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Abstract—We consider the problem of source coding with side infor-
mation (SI) at the decoder only, when the joint distribution between
the source and the SI is not perfectly known. Four parametric models
for this joint distribution are considered, where uncertainty about the
distribution is turned into uncertainty about the value of the parameters.
More precisely, a prior distribution for the parameters may or may not
be available. Moreover, the value of the parameters may either change
at every symbol or remain constant for a while. This paper overviews
the results on the performance of lossless source coding with SI at the
decoder for three models, and gives the performance for the fourth. The
way LDPC-based encoding and decoding schemes should be designed to
cope with model uncertainty is provided. Most of the proposed practical
schemes perform close to the theoretical limits.

I. INTRODUCTION

Classical results on source coding with Side Information (SI) at the
decoder only [17] as well as design of practical coding schemes for
this problem [3], [13] rely on the assumption that the joint probability
distribution between the source X and the SI Y is perfectly known.
Nevertheless, this assumption is seldom satisfied in practical situa-
tions. It makes both the evaluation of the required coding rate and
the design of a robust decoder quite difficult. This problem is usually
mitigated via a feedback channel [1] or by allowing interactions
between the encoder and the decoder [19]. Although such approaches
may theoretically decrease the total coding rate, exchanges between
the encoder and encoder lead to increased delay which may not be
compatible with delay constrained applications. Consequently there
is a need to characterize the performance of coding schemes with
uncertainty in the joint distribution of (X,Y ) in the case of one-way
communication between the encoder and the decoder.

A universal coding setup is introduced in [8], where the distribution
P (X) of the source X is assumed unknown but the conditional
distribution P (Y |X) is perfectly known. Nevertheless, in many
scenarios such as distributed video coding or distributed compression
in network of sensors, P (X) can be inferred at the encoder. However
P (Y |X) remains difficult to obtain accurately in a one-way commu-
nication. Similarly, in source coding with multiple SI [16], the joint
distribution P (X,Y ) is uncertain at the encoder but available at the
decoder. This assumption is also difficult to satisfy in practice, as
obviously the decoder does not observe the source directly.

A way to capture the uncertainty is to consider source models
in which the joint distribution P (X,Y ) belongs to a parametric
family of joint distributions. Four models are considered in this paper.
They represent different levels of knowledge and capture different
types of time variations of the joint distribution P (X,Y ). For two
models, the distribution of the source sequence {(Xn, Yn)}

+∞
n=1 is

parametrized by some unknown vector θ that is fixed for the sequence

and that can vary from sequence to sequence, as in universal coding
problems [4]. In the two other models, the distribution of (Xn, Yn)

is described by a vector πn allowing model variations with n [2].
The distinction between θ fixed for a sequence, and the πns varying
from symbol to symbol has already been proposed in the context of
channel coding [12]. In both cases, a first model assumes that θ or
the πns are realizations of some random variable Θ or of independent
and identically distributed (i.i.d.) replicas of some random variable
Π. A degraded model considers that no prior knowledge on θ or
on the πns except their support is available. The latter choice is
reasonable in all cases where a prior distribution for the parameters
is difficult to obtain. For each model, the theoretical performance
of the coding scheme may be given by a worst case. The question
that arises is to determine the set in which this worst-case has to be
searched for. The design of practical encoding and decoding schemes
that would achieve the performance defined for these worst cases is
also of interest, as the true values of the parameters are unknown.

This paper overviews the theoretical performance of lossless source
coding with SI for three models and provides the performance limit
for the fourth. An analysis of the model in which θ is described by
a random variable is provided in [19] considering a variable-length
setup. To gain a complete understanding of the problem, the fixed-
length setup is considered here. It falls in the context of general
sources [6] for which no closed form expression of the performance
is available. Practical coding schemes for a Binary Symmetric Source
(BSS) X and P (Y |X) described by a Binary Symmetric Channel
(BSC) are also introduced. The schemes are based on Low-Density
Parity-Check (LDPC) codes, and account for the uncertainty in
estimating the transition probability. Implementation issues are also
discussed. More precisely, we define the rate at which the encoder
should encode the source for a given outage constraint, we provide
insights in the code design (i.e. code optimization), and finally the
choice and the initialization of the decoder. The proposed schemes are
shown to perform close to the theoretical limits: the best case is only
0.01 bit/symbol away from the theoretical rate. Related works are
[4] which shows the existence of a universal linear code for lossless
source coding with SI, and [11] which obtains a similar result for
LDPC codes. Nevertheless none of these works give insights into
the design of coding and decoding schemes that would achieve the
optimal compression rate.

The paper is organized as follows. Definitions of the correlation
models are given in Section II. Sections III and IV analyze the models
with constant and time-varying parameter, respectively.



II. SIGNAL MODEL

In this paper, the source X to be compressed and the SI Y
available at the decoder produce sequences of symbols {Xn}

+∞
n=1 and

{Yn}
+∞
n=1, respectively. X and Y denote the source and SI alphabets.

Bold upper case letters, e.g. XN
1 = {Xn}

N
n=1, denote random

vectors, whereas bold lower case letters, xN
1 = {xn}

N
n=1, represent

their realizations. Moreover, when it is clear from the context that
the distribution of a random variable Xn does not depend on n, the
index n is omitted.

The goal of this section is to model source uncertainty. Each of the
four proposed models consists of a family of parametric distributions.
Consider first the case of a time invariant parameter.

Definition 1. (P-Source) A source (X,Y ) with Prior (P-Source)
produces a sequence of independent symbols {(Xn, Yn)}

+∞
n=1 drawn

from a distribution belonging to a family {P (X,Y |Θ = θ)}θ∈Pθ

parametrized by a random vector Θ. The random vector Θ, with
distribution PΘ(θ), takes its value in a set Pθ that is either discrete
or continuous. The source symbols X and Y take their values in
discrete sets X and Y respectively. Moreover, the realization of the
parameter θ is fixed for the sequence {(Xn, Yn)}

+∞
n=1.

The P-source, determined by Pθ , PΘ(θ), and {P (X, Y |Θ =

θ)}θ∈Pθ
, is stationary but non-ergodic [5, Section 3.5].

Definition 2. (WP-Source). A source (X,Y ) Without Prior (WP-
Source) produces a sequence of independent symbols {(Xn, Yn)}

+∞
n=1

drawn from a distribution belonging to a family {Pθ(X,Y )}θ∈Pθ

parametrized by a vector θ. The vector θ takes its value in a set Pθ

that is either discrete or continuous. The source symbols X and Y
take their values in discrete sets X and Y respectively. Moreover, the
parameter θ is fixed for the sequence {(Xn, Yn)}

+∞
n=1.

The WP-source, completely determined by Pθ and
{Pθ(X,Y )}θ∈Pθ

, is stationary but non-ergodic [5, Section
3.5]. The only difference between the P- and WP-Sources lies in the
definition of θ. In the WP-Source, no distribution for θ is specified,
either because its distribution is not known or because θ is not
modeled as a random variable. The two next models allow parameter
variations from symbol to symbol.

Definition 3. (M-Source). A Mixture Source (X,Y ), or M-Source,
produces a sequence of independent symbols {(Xn, Yn)}

+∞
n=1 drawn

∀n from P (Xn, Yn) that belongs to a family of distributions
{P (X,Y |Π = π)}π∈Pπ parametrized by a random vector Πn. The
{Πn}

+∞
n=1 are i.i.d. with distribution P (Π) and take their values in

a discrete set Pπ . The source symbols Xn and Yn take their values
in discrete sets X and Y, respectively.

The M-Source, completely determined by Pπ , P (Π), and
{P (X,Y |Π = π)}π∈Pπ , is stationary and ergodic [5, Section 3.5].

Definition 4. (WPM-Source). A Without Prior Mixture Source
(X,Y ), or WPM-Source, produces a sequence of independent sym-
bols {(Xn, Yn)}

+∞
n=1 drawn ∀n from P (Xn, Yn) that belongs to a

family of distributions {Pπ(X,Y )}π∈Pπ parametrized by a vector
πn. The vectors πn take their values in a discrete set Pπ . The
source symbols X and Y take their values in discrete sets X and Y,
respectively.

The WPM-Source, determined by Pπ and {Pπ(X,Y )}π∈Pπ , is
non-stationary and non-ergodic [5]. The only difference between the
M and WPM-Source lies in the definition of the parameters πn (no
distribution for the πn’s is specified in the WPM-Model).

III. TIME INVARIANT PARAMETERS

This section focuses on the P and WP-Sources.

A. P-Source

Let us first define the coding functions for the P-Source.

Definition 5. Let (X,Y ) be a P-Source. Let MN = {1 . . . |MN |} be
a set of integers. A coding process is defined by an encoding mapping
φN : XN → MN and a decoding mapping ψN : MN × Y

N → X
N .

The error probability is

PN
e = P

(

X
N
1 6= ψN (φN (XN

1 ),YN
1 )

)

(1)

A rate R is said to be achievable if and only if there
exists a (φN , ψN )-code such that limN→∞ PN

e = 0 and
lim supN→∞

1
N

log |MN | 6 R.

The following lemma gives the infimum of achievable rates for the
P-Source.

Lemma 1. The infimum of achievable rates RP
X|Y for the P-Source

(X,Y ) is given by (see Definition 5)

RP
X|Y = sup

θ∈Pθ

H(X|Y,Θ = θ) (2)

where H(X|Y,Θ = θ) is obtained from

P (X|Y,Θ = θ) =
P (X,Y |Θ = θ)

∑

x′∈X
P (X = x′, Y |Θ = θ)

. (3)

Proof: First (X,Y ) is a general source because the parameter
Θ is a random variable and the statistics of the random variables
P (XN

1 ,Y
N
1 ) are well defined, ∀N . Therefore, the infimum of

achievable rates can be derived with information spectrum tools [6,
Section 7.2]:

RP
X|Y = p − lim sup

N→∞

1

N
log

1

P (XN
1 |YN

1 )

:= inf

{

α| lim
N→∞

P

(

1

N
log

1

P (XN
1 |YN

1 )
> α

)

= 0

}

However, for a fixed θ, the source is ergodic and

1

N
log

1

P (XN
1 |YN

1 ,Θ = θ)

in proba.
−−−−→
N→∞

H(X|Y,Θ = θ).

Therefore,

RP
X|Y = inf

{

α|∀θ ∈ Pθ, lim
N→∞

P ( 1
N

log 1
P (XN

1
|YN

1
,Θ=θ)

>α) = 0
}

= inf {α|∀θ ∈ Pθ, α>H(X|Y,Θ = θ)}

= inf

{

α|α > sup
θ∈Pθ

(H(X|Y,Θ = θ))

}

= sup
θ∈Pθ

H(X|Y,Θ = θ). �

Corollary 1. If the set Pθ contains some θ such that X and Y are
independent, then SI at the decoder does not reduce the infimum of
achievable rates (RP

X|Y = H(X)).

To analyze the performance of the coding system we propose
below, we also give the performance of the source coding scheme
when an estimate θ̂ of θ is available at the decoder.

Lemma 2. Let (X,Y ) be a P-source and let θ̂ be a noisy version of
θ available at the decoder and obtained from the known conditional
distribution PΘ̂|Θ=θ(θ̂). Denote by Pθ̂ ⊆ Pθ the set of every possible

θ̂. The coding scheme is defined as in Definition 5, except for the



mapping ψN that becomes ψN : MN×Y
N×Pθ̂ → X

N . The infimum
of achievable rates RP

X|Y,Θ̂
in this setup is given by

RP

X|Y,Θ̂ = sup
θ∈Pθ

H(X|Y,Θ = θ) . (4)

Proof: The coding scheme can at least achieve the coding
performance of a scheme without parameter estimate θ̂ (derived in
Lemma 1). Therefore, RP

X|Y,Θ̂
6 supθ∈Pθ

H(X|Y,Θ = θ).
Moreover, if the encoder transmits a source sequence with rate

R < supθ∈Pθ
H(X|Y,Θ = θ), then the decoder fails to decode

all sequences with parameter θ? such that H(X|Y, θ?) > R and
RP

X|Y,Θ̂
> supθ∈Pθ

H(X|Y,Θ = θ).

Lemma 2 shows that the knowledge of an estimate θ̂ of θ at the
decoder does not decrease the coding rate. However, it enables to
implement practical decoding schemes in a more convenient way, as
described below.

We now provide practical coding solutions for the P-Source, based
on LDPC codes [15]. Let X be a BSS and let Y be the output of
a BSC, with P (Y = 1|X = 0) = θ and θ ∈ Pθ . This channel is
denoted BSC(θ). Let us first review how LDPC codes [10] are used
to solve the source coding problem with SI at the decoder, when all
source distributions are known at both encoder and decoder. For a
given source sequence xN

1 , a codeword zM1 of length M is built as
zM1 = ATxN

1 where A ∈ X
N×M is a binary sparse matrix. At the

decoder, a dependency graph between the entries of xN
1 , yN

1 , and zM1
is built using A. The graph is defined by check node and variable
node degree distributions, respectively ρ(x) and λ(x), which satisfy
the code rate constraint M/N =

∫ 1

0
ρ(x)dx/

∫ 1

0
λ(x)dx. An LDPC

code with distributions ρ(x) and λ(x) is called a (λ, ρ)-code. The
Maximum a Posteriori (MAP) estimate

x̂n = argmax
x∈X

P (Xn = x|YN
1 = y

N
1 ) (5)

is well approximated by a Message Passing (MP) algorithm per-
formed in the graph. Various approximate MAP estimators are pro-
posed in [14]. The soft LDPC decoder is a MP taking the conditional
distributions P (xn|yn) as input messages while hard LDPC decoders
only require the value of the SI sequence yN

1 as input, at the price
of lower performance.

With the P-Source, as we do not know precisely the true conditional
distribution P (X|Y ), we propose a two-stage coding/decoding setup.
First, a subsequence x

uN
1 of xN

1 is LDPC coded. Since the statistics
are not yet known, this learning sequence is decoded with a hard
LDPC decoder1 . In the binary case, the rate Rl at which the
learning sequence has to be encoded, can be evaluated with density
evolution [14] and is dimensioned for the worst θ ∈ Pθ . The Bayesian
estimation of θ from (xuN

1 ,yuN
1 ) provides the posterior distribution

PΘ|x
uN
1

,y
uN
1

(θ) [7].
Second, for the source symbols Xun to XN , (5) becomes

x̂n = argmax
x∈X

P (Xn = x|YN
uN+1 = y

N
uN+1,x

uN
1 ,yuN

1 ) (6)

An approximation of (6) is obtained by the soft LDPC decoder now
initialized by

P (Xn|Yn,x
uN
1 ,yuN

1 ) =

∫

θ∈Pθ

P (Xn|Yn, θ)PΘ|x
uN
1

,y
uN
1

(θ)dθ. (7)

In the binary case, the density (7) is completely determined by
a reconstruction parameter θr with θr = P (Xn = 1|Yn =

1Note that a learning sequence in this setup differs from a learning sequence
in channel coding since this sequence contains useful data.

0,xuN
1 ,yuN

1 ).2 Note that in place of (7), one could initialize the
decoder with P (Xn|Yn = yn, θ̂), where θ̂ is the MAP estimate of
θ. However this does not take into account the uncertainty on θ̂.
Instead, θr and therefore the MP algorithm account for the uncertainty
in estimating θ since (7) contains an integration with posterior
distribution PΘ|x

uN
1

,y
uN
1

(θ).
To evaluate the performance of the second part of the coding

scheme, density evolution [14] is used to provide for a given (λ, ρ)-
code, the largest θ? s.t. xN

1 can be decoded with probability of error
less than a target value εt. In channel coding, density evolution holds
for symmetric distributions but in Slepian Wolf coding, it can be
generalized to non symmetric binary sources [3]. θ? is called the
threshold of the code. To obtain θ?, the only information needed by
the density evolution algorithm is the probability density function of
the input messages of the decoder. For a BSC(θ), it is [14]

pX(x) = θδ

(

x+ log
1− θ

θ

)

+ (1 − θ)δ

(

x− log
1− θ

θ

)

(8)

where δ refers to the Dirac distribution.
As θ 6= θr , the input messages (7) are not correct and our scheme

is a mismatch decoder. To take this mismatch into account, density
evolution has to be initialized with

pX(x) = θδ

(

x+ log
1− θr
θr

)

+(1−θ)δ

(

x− log
1− θr
θr

)

. (9)

Actually, the log-likelihood ratio is initialized with log 1−θr
θr

(if Y =

1) and with its opposite (if Y = 0), and this occurs with probability
θ and 1 − θ, respectively.

To complete our scheme definition, we now compute the coding
rate for the remaining N − uN symbols. Ensuring error probability
less than εt for every θ ∈ Pθ would lead to an important rate increase.
In what follows, an outage parameter γ is introduced. The outage
authorizes the decoder to fail for a subset of Pθ of measure γ.

Definition 6. For a given γ ∈ [0, 1] and θr , consider a set Bγ

θ|θr
⊆

Pθ such that
∫

θ∈B
γ

θ|θr

PΘ|θr (θ)dθ > 1 − γ . (10)

1) For a (λ, ρ)-code and a given εt, a mismatch rate R
B

γ

θ|θr
λ,ρ,εt

is such that every source with parameter θ ∈ Bγ

θ|θr
can be

decoded using a reconstruction parameter θr and with an error
probability less than εt.

2) A reconstruction rate Rγ
λ,ρ,εt

(θr) is such that there exists a set

Bγ

θ|θr
⊆ Pθ for which R

B
γ

θ|θr
λ,ρ,εt

is a mismatch rate for Bγ

θ|θr
.

From Definition 6, the rate needed to transmit the source with
target error probability εt and outage γ is

RN
c (γ, εt) = sup

θr∈ Conv(Pθ)

inf
B

γ

θ|θr

inf
λ,ρ

Rγ
λ,ρ,εt

(θr) (11)

In fact, the inf on (λ, ρ) corresponds to the design of a good LDPC
code. Then, for a given γ, there are many subsets Bγ

θ|θr
of Pθ of

measure γ. The outage condition allows the decoder to fail for one
of the subsets. Therefore we seek for the most advantageous subset,
i.e. the subset that minimizes the coding rate. This gives the inf on
Bγ

θ|θr
. Finally, as θr is not known at the encoder, the rate has to be

dimensioned for the worst possible case, which gives the sup on θr.

2θr does not necessarily belong to Pθ . For a BSC(θ), θr ∈ Conv(Pθ), the
convex hull of the elements of Pθ .



TABLE I
THEORETICAL (TH.) AND PRACTICAL (PRAC.) RATE BOUNDS IN

BIT/SYMBOL WHEN X IS A BSS AND P (Y |X) A BSC.

Source Conditions Th. Rate Prac. Rate

P-Source Pθ = [0.1, 0.215] 0.74 0.75

WP-Source Pθ = [0.1, 0.215] 0.74 0.75

M-Source
Pπ = {0.1, 0.215}

0.59 0.6
p = 0.143

WPM-Source Pπ = {0.1, 0.143} 0.59 0.75

No SI P (X = 1) = 0.5 1 1

The rate of the whole coding system for fixed γ and εt is

RN (γ, εt) =
uN

N
Rl +

N − uN

N
RN

c (γ, εt) . (12)

Although difficult to solve in practice, the optimization problem (11)
expresses the tradeoff between the length of the learning sequence,
the outage parameter, and the rate performance thus giving insights
to design a practical coding solution.

For limN→∞ uN = +∞, the Bayesian estimator is consistent [9,
Section 11.6], Θ̂ converges in probability to the true θ. Hence the
outage condition is no more useful, as every θ is estimated perfectly.
By setting limN→∞ uN = +∞ while limN→∞ uN/N = 0, (12)
becomes the rate needed to transmit a source with the worst parameter
θ in (4). This asymptotic rate depends only of the chosen (λ, ρ)-code
and can be very close to the entropy [15].

Example 1. Let X be a BSS and let Y be the output of a
BSC(θ) with input X . Pθ = [0.1, 0.215] and PΘ(θ) is piece-
wise constant on Pθ . For instance, PΘ(θ) = 10 Iθ∈[0.1,0.15] +
8 Iθ∈[0.15,0.20]+6.67 Iθ∈[0.20,0.215] where I is the indicator function.
From Lemma 1, the infimum achievable rate is RP

X|Y = 0.74

bit/symbol. With an LDPC code of distributions ρ(x) = x5 and
λ(x) = 0.093x3 + 0.720x4 + 0.187x5 obtained with a differential
evolution algorithm [18] for the worst parameter θ ∈ Pθ , a rate
R = 0.75 bit/symbol is achieved for εt = 10−5 , see Table III-A.
Without SI available at the decoder, the infimum of achievable rates
is 1 bit/symbol, since P (X = 1) = 0.5.

B. WP-Sources

Now, since only the support for θ is known, information spectrum
approaches do not apply.

Definition 7. Let (X,Y ) be a WP-Source. The mappings φN and
ψN are as in Definition 5. The probability of error for a given θ is

PN
e (θ) = Pθ

(

X
N
1 6= ψN (φN (XN

1 ),YN
1 )

)

. (13)

A rate R is said to be achievable if and only if there exists a
(φN , ψN ) code such that ∀θ ∈ Pθ , limN→∞ PN

e (θ) = 0 and
lim supN→∞

1
N

log |MN | 6 R.

Lemma 3 (see [4]). For the WP-Source, the infimum of achievable
rates is

RWP
X|Y = sup

θ∈Pθ

Hθ(X|Y ) (14)

where Hθ(X|Y ) is calculated from

Pθ(X|Y ) =
Pθ(X,Y )

∑

x′∈X
Pθ(X = x′, Y )

. (15)

Corollary 2. The knowledge of a prior for θ does not reduce the
infimum of achievable rates (if θ has same support for both WP and
P sources, RWP

X|Y = RP
X|Y ).

An intuitive argument is that a sequence with parameter θ needs
a rate Hθ(X|Y ) to be correctly decoded. Since the encoder has no
way to predict the exact value of the parameter θ of a sequence, for
the P-Source, as well as for the WP-Source, it is forced to protect
the sequence against the worst parameter and to dimension the rate
consequently.

The practical coding solution proposed here is adapted from that
of Section III-A. The main difference is on the evaluation of θ̂.
Indeed, here, the variable θ is deterministic and hence is estimated
by performing Maximum Likelihood (ML) estimation on the learning
sequence. In the second phase, the distribution provided to the
decoder is directly Pθ̂(X|Y ). Its asymptotic conditional distribution
Pθ(Θ̂) for a given θ is taken from [7, Section 8.2.2]

Θ̂|θ ∼ N (θ, i(θ)) (16)

where i(θ) is the Fisher information. From [7, Section 8.2.2], (16) can
be approximated as N(θ̂, i(θ̂)). The outage condition is now defined
as follows.

Definition 8. For a given γ ∈ [0, 1], let α(1−γ) be the (1 − γ)-th
percentile of a Gaussian distribution. Consider an estimate θ̂ of θ
and Bγ

θ|θ̂
= {θ ∈ Pθ, |θ − θ̂| < α(1−γ)i(θ̂)}.

1) For a (λ, ρ)-code and a target error probability εt, a mismatch

rate R
B

γ

θ|θ̂

λ,ρ,εt
(θ̂) is such that every source with parameter θ ∈

Bγ

θ|θ̂
can be decoded using θ̂ at the decoder with an error

probability less than εt.
2) A reconstruction rate Rγ

λ,ρ,εt
(θ̂) is such that there exists a set

Bγ

θ|θ̂
⊆ Pθ such that Rγ

λ,ρ,εt
(θ̂) is a mismatched rate for Bγ

θ|θ̂
.

From Definition 8, the rate needed to transmit the source with
outage parameter γ and target error probability εt is

RN
c (γ, εt) = sup

θ̂∈Pθ

inf
B

γ

θ|θ̂

inf
λ,ρ

Rγ
λ,ρ,εt

(θ̂) . (17)

To finish, Rl and RN (γ, εt) are defined as in Section III-A. As the
ML estimator is consistent [9], asymptotic considerations on the rate
hold also in this setup.

Example 2. The model of Example 1 is considered, without prior on
θ. The same rate R = 0.74 bit/symbol is asymptotically achieved
with the same (λ, ρ)-code.

IV. TIME-VARYING PARAMETERS

This section focuses on the M- and WPM-Sources.

A. M Source

For the M-Source, the distribution P (Π) is perfectly known. The
source symbols (X,Y ) are i.i.d. and the joint distribution P (X,Y )
is perfectly determined as

P (X,Y ) =
∑

π∈Pπ

P (π)P (X,Y |π) . (18)

The source is stationary and ergodic and the results on lossless source
coding with SI introduced in [17] apply. Then, one has

Lemma 4. [17] The infimum achievable rate for source coding with
SI at the decoder with the M-Source is

RM
X|Y = H(X|Y ) (19)

where H(X|Y ) is calculated from (18).



Since the statistics of the source are perfectly known, soft LDPC
decoding can be applied directly. The optimization and performance
of the code is obtained via density evolution, using P (X|Y ).

Example 3. Here again, X is a BSS. The correlation between X
and Y is described by a BSC(π) with random transition probability.
Pπ = {π1 = 0.1, π2 = 0.215} with P (Π = π1) = 0.61
and P (Π = π2) = 0.39. This gives a conditional distribution
p = P (Y = 1|X = 0) = 0.143. One obtains an achievable
rate RM

X|Y = 0.59 bit/symbol. From an optimization with differential
evolution, the degree distributions ρ(x) = x5 and λ(x) = 0.099x3+
0.712x4 + 0.174x5 + 0.015x6 is obtained and gives an achievable
rate R = 0.60 bit/symbol.

B. Mixture Source Without Prior

Consider now the WPM-Source, in which no prior information
except the support is known about the sequence of parameters
{πn}

N
n=1.

Definition 9. Consider a WPM-Source and mappings φN and ψN

introduced in Definition 5. The probability of error is defined for a
given sequence {πn}

N
n=1 ∈ P

N
π as

PN
e ({πn}

N
n=1) = P{π}Nn=1

(

X
N
1 6= ψN (φN (XN

1 ),YN
1 )

)

. (20)

A rate R is said to be achievable if and only if there exists a
(φN , ψN )-code such that ∀{πn}

N
n=1 ∈ PN

π ,

lim
N→∞

PN
e ({πn}

N
n=1) = 0 (21)

and lim supN→∞
1
N

log |MN | < R.

Lemma 5. [2] Let (X,Y ) be a WPM-Source and let the coding
scheme be as defined in Definition 9. The infimum achievable rate
for source coding with SI at the decoder is

RWPM
X|Y = sup

P (X,Y )∈Conv({Pπ(X,Y )}π∈Pπ )
H(X|Y ) (22)

where Conv({Pπ(X,Y )}π∈Pπ ) is the convex hull of the elements of
{Pπ(X,Y )}π∈Pπ .

Corollary 3. If the convex hull of the elements of the set Pπ contains
some π such that X and Y are independent, then SI at the decoder
does not reduce the infimum of achievable rates (RP

X|Y = H(X)).

A coding scheme for the WPM-Source is by far the most compli-
cated to realize in practice. Indeed, as the process is non-stationary,
learning the statistics of the sources is useless, and hence it is
not possible to perform soft LDPC decoding as in Section III-A.
Nevertheless, hard LDPC decoding enables to code and decode such
a source. For a given (λ, ρ)-code, an associated rate Rλ,ρ and a target
error probability εt, density evolution gives us a threshold π? such
that, ∀π 6 π?, the hard LDPC decoder can decode a sequence with
true parameter π with error probability less than εt. The (λ, ρ)-code
for our setup is hence chosen such that its threshold π? is up to the
worst possible distribution in (22)

Example 4. The set Pπ contains now two probability transitions
π1 = 0.1 and π2 = 0.143. The sup in (22) is π2 = 0.143, giving a
minimum achievable rate RTV M

X|Y = 0.59 bit/symbol, as in Example 3.
But now, with the hard LDPC decoding algorithm E [15], the rate
achieved in practice is R = 0.75 bit/symbol with a regular LDPC
code 3/4.

V. CONCLUSION

This paper addresses the problem of lossless source coding with
SI at the decoder when the joint distribution of the source and side
information is only partially known. Four parametric models have
been considered, leading to different performance limits and different
coding strategies, even if all consider LDPC codes.

This paper also provides some insights on implementation issues
for the uncertainty aware schemes. More precisely, the practical
encoding rate has been defined, when outage is allowed. Moreover,
LDPC codes have been designed, and the choice and the initialization
of the decoder have been presented.
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