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New Free Distance Bounds
and Design Techniques for

Joint Source-Channel Variable-Length Codes
Amadou Diallo, Claudio Weidmann, and Michel Kieffer

Abstract—This paper proposes branch-and-prune algorithms
for searching prefix-free joint source-channel codebooks with
maximal free distance for given codeword lengths. For that
purpose, it introduces improved techniques to bound the free
distance of variable-length codes.

Index Terms—Variable-length codes, finite state machines,
source codes, channel codes, joint source-channel codes.

I. INTRODUCTION

When designing Joint Source-Channel (JSC) Variable-
Length Codes (VLCs), one aims at building low-complexity
codes simultaneously providing good data compression and
error correction capabilities. The hope is to obtain joint codes
outperforming separate codes (in terms of error rate for a
given complexity or in terms of complexity for a given error
rate) when the length of the codes is constrained [1], [2]. The
compression efficiency of a code is measured by the ratio of
the average codeword length to the source entropy [3], while
its error-correction performance may be predicted with a union
bound using the distance properties of the code, i.e., its free
distance and its distance spectrum, see [1].

A. Related work

JSC-VLC construction methods can be categorized accord-
ing to how prefix, suffix, and distance properties, average
codeword length, etc. enter the process. On one extreme are
methods that guarantee some properties at each step of the
construction. At the other extreme, one considers an exhaustive
list of codebooks, whose properties are examined to find the
best one.

Bidirectional or Reversible Variable-Length Codes
(RVLCs), introduced in [4], are instantaneously decodable
both in the forward and backward direction. RVLC design
generally aims to minimize the average codeword length, see,
e.g., [5]–[11], usually without accounting for constraints on
the free distance.
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Several extensions of the design techniques for RVLCs to
the construction of VLCs with larger free distance have been
considered. A simple extension of [6] to VLCs with free
distance greater or equal to 2 is given in [10], [12]. This is
done by imposing a minimum distance between codewords of
the same length. In [13], the synthesis of even-weight VLCs
is considered. This guarantees minimum distance 2 or more
between sequences of codewords.

Two techniques for building JSC-VLCs with a free distance
larger than 2 have been proposed in [14], [15]. The first starts
with a channel code, whose codewords are shortened while
preserving some distance property. The second progressively
builds codewords ensuring some diverging distance, i.e., the
distance between prefixes, which lower bounds the distance
between codewords. These techniques were improved in terms
of complexity by [16] and [17]. In [18], a genetic algorithm
based code design is proposed, which maximizes the com-
pression efficiency while satisfying a lower bound on the
free distance. This approach complements the free distance
lower bound in [14], [15] with a real-valued correction term
involving a dissimilarity measure of codewords limiting the
free distance bound and the codeword occurrence probability.
The SAT-based approach proposed in [19], [20] may also
incorporate constraints on the diverging, converging and block
distances of codewords. This allows to obtain codes with the
requested distance property (the lower bound is guaranteed to
be satisfied), but not necessarily the code with the optimum
coding efficiency.

As already mentioned, distance properties of JSC-VLCs
were first evaluated in [14], [21], where a lower bound on
the free distance and exhaustive (exponential complexity)
algorithms for the distance spectrum were proposed. More
recently, [22] considered VL-FSCs generated by variable-
length finite-state encoders (VL-FSEs) and proposed a polyno-
mial complexity matrix method to evaluate the exact distance
spectrum in the code domain or an upper bound on it. In
[23], Dijkstra’s algorithm is applied on a product graph derived
from the VL-FSE to compute the free distance of VL-FSCs.
This method outperforms all previous methods in terms of
complexity of distance evaluation.

B. The three main contributions of this paper

First, for given codeword lengths, the set of all JSC-
VLCs is organized in a way to allow an exploration with
a branch-and-prune algorithm, extending the idea proposed
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in [23], [24] for JSC arithmetic codes. Second, our search
criterion is the exact free distance (instead of a lower bound),
which may be evaluated for JSC-VLCs using the techniques
presented in [23]. Third, for more efficient branch pruning
in the proposed search algorithm, we introduce or improve
several free distance bounds for VLCs.

Section II provides definitions of structure and distance
properties of JSC-VLCs and recalls the free distance eval-
uation technique using Dijkstra’s algorithm. Section III in-
troduces several bounds on the free distance of JSC-VLCs.
Section IV describes how the search space for good JSC-
VLCs may be structured using a tree, explored with a branch-
and-prune algorithm. Section V provides experimental results,
before drawing some conclusions in Section VI.

II. JOINT SOURCE-CHANNEL VARIABLE-LENGTH CODES:
JSC-VLC

Consider an M -ary memoryless source X with alphabet
A = {a1, a2, . . . , aM} and associated probabilities p =
(p1, p2, . . . , pM ). A (JSC-)VLC encoder C maps symbol
ai ∈ A to a variable-length binary codeword ci = C(ai). The
set of codewords C = {c1, c2, . . . , cM} forms the codebook.
The length of codeword ci is `i and its j-th bit is cji . If the
code C is prefix-free, then the lengths ` = (`1, `2, . . . , `M )
satisfy Kraft’s inequality K(`) =

∑M

i=1 2
−`i 6 1 [3, Ch. 5.2].

Henceforth ` is called a Kraft vector when it satisfies Kraft’s
inequality.

The performance of a JSC-VLC is determined by its re-
dundancy and its error correcting capability. The redundancy
ρ is the difference between average codeword length `av =
∑M

i=1 pi`i and source entropy H = −
∑M

i=1 pi log2 pi. Thus
ρ = `av − H =

∑M
i=1 pi(`i + log2 pi). The error correcting

capability is primarily characterized by the free distance dfree,
which is the minimal Hamming distance between two distinct
semi-infinite sequences of codewords. A finer characterization
is possible through the distance spectrum, see [1].

To evaluate distance properties, a graphical representation
of a JSC-VLC is better suited than a list of codewords.
Indeed, an encoder C can be represented by a directed graph
Γ(S, T ), where S is a set of states (vertices) and T is a
set of transitions (directed edges). Each transition is labeled
with an input symbol and a variable-length sequence of output
bits. Γ represents a finite-state encoder (FSE) associated to a
variable-length finite-state code (VL-FSC). In the simple case
of a JSC-VLC, S contains a single state s0 from/to which all
transitions leave/lead, so T contains M transitions associated
to the symbols in A. Each transition ui ∈ T has an input label
I(ui) = ai and an output label O(ui) = ci.

For the purpose of distance evaluation, the FSE is trans-
formed into a bit-clock FSE (B-FSE), in which each transition
is labeled with exactly one output bit and may have an empty
input label. Transitions with multiple output bits are replaced
by chains of consecutive transitions, each with one output bit,
and only the first one inheriting the input symbol.

Example 1: Fig. 1 (top) shows the FSE associated to a
source X(3) with alphabet A(3) = {a1=a, a2=b, a3=c}
encoded using the codebook C3 = {c1=0, c2=10, c3=111}.

For each transition, a slash (/) separates input symbol from
output bits and a hyphen (−) stands for no input symbol.
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Fig. 1. Example of FSE associated to A3 and C3 (top) and its corresponding
bit-clock representation (bottom)

Fig. 1 (bottom) shows the B-FSE derived from the FSE of
Fig. 1 (top).

The following definitions are for general FSEs and will be
specialized to VLCs as needed. Let σ(u) be the originating
state of some transition u ∈ T and τ(u) its target state. A path
u = (u1, u2, . . . , uk) ∈ T k on the graph is a concatenation
of transitions that satisfy σ(ui+1) = τ(ui) for 1 6 i < k. By
extension, we define σ(u) = σ(u1) and τ(u) = τ(uk), as well
as I(u) and O(u), which are the concatenations of the input,
respectively output, labels of u. Finally, `(x) is the length
(in symbols or bits) of the sequence x. The Hamming dis-
tance dH between two equal-length sequences x,y equals the
Hamming weight, i.e., the number of non-zero entries, of their
elementwise difference, dH(x,y) = wH(x−y). If two paths
(u1,u2) ∈ T k1 × T k2 are such that `(O(u1)) = `(O(u2)),
then we will write dH(u1,u2) = dH(O(u1), O(u2)).

Definition 1: For a FSE Γ(S, T ) representing a VLC C, let
P be the set of all pairs of paths in

(
T k1 × T k2

)

16k1,k2<∞

diverging from s0 and converging for the first time in s0 with
the same output length. Then the free distance is the minimum
Hamming distance in P ,

dfree = min
(u1,u2)∈P

dH (u1,u2) . (1)

The Pairwise Distance Graph (PDG) is a modified prod-
uct graph of the B-FSE that tracks the Hamming distances
between pairs of paths in P , which we introduced in [23].
It is constructed and used as follows. Let Sb and Tb be the
set of states and transitions of the B-FSE graph Γb(Sb, Tb),
yielding the directed product graph Γ2

b(Sb × Sb, Tb × Tb).
The weight wH(e) of edge e = (u, v) ∈ T 2

b is the Ham-
ming distance between the outputs of transitions u and v,
wH(e) = dH (u, v) . A directed path e in Γ2

b is a sequence
of edges e = (e1, e2, . . . , en) such that σ(eµ+1) = τ(eµ) for
1 6 µ < n; its weight is wH(e) =

∑n

µ=1 wH(eµ).
Consider the set Sdiv of states (si, si) ∈ S2

b from which
distinct transitions are diverging, as well as the set Sconv of
states (si, si) to which distinct transitions are converging. One
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Fig. 2. Pairwise distance graph derived from the B-FSE in Fig. 1 (bottom)

obtains the PDG by merging all states in Sdiv into a single state
sin and those in Sconv into a single state sout, as well as merging
symmetric states (si, sj) and (sj , si), i < j, into a single state
(si, sj). In the simple case of VLCs, one has sin = (s0, s0)
and sout = (s0, s0). Fig. 2 shows the PDG derived from the
B-FSE in Fig. 1 (bottom).

Finding dfree with the PDG is equivalent to finding a directed
minimal weight path from sin to sout. This is a well-known
shortest weighted path problem and can be solved efficiently
using Dijkstra’s algorithm [25], since all weights are non-
negative.

The code optimization techniques described in Section IV
start from a Kraft vector ` specifying the codeword lengths
and successively determine the codebook, i.e., the bits cji of the
codewords. Bounds on the free distance of partially determined
codebooks will thus be key ingredients.

Definition 2: A codebook is undetermined if none of the
bits cji are known (determined); it is partially determined if
some bits cji are known and it is fully determined if all bits cji
are known.

Definition 3: A partially/fully determined codebook C1 is
deduced from another partially determined or undetermined
codebook C0 (denoted C0 ≺ C1) if it is obtained by specifying
some/all of the undetermined bits in C0.

Example 2: Consider the codebooks C0 =
{
0, c12c

2
2, c

1
3c

2
3c

3
3

}
, C1 =

{
0, 11, c13c

2
3c

3
3

}
, and

C2 = {0, 10, 111}. C0 and C1 are partially determined
codebooks, while C2 is fully determined. Moreover, C0 ≺ C1

and C0 ≺ C2, but C1 ⊀ C2 and C2 ⊀ C1.

III. BOUNDING THE FREE DISTANCE OF JSC-VLCS

A. Some existing bounds

Consider a (nonlinear) block code C(n,M, d), where n is
the block length, M is the number of codewords and d is
the minimum Hamming distance of the code. For M > 1,
Plotkin’s upper bound [26, p. 167] yields

d 6 d̄p (n,M) =

⌊
nM

2(M − 1)

⌋

, (2)

where bxc is the largest integer less than or equal to x. For
odd M , this can be tightened to d ≤ bn(M + 1)/(2M)c. For
M ∈ {0, 1}, we define d̄p(n,M) = ∞.

Heller used Plotkin’s bound to upper bound the free distance
of convolutional codes, by counting the number of sequences
that lead from the zero state back to itself. Heller’s approach
(referred in [27, Chap. 3.5]) extends to nonlinear time-varying
trellis codes (which output a fixed number of bits per transi-
tion), but it does not immediately extend to VL-FSCs, which
include JSC-VLCs. This will be done in Section III-C.

For a VLC with fully determined codebook C =
{c1, c2, . . . , cM}, Buttigieg [14] derived lower and upper
bounds on the free distance,

dblock > dfree > min(dblock, ddiv + dconv), (3)

where dblock is the overall minimum block distance (between
equal-length codewords), ddiv is the minimum diverging dis-
tance (between prefixes of unequal-length codewords) and
dconv is the minimum converging distance (between suffixes
of unequal-length codewords), respectively.

B. Simple application of Plotkin’s bound

If only the Kraft vector ` is known, one may apply Plotkin’s
bound to dblock to obtain an upper bound on dfree. Let L
be the largest entry of ` and let Mr, 1 6 r 6 L, be the
number of entries in ` equal to r. Apply (2) to the block
codes Cr(r,Mr, dr), 1 6 r 6 L, formed by the subset of
codewords of length r, and minimize to yield an extension of
Plotkin’s upper bound to the free distance of a JSC-VLC,

dfree 6 d̄pe
free (`) = min

16r6L
d̄p (r,Mr) . (4)

Example 3: Consider the Kraft vector ` = (2, 3, 5, 5).
One has M0 = M1 = M4 = 0, M2 = M3 = 1, and
M5 = 2. Applying the extension of Plotkin’s bound to `

yields d̄
pe
free (`) = 5, while the maximum free distance that

can actually be achieved with ` is dfree = 2.

C. Extension of Heller’s bound

Heller’s upper bound on dfree of convolutional codes is based
on counting the number of code sequences of length n and then
applying Plotkin’s bound [27, Chap. 3.5]. This section extends
Heller’s approach to VL-FSCs, which include JSC-VLCs.

Let Γ(S, T ) be the graph of the FSE associated to a VL-
FSC with S states, S = {0, . . . , S − 1} without loss of
generality. Only the length of the output label (codeword) of
each transition needs to be known to count the number of
code sequences of length n. Let L = maxu∈T `(O(u)) the
longest output label of all transitions. For a JSC-VLC, S = 1
and L = max(`1, `2, . . . , `M ). Consider the integer matrices
Ar ∈ NS×S , 1 6 r 6 L, counting the transitions of length r,

(Ar)i,j = |{u : `(O(u)) = r and σ(u) = i and τ(u) = j}| ,
(5)

where |A| is the cardinality of the set A. Entry (Ar)i,j counts
the number of transitions from state i to state j with an output
label of length r. For a JSC-VLC, Ar reduces to a scalar
counting the number of codewords of length r.
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The row vector mn ∈ NS holds entries mn,s equal
to the number of sequences of length n ending in state
s, s = 0, . . . , S − 1. For n > 1, the count vector mn

may be expressed as a function of preceding count vectors,
mn =

∑L

r=1 mn−rAr, which may be written

mn = [mn−L, . . . ,mn−1]
[
AT

L . . . AT

1

]T
. (6)

The recursion is initialized with the vector
[m−L+1, . . . ,m0] = [0, . . . ,0, ei], having m0,i = 1 for
initial state i and all other entries equal to zero. Now, (6)
may be extended to compute a block of L count vectors
[mn, . . . ,mn+L−1] based on the preceding block of L count
vectors, thus making it possible to track the behavior on an
L-block basis. One obtains

[mn, . . . ,mn+L−1] = [mn−L, . . . ,mn−1] · A, (7)

where A =
[
A(0), . . . , A(L−1)

]
is a LS×LS matrix composed

of LS×S blocks A(k) =
∑k

j=0 A→(k−j)Bj . The latter expres-
sion is computed from the basic LS×S block [AT

L, . . . , A
T

1 ]
T

shifted down iS positions,

A→(i) = [0, . . . ,0
︸ ︷︷ ︸

i times

, AT

L, . . . , A
T

1+i]
T,

where 0 denotes a block of S × S zeros. It also involves
the sum of all products of Ar such that their indices sum to
j = 1, . . . , L− 1, given by

Bj =
∑

(r1,...,ri):

r1+...+ri=j

Ar1 · . . . · Ari . (8)

The sum (8) is over all ordered partitions (i.e., compositions)
of j into i non-negative integers r1, . . . , ri (Ark = 0 if
there are no codewords of length rk). Order is important,
since matrix multiplication is non-commutative in general. By
definition, B0 = IS , the S × S identity matrix. Using (7), all
counts are computed from a given start state i in a recursive
block fashion as1

[
m(k−1)L+1(i), . . . ,mkL(i)

]
= [0, . . . ,0, ei]A

k, k = 1, 2, . . .
(9)

The count of length-n sequences from state i to state j can
also be extracted directly from the matrix Ak as mn,j(i) =
(
Ak

)

(L−1)S+i, rS+j
, where r = (n−1) mod L and k = (n−

1 − r)/L + 1. For VLCs this becomes mn =
(
Ak

)

L−1, r

(indices start at 0). These counts can then be inserted into
Plotkin’s bound to yield an upper bound on dfree.

Proposition 1: An extension of Heller’s upper bound on the
free distance of VL-FSCs is

dfree 6 d̄he
free (`) = min

0<n6nmax

min
i,j∈S

d̄p (n,mn,j(i)) , (10)

where nmax ≥ L is chosen according to computational
constraints.

1Using this approach, some counts may be computed twice. Consider
e.g. L = 5 and a codeword of length ` = 2. Then the computations for
mkL+3(i) will include reevaluating mkL+1(i). Thus the computational
complexity could be reduced by a more elaborate scheduling of operations,
at the cost of giving up the simple matrix representation (9). Alternatively,
bit-clock intermediate states could be introduced, like for the code spectrum
computation [22], but the corresponding matrix would be considerably larger.

Proof: The set of length-n paths between some start
state i and some final state j forms a (nonlinear) block
code, so Plotkin’s bound applies. It remains to be shown
that (9) correctly counts the number of paths mn,j(i), i.e.,
that no path is counted twice. This is indeed the case in (7),
since the definition of A→(i) ensures that the first transition
leads from the block

[
m(k−2)L+1(i), . . . ,m(k−1)L(i)

]
into

the block
[
m(k−1)L+1(i), . . . ,mkL(i)

]
, while Bj accounts for

transitions within the latter block.
To evaluate (10) for a VLC, it usually suffices to choose

nmax such that 2L 6 nmax 6 3L, since short lengths
with multiplicities A` > 1 and short concatenations tend to
dominate the bound.

This technique can also be used to obtain bounds on the
effective minimum distance of practical schemes transmitting
finite-length blocks, where start state i and length n are known
to the decoder. If there is no termination mechanism, the
decoder does not know the final state and thus the bound
becomes minj∈S d̄p(n,mn,j(i)). If the blocks are terminated
in state j, the bound becomes d̄p(n,mn,j(i)). This hints at
the importance of a proper termination mechanism in order to
prevent the minimum block distance falling below dfree.

Example 4: For a JSC-VLC with the Kraft vector of Exam-
ple 3 and nmax = 15, one has m1 = 0, m2 = m3 = m4 = 1,
m5 = 4. This leads to d̄he

free = 3 (at n = 5), which is
closer to the optimally achievable dfree = 2 than the bound
of Example 3.

D. Bounding dfree using the pairwise distance graph

Given a Kraft vector `, one may construct an undetermined
codebook C0 in which all bits have symbolic labels cji (see
Section II). The edges of the PDG obtained from C0 will
be labeled with sums of symbolic labels. The PDG of a
partially determined codebook C1 that is deduced from C0

(i.e. C0 ≺ C1) will have the same structure as the PDG of C0,
with the difference that some (or all) labels cji are determined
to be 0 or 1. An edge (u, v) ∈ Tb × Tb with determined
labels will have a determined label, while all other edges of
the PDG (with at least one undetermined transition label) will
have undetermined labels.

Example 5: C1 = {0, 10, 111} is a determined code-
book whose PDG is represented in Fig. 2, whereas C0 =
{
c11, c

1
2c

2
2, c

1
3c

2
3c

3
3

}
is an undetermined codebook whose PDG

is in Fig. 3.
The fact that all codebooks deduced from C0 (i.e. from `)

will have the same PDG structure allows to obtain a nested
hierarchy of lower and upper bounds on dfree.

Theorem 2: The shortest weighted path obtained after re-
placing each undetermined edge label in the PDG of a partially
determined codebook C0 by 0 (respectively 1) is a lower bound
dPDG

free (C0) (respectively upper bound d
PDG
free (C0)) on the free

distances of all JSC-VLC codebooks deduced from C0. This
path can be found using Dijkstra’s algorithm.

Proof: The proof is for the lower bound, the upper bound
follows along the same lines. Let emin be a path with the
smallest weight from state sin to sout in the PDG of C0, when
replacing undetermined labels by 0. Let dmin

free = wH(emin).
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Consider a deduced codebook C1 � C0, for which more PDG
edge labels are determined compared to the PDG of C0. Since
edge labels are non-negative, the weight of the path emin can
only remain equal or increase. Hence, dmin

free is a lower bound
on the free distance of C1.

A direct consequence of Theorem 2 is that the bounds
enclosing the free distance of a deduced codebook C1 will
be at least as tight as the bounds for the original codebook
C0 ≺ C1.

Corollary 3: If two codebooks C0 and C1 satisfy C0 ≺ C1,
then

[

dPDG
free (C1), d

PDG
free (C1)

]

⊆
[

dPDG
free (C0), d

PDG
free (C0)

]

. (11)

The more bits are determined in a partially determined code-
book, the more likely the bounds provided by Corollary 3 will
be close to each other.

Example 6: Consider the undetermined code C0 =
{
c11, c

1
2c

2
2, c

1
3c

2
3c

3
3

}
whose PDG is represented in Fig. 3. Apply-

ing Theorem 2 to C0 leads to
[

dPDG
free (C0), d

PDG
free (C0)

]

= [0, 2].

Thus, the free distance of any code deduced from C0 will be
upper bounded by 2.

E. Bounding dfree of prefix-free JSC-VLCs

The above methods for obtaining free distance bounds do
not take into account the condition that no codeword may be
a prefix of another. Any prefix-free JSC-VLC codebook can
be represented by a labeled binary tree with leaves mapped to
the M source symbols, such that the codeword for a symbol
can be read off as the concatenation of the binary labels from
the root to the corresponding leaf, see [3].

Consider the set Θ(`) of unlabeled binary trees that may
be associated to prefix-free JSC-VLC codebooks with Kraft
vector `, that is, the set of binary trees with M leaves at depths
`1, `2, . . . , `M . The structure of a tree T ∈ Θ(`) determines
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Fig. 4. Pairwise distance graph derived from the B-FSE of C1 =
{

c11, c̄
1
1c

2
2, c̄

1
1c̄

1
2c

3
3

}

, accounting for the prefix condition

which codewords have common prefixes as well as the length
of those prefixes.

The free distance of any JSC-VLC codebook C admitting
a tree T as representation can be bounded directly from the
structure of the tree, without specifying any code bit. For that
purpose, start by numbering the internal nodes of the tree,
including the root. Then, for each internal node i, label one
branch leaving the node with bi and the other branch (if it
exists) with b̄i. This labeling reflects the prefix condition on
any VLC codebook C that can be obtained by labeling T . Now,
when constructing the PDG for bounding the free distance of
C, the knowledge that dH(bi, b̄i) = bi⊕ b̄i = 1 may be applied
to edges of the PDG labeled bi⊕ b̄i, while all other edge labels
in the PDG are replaced with 0 or 1, depending on the type of
bound being computed (see Section III-D). The resulting free
distance bounds will be denoted dT

free(T ) and d
T
free(T ).

Example 7: Consider again the undetermined code C0 =
{
c11, c

1
2c

2
2, c

1
3c

2
3c

3
3

}
. Its PDG shown in Fig. 3 does not reflect

the prefix condition. Accounting for the prefix condition, one
would get, e.g., C1 =

{
c11, c̄

1
1c

2
2, c̄

1
1c̄

1
2c

3
3

}
. The resulting PDG

is represented in Fig. 4. Applying Theorem 2 to C1 leads to
[dT

free(C
1), d

T
free(C

1)] = [1, 2], which is better than the enclosure
provided by dPDG

free .

IV. DESIGNING JSC-VLCS

Next we outline three methods for structuring JSC-VLCs in
trees, i.e., for creating hierarchies of partial codebooks. This
allows using efficient branch-and-prune algorithms to search
for good JSC-VLCs. In the remainder of this section, we
assume that the codeword lengths in a Kraft vector ` are in
non-decreasing order, `1 6 `2 6 · · · 6 `M .

The choice of the Kraft vector leading to a code with
minimum redundancy for a given target dfree, or with max-
imum dfree for a given constraint on the redundancy, is not
addressed in this paper. Candidate Kraft vectors satisfying
necessary conditions may be generated using the bounds
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provided in Section III and the concept of dominant length
vectors referenced in [19].

A. Tree of codebooks

Section III-D showed that the free distance bounds for a
codebook C1 deduced from a partially determined codebook
C0 are tighter. This suggests to use a search tree to organize the
search for JSC-VLCs with large free distance. Every leaf of
the search tree corresponds to a fully determined codebook,
while internal nodes correspond to (partially) undetermined
codebooks, from which children nodes (codebooks) may be
deduced by specific rules to be described. A generic branch-
and-prune algorithm to efficiently organize the search is pro-
vided in Section IV-B.

For a given Kraft vector `, Sections IV-C and IV-D consider
an undetermined codebook (such as C0 in Example 6) as the
root of the search tree: this codebook is uniquely defined by
`. Section IV-E considers undetermined codebooks in which
the prefix condition has been explicitly taken into account, as
is the case in Example 7.

B. Generic branch-and-prune algorithm

The algorithm provided in Table I performs a generic
branch-and-prune exploration of a code search tree to get a
code Copt with optimum distance properties starting from a
fully or partially undetermined codebook C0.

TABLE I
GENERIC CODEBOOK OPTIMIZATION ALGORITHM

Copt =Optimize(C0 )
1 L = {C0} ; S = ∅; dfree = dfree (C0) ; dfree = dfree (C0) ;
2 while L 6= ∅
3 take C out of L;
4 if dfree (C) = dfree then Copt = C; end.
5 if all bits of C are determined,
6 S = S ∪ C;
7 else
8

{

C(1), . . . ,C(k)
}

=Deduce(C) ;
9 insert C(1), . . . , C(k) in L;

10 dfree = maxC∈L∪S dfree (C) ;
11 dfree = maxC∈L∪S dfree (C) ;
12 eliminate all C ∈ L such that dfree (C) < dfree;
13 sort L;
14 Copt = argmaxC∈S dfree (C) ;end.

The working list L is initialized with C0, S is the temporary
solution list, lower and upper bounds for the free distance are
evaluated using any of the methods described in Section III.

At Steps 5 and 6, good fully determined codebooks are
stored in the temporary solution list S, these codebooks are
such that dfree (C) < dfree, better codes may be found later.
At Steps 8 to 10, several prefix-free codebooks deduced from
C are built, stored in L, and bounds for dfree are updated.
Step 12 uses results of Corollary 3. Step 13 sorts the list of
codebooks to be explored according to the free distance bound.
The codebook with the largest upper bound is explored first,
since it has the potential to give the largest free distance.

There are various ways to deduce codebooks from a given
codebook (Step 8), leading to various organization of the
search tree, as detailed in the next sections.
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Fig. 5. Example of a search tree of JSC-VLCs for the Kraft vector ` =
(1, 2, 3) when the deduction is made by codeword

C. Construction by codewords

A first method to structure the tree of codebooks introduced
in Section IV-A is to instantiate all bits of one codeword
at each iteration, ensuring the prefix condition. One starts
at the tree root with a fully undetermined codebook for
which no bit is instantiated. The child nodes, representing
the deduced codebooks at Step 8 of Table I inherit the
(partially) undetermined codebook C associated to their parent
node and have one more instantiated codeword. A search
tree with M levels is thus traversed. This construction is
reminiscent of the A*-based algorithm proposed in [11] to
design RVLCs with minumum average codeword length. In
our case, the organization of the tree and the optimization
metric are different.

Fig. 5 shows the search tree with Kraft vector ` = {1, 2, 3}
when the construction is by codewords. Undetermined bits
are represented by ’x’. Since `1 = 1 is the smallest length,
the children of the root (containing a fully undetermined
codebook) correspond to 2`1 codebooks containing a single
determined codeword of `1 bits. The resulting codebooks
are denoted C(1) to C(2`1 ). Then, in each codebook C(k),
1 6 k 6 2`1 , the codeword of length `2 = 2 is specified. The
resulting codebooks are extended with codewords of length
`3 = 3. Hence, all JSC-VLCs with Kraft vector ` correspond
to the leaves of the search tree.

Inverting all bits of a codebook does not change its distance
properties. Enforcing that the first codeword starts with 0 ex-
ploits this property to halve the search complexity. Moreover,
if two codewords have equal lengths `i and `i+1, exchanging
the codewords i and i + 1 does not change the free distance
of the corresponding codebook.2 Hence one may impose a
lexicographic order in the construction of the codebooks. This
may again substantially reduce the time needed to find the best
JSC-VLCs.

2However, codeword order does affect distance spectrum properties and
may thus lead to a secondary optimization.
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Fig. 6. Example of a search tree of JSC-VLCs for the Kraft vector ` =
(1, 2, 3) when the deduction is made by bitplane

D. Construction by bitplanes

When deducing a codebook, instead of instantiating all bits
of a single codeword as done in Section IV-C, one instantiates
here all bits of the same bitplane: the first bit for all codewords
is instantiated, then the second bit (where present), and so on.
When doing this, one has to make sure that the suffixes of the
codewords with a common prefix satisfy Kraft’s inequality to
ensure that the overall codebook remains prefix-free.

Fig. 6 shows an example search tree generation when the
codebook deduction is made by bitplane. Child nodes are
stemming from the root, which contains a fully undetermined
codebook. The child nodes correspond to all possible combi-
nations of the first bit for each codeword, taking care that the
resulting codebooks have chances to remain prefix-free.

As in the construction of Section IV-C, the number of
codebooks to consider may be reduced by exploiting the fact
that inverting all bits of a codebook does not change its
distance properties, and by considering a lexicographic order
of the codewords of the same length.

E. Construction using canonical code trees

The structure of the unlabeled code tree already gives
some information about the codes it represents, yielding free
distance bounds. To efficiently exploit this fact, code trees are
grouped into equivalence classes containing trees that differ
only by their labeling. This is a classic tree isomorphism
problem [28], [29]. The classes are represented by canonical
trees and can be arranged on a search tree (not to be confused
with the code tree). Each class can then be explored using
variants of the two methods outlined in Sections IV-C and
IV-D.

Equivalence is defined inductively by stating that two trees
S and T are equivalent (S ≡ T ) if they consist of a
single node, or if they have the same number of immediate
subtrees S1, S2, . . . , Sm (rooted in the direct children of S)
and T1, T2, . . . , Tm, which can be ordered such that Si ≡ Ti

for all 1 6 i 6 m (adapted from [29]). In the simple
case at hand, two binary code trees are equivalent if there

(a) (b) (c) (d)

(e) (f) (h)(g)

Fig. 7. Eight representations of trees associated to the Kraft vector ` =
(2, 3, 3)

exists an isomorphism that transforms one into the other by
transposing the direct children of internal nodes including the
root. Assuming the tree is drawn top-down from the root,
all nodes stay at their level, only their horizontal position
changes. Given a Kraft vector `, different binary trees corre-
sponding to prefix-free codebooks may be drawn. For example,
Fig. 7 provides eight tree representations for ` = (2, 3, 3).
Representations (a) and (b) show the same (equivalent) tree,
while (a) and (c) are not equivalent. Trees (c) and (d) are
equivalent, trees (e) and (f) are also equivalent and finally,
trees (g) and (h) are equivalent. Codebooks corresponding to
equivalent trees have the same prefix structure. For example,
codebooks associated to representation (a) are of the form
C(a) =

{
c11c

2
1, c

1
1c̄

2
1c

3
2, c

1
1c̄

2
1c̄

3
2

}
, while those for representation

(e) are of the form C(e) =
{
c11c

2
1, c̄

1
1c

2
2c

3
2, c̄

1
1c̄

2
2c

3
3

}
.

As stated above, equivalent trees are grouped in an equiv-
alence class, which can be represented by an appropriately
defined canonical tree. The main problem becomes that of
enumerating representations of all canonical trees associated
to a given Kraft vector `. This is a classic problem in graph
isomorphism; however, to the best of our knowledge, no
algorithm is directly (and efficiently) applicable to the case
when a Kraft vector is given.

Let T be a binary tree, left(T ) its left immediate subtree and
right(T ) its right immediate subtree (for notational compact-
ness, T denotes both a tree and its root node). The function
`∗(T ) yields the Kraft vector associated to T in non-increasing
order (a star ∗ will denote vectors in non-increasing order).
For example, when `∗(T ) = (3, 3, 2, 1), T represents four
codewords of length 1, 2, 3 and 3. When `∗(T ) = (0), T is a
tree consisting of the root node only.

Define the order � on trees as follows: T1 �
T2 if and only if `∗(T1)�lex `

∗(T2), where �lex is the lexi-
cographic order on integer vectors. For example, (1)�lex(1),
(3)�lex(3, 2, 2), (0)�lex(1), and ()�lex(0), where () stands
for no tree, i.e. an empty tree.

Definition 4: A binary tree is canonical if left(Ti) �
right(Ti) at all its internal nodes Ti.

This inductive definition guarantees that there is a unique
canonical tree in each equivalence class, namely the minimal
tree in the order �. A canonical tree may be represented as a
list by traversing it in any well-defined order that visits each
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(3,3,2)

( )(),(2,2,1) ( )(1),(2,2) ( )(2),(2,1)

( )(),((0),(1,1))

( )(),((0),((0),(0)))

( )((),(0)),((),(1,1))

( )((),(0)),((),((0),(0))) ( )((),(0)),(((),(0)),((),(0)))

( )((),(0)),((1),(1)) ( )((),(1)),((0),(1))

( )((),((),(0))),((0),((),(0)))

(i) (ii) (iii) (iv)

Fig. 8. Tree of canonical representations for `
∗ = (3, 3, 2)

internal node Ti once and listing (`∗(left(Ti)), `
∗(right(Ti))).

A quite compact string representation of a tree T using
the symbols ‘(’, ‘0’, ‘)’ and ‘,’ is obtained by recursively
substituting `∗(T ) with (`∗(left(T )), `∗(right(T ))).

The representations just outlined suggest the following
method to enumerate all canonical trees for a Kraft vector
`∗. The enumeration will take the form of a tree of canonical
representations Λ of height L = max{`∗i } = `∗1, whose leaves
correspond to canonical trees, and in which going from a
parent node to its children involves enumerating splittings of
Kraft vectors into two parts (subtrees) ordered by �. Starting
with the Kraft vector `∗ at the root of Λ, split `∗ − 1

(subtracting 1 from each length, to go down one level in
the tree) into two parts `∗1 and `∗2, such that `∗1 �lex `

∗

2 and
K(`∗i ) 6 1 (i = 1, 2). Note that since `∗1 may be empty
(corresponding to an absent leaf, i.e. a −1 entry in `

∗ − 1)
one needs to define K(()) = 1. The first level below the root of
Λ contains all splittings of `∗, the second level contains pairs
of splittings of (`∗1, `

∗

2), and so on; the recursive splitting stops
with leafs ‘(0)’ and empty nodes ‘()’.

Example 8: Consider the Kraft vector ` = (2, 3, 3). Fig. 8
shows a part of the tree of canonical representations for `∗ =
(3, 3, 2). Starting from the root node `∗, one has `∗ − 1 =
(2, 2, 1). There are three choices for (`∗1, `

∗
2) at the first level:

(`∗1 = (), `
∗

2 = (2, 2, 1)), (`∗1 = (1), `
∗

2 = (2, 2)) and (`∗1 =
(2), `∗2 = (2, 1)). Each choice leads to one or more possible
canonical trees. At the second level, there are e.g. two ways
to split the pair ((1), (2, 2)). This process is repeated for all
internal nodes. This leads to leaf (i) in Fig. 8, which is the
canonical tree representation of Fig. 7 (a). Leaves (ii), (iii) and
(iv) in Fig. 8 correspond to Fig. 7 (c), (e) and (g), respectively.

As illustrated by Example 8, the internal nodes of the tree of
canonical representations correspond to partially determined
canonical representations. For example, the representation
((1), (2, 2)) in the middle branch of Fig. 8 indicates that the
second and third codewords have a common prefix, leading to
codebooks of the form C1 =

{
c11c

2
1, c̄

1
1c

2
2c

3
2, c̄

1
1c

2
3c

3
3

}
, while the

representation (((), (0)), ((), ((0), (0)))) leads to codebooks of
the form C2 =

{
c11c

2
1, c̄

1
1c

2
2c

3
2, c̄

1
1c

2
2c̄

3
2

}
. By extending the notion

of codebook deduction (Definition 3) to inverted symbolic
labels, one sees that C1 ≺ C2. Thus free distance bounds for
C1 will hold for C2 and all codes deduced from it. In fact,

there is a one-to-one mapping between a partially determined
canonical representation T i and the corresponding codebook
Ci with symbolic labels.3 Thus, if tree T 1 is a child of tree
T 0 in Λ, then by Corollary 3 the free distance bounds from
Section III-E satisfy

[dT
free(T

1), d
T
free(T

1)] ⊆ [dT
free(T

0), d
T
free(T

0)]. (12)

The upper bound can sometimes be improved as follows. A
partially determined canonical tree T i is represented by recur-
sive splittings of Kraft vectors. Each such vector corresponds
to a subtree S (subcodebook) with a common prefix. Thus the
extension of Plotkin’s bound of Section III-B may be applied
to yield d

Te
free(T

i) = min
(

d
T
free(T

i),minS⊂T i d̄pe
free (`(S))

)

.

For a given Kraft vector `, we explore the tree of canonical
representations (Fig. 8) with a branch-and-prune algorithm.
Whenever a fully determined canonical tree (a leaf) is reached,
all possible labellings of that canonical tree are explored in
branch-and-prune fashion using variations of the methods in
Sections IV-C and IV-D. The number of labellings to be
examined may be further reduced by imposing fixed labels
for each internal node of the canonical tree that has children
satisfying `∗1 = `∗2, since the further splittings of `∗1 and `∗2
will contain transpose-symmetric solutions, of which only one
needs to be tested (e.g. `∗1 is split into (`∗1,1, `

∗
1,2), while `∗2 is

split into (`∗2,1, `
∗

2,2); then (`∗2,1, `
∗

2,2) is also a valid split of
`∗1, as is (`∗1,1, `

∗
1,2) for `∗2).

V. EXPERIMENTAL RESULTS

This section presents three sets of experiments. First, the
various branch-and-prune algorithms presented in Section IV
are compared to an exhaustive search for short codes. Then,
the evolution of the search complexity as a function of the
size of the Kraft vectors is briefly considered. Finally, the
design of JSC-VLCs for relatively large source alphabets (with
a maximum of 22 symbols) is considered. Experiments were
performed on a single processor of an Intel Xeon E5420 at
2.50 GHz with 64 GB memory.

A. Branch-and-prune versus exhaustive search

The first Kraft vector considered is ` = (4, 5, 6, 7). Table II
shows the time needed for the methods detailed in Section IV
to find a JSC-VLC with largest free distance. The generic
optimization algorithm is used with codebook expansion by
bitplane (Bp, see Section IV-D) and by codeword (Cw, see
Section IV-C). Canonical tree representations are considered
next with codebook expansion by bitplane (C-Bp) and by code-
word (C-Cw), see Section IV-E. #Codebooks is the number
of processed complete and incomplete JSC-VLCs. #Trees and
#Expl. trees are respectively the number of tree representations
considered and explored. The best JSC-VLCs obtained by each
method is also represented.

3A partially determined canonical representation T i may be seen as a
binary code tree containing nontrivial Kraft vectors in some leaves (while
leaves with vector ‘(0)’ correspond to codewords). The Kraft vectors are
mapped to symbolic codeword labels for the corresponding subtree, like for
an undetermined codebook.
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Table II shows that all branch-and-prune algorithms are
much more efficient than exhaustive search in terms of com-
puting time (the best method is more than 600 times faster)
and number of examined JSC-VLCs (more than 250 times less
for the best method). Five different best JSC-VLC codebook
have been obtained, all with dfree = 6.

TABLE II
COMPARISON BETWEEN EXHAUSTIVE SEARCH AND THE

BRANCH-AND-PRUNE ALGORITHM WITH KRAFT VECTOR ` = (4, 5, 6, 7)
(EXTENSION OF HELLER’S BOUND YIELDS d̄hefree = 7 AT n = 7)

Method Exhaustive Bp Cw C-Bp C-Cw
#Codebooks 1,586,880 83,400 5,862 28,566 12,144

dfree 6 6 6 6 6
Time (s) 234 37 0.37 5 1
#Trees – – – 970 970

#Expl. trees – – – 108 108
4 0111 0001 0000 0111 0000
5 11001 11110 01111 11000 11110
6 000000 101011 110101 101011 101011
7 1001011 0100100 1001101 1001100 1001101

When considering the number of intermediate JSC-VLCs
that need to be examined, the expansion by codeword is
much more efficient, alone or performed on canonical tree
representations. With this expansion method, more accurate
bounds for the free distance are obtained at earlier stages of
the search tree traversal, which helps pruning more efficiently.

Other experiments showed that C-Cw becomes more effi-
cient than Cw alone for larger codebooks, especially code-
books with many codewords of the same length. Consider
for instance the Kraft vector ` = (4, 5, 5, 6, 6, 7, 7). C-Cw
examines 682, 322 JSC-VLCs in 746 s, while Cw considers
1, 874, 127 JSC-VLCs in 3, 152 s to obtain codebooks with
the same free distance. The remaining experiments are thus
performed with C-Cw.

Table III shows the evolution of the complexity of the C-Cw
algorithm when the alphabet size increases, where new sym-
bols have codewords that are at least as long as the previously
longest codeword. It also compares the free distance of the
best code obtained using the SAT-based approach presented in
[20]. The proposed approach has a much larger computational
complexity. Nevertheless, since we are considering the exact
free distance (and not a bound) as the design criterion, better
codes may be obtained, as in the present example.

B. Design of JSC-VLCs for larger alphabets

For designing JSC-VLCs for sources with larger alphabets
(typically more than 10 symbols), we introduce a heuristic to
reduce the number of canonical tree representations to explore,
hence the number of codebooks to examine. The number
of trees can be reduced by considering only canonical trees
which maximize the upper bound on the free distance in (12),
i.e., trees in which equal-length codewords have a common
prefix as short as possible. A reasonable heuristic to ensure
this, when splitting Kraft vectors during the construction of
canonical trees, is to make sure that the two new vectors have
the same number of equal-length codewords (or their numbers
differ only by one). This choice can be justified by Plotkin’s
bound (2), which shows that the free distance upper bound is
decreasing in the number of equal-length codewords.

The first experiment in Table IV considers the 26
symbols of the English alphabet, X(26), with ` =
(2@5, 4@7, 8@8, 12@10), mi@`i indicating as in [14] that
there are mi codewords of length `i. C-Cw finds a max-
imum free distance of 4 and the average code rate is
`Jav = 7.3375 bits/symb. The entropy is H(X(26)) =
4.1752 bits/symb. An equivalent tandem scheme using a
single-letter Huffman VLC followed by a rate 1/2 convolu-
tional code (CC) with constraint length 2 leads to an average
code length `Tav = 8.4090 bits/symb with dfree = 4 (the
Huffman code has an average length 4.2045 bits/symb. Thus,
for the same error correcting capability, the joint scheme yields
a gain of code-rate of `Tav − `Jav = 1.0715 bits/symb compared
to the considered tandem scheme.

The second experiment in Table IV is made for the 16
most probable symbols of the English alphabet, X(16). The
Kraft vector is now ` = (2@6, 2@7, 4@8, 4@9, 4@10), leading
to dfree = 5 and to `Jav = 7.750 bits/symb. The entropy
H(X(16)) = 3.821 bits/symb. The equivalent tandem scheme
using a single-letter Huffman VLC followed by a rate 1/2
CC with constraint length Lc = 3 has dfree = 5 and
an overall average code length `Tav = 7.705 bits/symb. For
the same free distance, a small loss in coding efficiency of
`Jav − `Tav = 0.045 bits/symb is obtained.

In all cases, the bound d̄he
free coincides with the optimal free

distance, showing its efficiency for larger alphabets.
The search complexity appears to be dominated by the

number of dfree (bound) evaluations using Dijkstra’s algo-
rithm, whose complexity with the current implementation is
O(|Sb|

4). The computing time for X(26) is smaller than that
for X(16) due to the fact that for X(26), a single tree has to be
explored to get a code with a free distance reaching Heller’s
extended upper bound, whereas four trees have been explored
with X(16), leading to much more distance evaluations.

For a JSC-VLC with Kraft vector `J =
(
`J1 , . . . , `

J
M

)
, the

complexity can be evaluated as the number of states in B-
FSE at the decoder side, SJ

b =
∑M

i=1 `
J
i − M + 1. For an

equivalent tandem scheme composed of a Huffman VLC with
`T =

(
`T1 , . . . , `

T
M

)
followed by a rate 1/n CC with constraint

length Lc, the complexity of a joint decoder on the product
graph ΓVLC

b ×ΓCC
b can be considered, which has ST

b = SVLC
b ·

SCC states, where SVLC
b =

∑M

i=1 `
T
i −M+1 and SCC = 2Lc−1.

For the example source X(22) considered above, SJ
b = 147 and

ST
b = 172, while for source X(16), SJ

b = 119 and ST
b = 104.

Alternatively, one may consider separate decoders, and put all
complexity into the CC. The performance of the CC decoder
would be improved, however, this would be at the price of
a worse error propagation behavior after Huffman decoding
than when considering joint decoding.

VI. CONCLUSION

This paper introduces several new bounds for the free dis-
tance of JSC-VLC codes. These bounds involve an extension
of Heller’s bound to JSC-VLC codes, and several bounds that
can be obtained using the pairwise distance graph introduced
in Section II, considering that not all bits are specified in a
given codebook. For the latter bounds, knowing the structure
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TABLE III
EVOLUTION OF THE SEARCH COMPLEXITY AND FREE DISTANCE OF THE BEST CODE OBTAINED USING [20], AND USING C-CW, AS A FUNCTION OF THE

KRAFT VECTOR

Using [20] Proposed approach
` d̄

pe
free d̄he

free dfree Time (s) dfree Time (s) #Codebooks #Expl. trees #Trees

(3, 7, 8, 9) ∞ 8 6 0.03 7 5 15,228 23 50
(3, 7, 8, 9, 11) ∞ 7 5 0.12 7 56 45,672 26 209
(3, 7, 8, 9, 11, 12) ∞ 7 5 0.4 7 478 140,204 83 1,595
(3, 7, 8, 9, 11, 12, 13) ∞ 7 5 0.4 7 857 76,416 32 6,578
(3, 7, 8, 9, 11, 12, 13, 14) ∞ 7 4 97 7 12,553 566,660 209 37,953
(3, 7, 8, 9, 11, 12, 13, 14, 15) ∞ 7 4 339 7 131,302 1,039,980 419 501,782

TABLE IV
DESIGN JSC-VLCS FOR ENGLISH ALPHABET USING C-CW AND THE PROPOSED HEURISTIC FOR CANONICAL TREE REPRESENTATIONS; THE

PROBABILITIES ARE TAKEN FROM [14]

Symbols Probabilities ` Codeword ` Codeword
a1 = E pa1

= 0.1270 5 00000 6 010110
a2 = T pa2

= 0.0906 5 11110 6 101001
a3 = A pa3

= 0.0817 7 0110000 7 0110101
a4 = O pa4

= 0.0751 7 0011101 7 1001010
a5 = I pa5

= 0.0697 7 1001000 8 00001100
a6 = N pa6

= 0.0674 7 1100110 8 01100111
a7 = S pa7

= 0.0633 8 01010101 8 11110000
a8 = H pa8

= 0.0609 8 01110010 8 10011011
a9 = R pa9

= 0.0599 8 00011000 9 001111011
a10 = D pa10

= 0.0425 8 00101110 9 011101100
a11 = L pa11

= 0.0403 8 10100101 9 110000111
a12 = C pa12

= 0.0278 8 10000010 9 100010000
a13 = U pa13

= 0.0276 8 11101000 10 0010000000
a14 = M pa14

= 0.0241 8 11011011 10 0111110011
a15 = W pa15

= 0.0236 10 0100101100 10 1101111100
a16 = F pa16

= 0.0223 10 0101110011 10 1000001011
a17 = G pa17

= 0.0202 10 0110110101
a18 = Y pa18

= 0.0197 10 0111111000
a19 = P pa19

= 0.0193 10 0000101011
a20 = B pa20

= 0.0149 10 0001001101
a21 = V pa21

= 0.0098 10 0011010100
a22 = K pa22

= 0.0077 10 0010010011
a23 = J pa23

= 0.0015 10 1011110010
a24 = X pa24

= 0.0015 10 1010101101
a25 = Q pa25

= 0.0010 10 1001110101
a26 = Z pa26

= 0.0007 10 1000111000

`av = 7.3378 dfree = 4 `av = 7.7496 dfree = 5

dfree bounds d
he
free = 4 d̄he

free = 5
Computing time 310 h 554 h
Trees generated 3,130 43,172
Trees explored 1 4
dfree evaluations 384,336 3,121,150

of the code tree associated to the codebook may significantly
improve the tightness of the bound.

A second contribution consists in the proposition of a
branch-and-prune algorithm to optimize the free distance of
a JSC-VLC with given codeword lengths. The resulting code-
book maximizes the free distance, and not a lower bound ont
it, as was the case for other codebook optimization techniques.
Among the proposed algorithms, the most efficient relies
on the exploration of canonical tree representations, which
describe the structure of equivalent prefix-free codebooks. For
a given canonical tree, the best codebook is then searched.
Compared to state-of-the-art search techniques, better code-
books in terms of free distance may be obtained, for certain
parameter choices.

This algorithm considers two types of search trees: one for
the canonical trees and, for each canonical representation, a

search tree for the best codebook. A combined exploration
of both trees is likely to significantly improve the search
efficiency. Implementing Dijkstra’s algorithms using Fibonacci
heaps would reduce the complexity of evaluating the free
distance from O(N2) to O(M log(N)), where N and M are
the number of vertices and edges of the PDG, respectively.
Better heuristics to select equal-length codewords with good
minimal distance properties such as those introduced in [14],
[16] could also be considered. Finally, one may try to adapt
the search tree using the A* algorithm proposed in [11] and
introduce constraints on the free distance of the code to be
designed.
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