,0) T and the objective function α T x leads to the maximization of d.

Constraints derived from bounds on the free distance

A first set of inequalities may be derived from the following bounds on free distance in [START_REF] Buttigieg | Variable-Length Error Correcting Codes[END_REF][START_REF] Buttigieg | Variable-length error-correcting codes[END_REF]:

d b (C) d f (C) min(d b (C) ,d div (C)+d conv (C)) (3)
where

d b (C)=min d H (c i 1 c i 2 ...c i ℓ i ,c j 1 c j 2 ...c j ℓ j):(c i , c j) ∈C 2 ,i = j, and ℓ i = ℓ j (4)
is the overall minimum block distance (between codewords of the same length),

d div (C)=min d H (c i 1 c i 2 ...c i ℓ j ,c j 1 c j 2 ...c j ℓ j):(c i , c j) ∈C 2 ,ℓ i >ℓ j (5)
is the minimum diverging distance (between prefixes), and

d conv (C)=min d H (c i ℓ i -ℓ j +1 ...c i ℓ i ,c j 1 ...c j ℓ j):(c i , c j) ∈C 2 ,ℓ i >ℓ j (6)
is the minimum converging distance (between suffixes). From (3) and (4), one may deduce the following set of constraints which have to be satisfied by an optimal code:

ℓ i k=1 c i k ⊕ c j k d, ∀(c i , c j) ∈C 2 such that ℓ i = ℓ j . (7)
As in [START_REF] Abedini | A SAT-based scheme to determine optimal fix-free codes[END_REF], one may search for codes maximizing the free distance with bit assignments such that d div (C) ⌈d/2⌉ and d conv (C) ⌊d/2⌋ , where ⌊•⌋ and ⌈•⌉ denote rounding towards -∞ and ∞, respectively. From (5) and (6) one then gets the set of constraints

ℓ j k=1 c i k ⊕ c j k ⌈d/2⌉ , ∀(c i , c j) ∈C 2 such that ℓ i >ℓ j , (8)
and

ℓ j k=1 c i (ℓ i -k+1) ⊕ c j (ℓ j -k+1) ⌊d/2⌋ , ∀(c i , c j) ∈C 2 such that ℓ i >ℓ j . (9)
However, constraints (8) and (9) may discard many optimal codes, especially ones having a minimum codeword length ℓ min such that ℓ min < ⌊d f (C) /2⌋. For example, C = {01, 10000010} has d f (C) = 6, but would not satisfy (8) nor [START_REF] Lakovic | An algorithm for construction of efficient fix-free codes[END_REF] with d =6,and thus can not be obtained as a solution of algorithms imposing such constraints.

Constraints for prefix-free or suffix-free codebooks

Prefix-free codebooks are obtained by imposing that the diverging distance be at least one, i.e.,t h a t

ℓ j k=1 c i k ⊕ c j k 1, ∀(c i , c j) ∈C 2 such that ℓ i >ℓ j . (10)
Similar inequalities can be derived for suffix-free codebooks:

ℓ j k=1 c i (ℓ i -k+1) ⊕ c j (ℓ j -k+1) 1, ∀(c i , c j) ∈C 2 such that ℓ i >ℓ j . (11)
Fix-free codebooks are then obtained by simultaneously imposing [START_REF] Lamy | Optimised constructions for variable-length error correcting codes[END_REF] and [START_REF] Lin | Two algorithms for constructing efficient Huffman-code based reversible variable length codes[END_REF].

Exact free distance constraints

Consider the PDG Γ P associated to some codebook C and let P e denote the set of elementary (cycle-free) paths going from s div to s conv . Based on the definition of free distance one has

d f (C) d if and only if ∀p ∈P e ,w H (p) d. (12)
Assume that a path p ∈P e may be written as p =(θ 1 ,θ 2 ,...,θ k), then each θ κ is associated to a unique pair of codeword bits (c iκ jκ ,c

i ′ κ j ′ κ) such that w H (θ κ)=c iκ jκ ⊕ c i ′ κ j ′
κ . Thus, the following constraint may be obtained from [START_REF] Maunder | Genetic algorithm aided design of component codes for irregular variable length coding[END_REF] for a given path p

= (θ 1 ,θ 2 ,...,θ k)i nP e k κ=1 c iκ jκ ⊕ c i ′ κ j ′ κ d. (13)
Let us emphasize that the number of cycle-free paths in Γ P grows exponentially with the size of C. Therefore, the number of constraints (13) associated to all cyclefree paths in P e may become intractable. This issue is addressed in Section 5.

Transforming exclusive-or operations

All previously-introduced constraints feature exclusive-or operations (⊕). The corresponding inequalities do not fit in the MILP framework. This issue is addressed in Proposition 1, where it is shown that each exclusive-or operation can be translated into a set of linear inequalities by introducing real-valued variables.

Proposition 1. Consider two binary variables x and y, and a real-valued variable z. Then z = x ⊕ y if and only if

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ z x -y, z y -x, z x + y, z 2 -(x + y), 0 z 1. (14)
Proof. If z = x ⊕ y, one may easily verify that all inequalities in (14) are satisfied. In the opposite direction, one only needs to check all possible combinations of x and y. If (x, y)=(0, 0) then the third constraint in (14) induces z 0. If (x, y)=(1, 0) then the first constraint induces z 1. If (x, y)=(0, 1) then the second constraint induces z 1. Finally, if (x, y)=(1 , 1) then the last constraint induces z 0. Intersecting each of these constraints with the bounds 0 z 1 completes the proof.

Note that the artificial variables such as z in (14) required to transform exclusive-or operations into inequality constraints constitute the real-valued entries of the vector x introduced in (M).

Codebook generation algorithm

For a given length vector ℓ, using the results of Section 4, the search for a codebook optimizing the free distance may be cast in the framework of MILP. A first MILP may be obtained by imposing block, diverging, and converging distance constraints as suggested in [START_REF] Abedini | A SAT-based scheme to determine optimal fix-free codes[END_REF]. The resulting model is max d s.t. (7), [START_REF] Lakovic | On design of error-correcting reversible variable length codes[END_REF], and (9).

(M B)

All exclusive-or are transformed into linear inequalities as proposed in [START_REF] Thobaben | An efficient variable-length code construction for iterative sourcechannel decoding[END_REF]. A second MILP may be obtained imposing the prefix constraints [START_REF] Lamy | Optimised constructions for variable-length error correcting codes[END_REF] as well as distance constraints [START_REF] Takishima | Reversible variable length codes[END_REF] on paths of the PDG, leading to the following model max d s.t. [START_REF] Lamy | Optimised constructions for variable-length error correcting codes[END_REF], [START_REF] Maunder | Genetic algorithm aided design of component codes for irregular variable length coding[END_REF] for all p ∈P e , d d,

(M P)
where d is a given upper bound on the free distance (this last constraint helps to reduce the size of the search space; without prior knowledge on d,o n em a yt a k e d = ∞). Nevertheless, the number of paths in P e may be too large to be manageable. The main idea of the Codebook Generation Algorithm (CGA) in Table 1 is to consider first the µ shortest paths (in terms of number of visited states) in the product graph Γ P associated to the length vector (ℓ 1 ,...,ℓ n) (Step 2). The µ paths are obtained via a breadth-first exploration of Γ P from s div to s conv . In the corresponding MILP (M (k) P), a subset of binary variables are fixed based on the entries of (ĉ 1 ,...,ĉ m). This allows to design codebooks with already determined codewords. (M (k) P)i st h e n solved and the upper bound df on the free distance is updated (Steps 5 and 6). If no codebook is obtained (for example when the length vector does not satisfy Kraft's inequality [START_REF] C O V E Ra N Dj | Elements of Information Theory[END_REF]), an empty codebook is returned (Step 7). The codebook C (k) obtained at iteration k is used to build the PDG Γ (k) P on which Dijkstra's algorithm is applied to get a shortest weight path p(k) and the free distance k) is the optimal free distance and C (k) is a solution (Step 9). Otherwise, P (k) e has to be supplemented with the path corresponding to p(k) in Γ P andwithasetofν additional shortest paths in Γ P to get P (k+1) e (Step 10). This algorithm is finite since the number of cycle-free paths in a graph is finite.

d (k) of C (k) (Step 8). If d (k) = df , then d (
In order to reduce the size of MILPs solved at each step, an iterative version of CGA is proposed in Table 2. This algorithm exploits the fact that the largest free distance d f (ℓ n) that may be obtained for a VLC with length vector ℓ n =(ℓ 1 ,...,ℓ n) is an upper bound on the largest free distance d f ℓ n+1 that may be obtained for a length vector ℓ n+1 =(ℓ 1 ,...,ℓ n ,ℓ n+1).

ICGA starts with the optimization of a codebook containing only two codewords (Step 1). At iteration k, the first m codewords of the codebook obtained at iteration k -1 are reused to get an optimized codebook of k codewords (Step 4). If the free distance d

(k) f obtained at iteration k,u s i n gt h em = k -1 codewords from iteration k -1, is equal to its upper bound d (k-1) f
, the obtained codebook is again optimal. If d

(k) f <d (k-1) f
, the number of reused codewords is decreased and CGA is restarted until d

(k) f = d (k-1) f
or m = 0. In the latter case, no previously obtained codeword is used, indicating that the additional length ℓ k reduces the free distance of the best VLC.

ICGA(ℓ 1 ,...,ℓ n) 1 ((c 1 , c 2),d f)=CGA((ℓ 1 ,ℓ 2), ∅); 2 For k =3ton 3 m = k -1; 4 (c 1 ,...,c k),d (k) f =CGA (ℓ 1 ,...,ℓ k),d (k-1) f , (c 1 ,...,c m) ; 5 If d (k) f <d (k-1) f and m>0 6 m = m -1; Go to 4. 7 End If; 8 End For; 9 Return (c 1 ,...,c n),d (n) f ;

Numerical experiments

Experimental results were obtained for alphabets of different sizes. All MILPs were solved using the Branch & Cut algorithm implemented in Cplex 12.2 [START_REF]ILOG CPLEX 12.2 User's Manual[END_REF] and ran on an Intel Xeon at 2.66 Ghz.

Table 3 provides CPU computing times (in seconds) for various codebook generation algorithms. ICGA with µ =10andν = 500 (column T A)iscomparedtoaMILP with model (M B)(C o l u m nT M B) and to a Branch & Cut method introduced in [START_REF] Diallo | New free distance bounds and design techniques for joint source-channel variable-length codes[END_REF] (Column T D). The optimal free distance obtained solving (M B)i si nC o l u m nd M B , that of ICGA is in Column d A . If a solver is unable to prove optimality in less than two hours, lower and upper bounds are reported. For each instance, the number of nodes (resp. edges) of the corresponding PDG is given in Column |S P | (resp. |T P |). The total number of paths generated by ICGA is reported in column |P|.

For all length vectors of Table 3, ICGA was able to generate a codebook with d f = 7. The values of the free distance reported in column d M B illustrate the suboptimality of the model imposing converging and diverging distance constraints (M B). Moreover, computing time performance shows the efficiency of the iterative algorithm which converges in few minutes compared to the solution of (M B) and the approach provided in [START_REF] Diallo | New free distance bounds and design techniques for joint source-channel variable-length codes[END_REF], both becoming intractable even for small alphabets.

The best codebook for the 26-symbol English alphabet we were able to obtain by ICGA with d f = 7 is presented in Table 4. Its length vector was obtained by trial-and-error, which leaves some space for further improvements. This codebook is not a solution of (M B). Considering the probability vector given in [START_REF] Buttigieg | Variable-Length Error Correcting Codes[END_REF], it has an average codeword length of 10.11. To the best of our knowledge, this is the best performance for an error-correcting VLC with d f = 7. In [START_REF] Lamy | Optimised constructions for variable-length error correcting codes[END_REF], an optimized heuristic returns a solution with an average length of 10.738 within 14 hours. Similarly, the best codebook we were able to design with d f = 5 has an average codeword length of 8.158, which is less than 8.4752 reported in [START_REF] Lamy | Optimised constructions for variable-length error correcting codes[END_REF].

Since the optimal solution of (M (k) P) constitutes an upper bound for the value of the best free distance, one can think of an enumeration technique for finding dominant length vectors for error-correcting VLCs as suggested in [START_REF] Abedini | A SAT-based scheme to determine optimal fix-free codes[END_REF], based on these tight bounds. In our experiments, the solver provided a tight upper bound in an average computing time of 3 seconds on all instances.

Conclusion

This paper provides an efficient variable-length error-correcting code design technique optimizing the free distance. The design problem is cast in the framework of mixed-integer linear programming. It involves exact free distance evaluation in the design phase, and is thus able to provide an optimal codebook with respect to free distance for any given length vector.

With the proposed tools, one may determine dominant length vectors for the exact free distance criterion, instead of the lower bounds used in [START_REF] Abedini | A SAT-based scheme to determine optimal fix-free codes[END_REF]. This allows to find the shortest average codeword length for a given source and a desired free distance. The results presented in Section 6 may thus be improved accordingly. [START_REF]ILOG CPLEX 12.2 User's Manual[END_REF][START_REF] Lakovic | On design of error-correcting reversible variable length codes[END_REF][START_REF] Lakovic | An algorithm for construction of efficient fix-free codes[END_REF],2@10,4@11,4@12,4@13) (6,7) > 2h > 2h 7 62 13697 16471 1513 18 (7,8,9,2@10,4@11,4@12,5@13) (6,7) > 2h > 2h 7 80 15755 18915 2014 19 (7,8,9,2@10,4@11,4@12,6@13) (6,7) > 2h > 2h 7 157 18338 21945 5020 20 (7,8,9,2@10,4@11,4@12,6@13,14) (6,7) > 2h > 2h 7 263 21117 25200 5521 21 (7,8,9,2@10,4@11,4@12,6@13,2@14) (6,7) > 2h > 2h 7 278 24092 28680 1012 22 (7,8,9,2@10,4@11,4@12,6@13,3@14) (6,7) > 2h > 2h 7 352 27263 32385 3517 23 (7,8,9,2@10,4@11,4@12,6@13,4@14) (6,7) > 2h > 2h 7 426 30630 36315 3016 24 (7,8,9,2@10,4@11,4@12,6@13,5@14) (6,7) > 2h > 2h 7 567 34193 40470 4519 25 (7,8,9,2@10,4@11,4@12,6@13,5@14,15) (6,7) > 2h > 2h 7 691 37952 44850 3517 26 (7,8,9,2@10,4@11,4@12,6@13,5@14,2@15) (6,7) > 2h > 2h 7 811 41907 49455 3016

Figure 1 :

 1 Figure 1: (a) Symbol-clock FSE and (b) bit-clock FSE corresponding to A = {a, b, c} and C = {0, 10, 111}

; 9

 9 C (k) = ∅,r e t u r n(∅, 0); End If; 8 Update Γ (k) P from C (k) ; p (k) ,d (k) = Dijkstra Γ (k) P If d (k) = df ,r e t u r n C (k) ,d to p (k) in Γ P and ν additional shortest paths in Γ P to get P (k+1) e ; 11 k = k +1 ;G ot o4 .

Table 1 :

 1 Codebook generation algorithm CGA (ℓ 1 ,...,ℓ n) , d, (ĉ 1 ,...,ĉ m) 1 Build Γ P from (ℓ 1 ,...,ℓ n); 2 Store in P

	(0) e 3 k =0; df = d; the µ shortest paths in Γ P ;
	4 Define MILP (M P)u s i n g df and (k) the constraints c i j =ĉ i j ,i=1,...,m, j =1,...,l i ;
	5 Solve (M

Table 2 :

 2 Iterative codebook generation algorithm

Table 3 :

 3 Computing times (in s) and free distances for different codebook generation algorithms as a function of the size of the alphabet

	n ℓ	d MB T MB	T D	d A	T A	|S P |	|T P |	|P|
	4	(3,7,8,9)	6	0.03 23.6	7	4.3	278	351	511
	5	(3,7,8,9,11)	5	0.12 1232	7	9	563	703	1012
	6	(3,7,8,9,11,12)	5	0.4	> 2h	7	32	992	1225 1012
	7	(3,7,8,9,11,12,13)	5	0.4	> 2h	7	33	1598	1953	511
	8	(3,7,8,9,11,12,13,14)	4	97	> 2h	7	35	2417	2926	511
	9	(3,7,8,9,11,12,13,14,15)	4	336	> 2h	7	36	3488	4186 1012
	10 (2@7,8,9,2@10,4@11)	6	143	> 2h	7	3	3657	4465	511
	11 (2@7,8,9,2@10,4@11,12)	(6,7) > 2h > 2h	7	4	4658	5671	511
	12 (2@7,8,9,2@10,4@11,2@12)	6	182	> 2h	7	7	5780	7021 1012
	13 (7,8,9,2@10,4@11,4@12)	6	385	> 2h	7	9	7023	8515	511
	14 (7,8,9,2@10,4@11,4@12,13)	(6,7) > 2h > 2h	7	15	8387 10153 1513
	15 (7,8,9,2@10,4@11,4@12,2@13)	(6,7) > 2h > 2h	7	25	10013 12090 2014
	16 (7,8,9,2@10,4@11,4@12,3@13)	(6,7) > 2h > 2h	7	51	11783 14196 3517
	17									

Table 4 :

 4 VLC for the English alphabet with d f =7and l =10.11. Codeword a 1 = E p a1 =0.1270 7 1010100 a 14 = M p a14 =0.0241 12 001110111111 a 2 = T p a2 =0.0906 7 0101011 a 15 = W p a15 =0.0236 13 0000000100000 a 3 = A p a3 =0.0817 8 00011101 a 16 = F p a16 =0.0223 13 1100010001111 a 4 = O p a4 =0.0751 9 111100010 a 17 = G p a17 =0.0202 13 1110111011000 a 5 = I p a5 =0.0697 10 0010010011 a 18 = Y p a18 =0.0197 13 0111101000101 a 6 = N p a6 =0.0674 10 1100001000 a 19 = P p a19 =0.0193 15 001100101000001 a 7 = S p a7 =0.0633 11 00100011010 a 20 = B p a20 =0.0149 15 111001000100010 a 8 = H p a8 =0.0609 11 11011111000 a 21 = V p a21 =0.0098 15 010000001001110 a 9 = R p a9 =0.0599 11 10110100101 a 22 = K p a22 =0.0077 15 110010111010001 a 10 = D p a10 =0.0425 11 01001000111 a 23 = J p a23 =0.0015 15 101101110101100 a 11 = L p a11 =0.0403 12 010110000000 a 24 = X p a24 =0.0014 15 001011101011010 a 12 = C p a12 =0.0278 12 100001101000 a 25 = Q p a25 =0.001 15 111110101110110 a 13 = U p a13 =0.0276 12 011001010011 a 26 = Z p a26 =0.0007 15 011011110000111

	Symbol	Probability	ℓ Codeword	Symbol	Probability	ℓ

grants: Digiteo Emergence "PASO", Digiteo Chair 2009-14D "RMNCCO", Digiteo Emergence 2009-65D "ARM" is gratefully acknowledged. Michel Kieffer is partly supported by Institut Universitaire de France.