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Interval observers for continuous-time linear systems with discrete-time outputs

We consider continuous-time linear systems with additive disturbances and discrete-time measurements. First, we construct an observer, which converges to the state trajectory of the linear system when the maximum time interval between two consecutive measurements is sufficiently small and there are no disturbances. Second, we construct interval observers allowing to determine, for any solution, a set that is guaranteed to contain the actual state of the system when bounded disturbances are present.

I. INTRODUCTION

Traditional state estimators, such as the Luenberger observer [START_REF] Luenberger | Observers for multivariable systems[END_REF] or the Kalman filter [START_REF] Gelb | Applied Optimal Estimation[END_REF], compute point estimates of the state from input-output data, possibly supplemented by an estimate of the dispersion of the possible values of the state around this point estimate. By contrast, guaranteed state estimators [START_REF] Chernousko | Optimal guaranteed estimates of indeterminacies with the aid of ellipsoids[END_REF], [START_REF] Chernousko | State Estimation for Dynamic Systems[END_REF], [START_REF] Kurzhanski | Ellipsoidal Calculus for Estimation and Control[END_REF], also known as set-membership estimators [START_REF] Bertsekas | Recursive state estimation for a setmembership description of uncertainty[END_REF], [START_REF] Milanese | Optimal estimation theory for dynamic systems with set membership uncertainty: An overview[END_REF], compute sets guaranteed to contain the actual value of the state if some hypotheses on the state perturbation and measurement noise are satisfied.

Guaranteed state estimation can be traced back to the seminal work of F.C. Schweppe [START_REF] Schweppe | Recursive state estimation: unknown but bounded errors and system inputs[END_REF], [START_REF] Schweppe | Uncertain Dynamic Systems[END_REF]. His idea was recursively to compute ellipsoids guaranteed to contain the actual state. Of course, other types of containers than ellipsoids could and have been used, such as boxes [START_REF] Milanese | Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators[END_REF], parallelotopes [START_REF] Chisci | Recursive state bounding by parallelotopes[END_REF], zonotopes [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF] or other limited-complexity polytopes. Matlab toolboxes implementing ellipsoidal or polytopic calculus are readily available [START_REF] Kurzhanski | Ellipsoidal toolbox[END_REF], [START_REF] Veres | Geometric bounding toolbox[END_REF].

We consider in this paper a specific type of guaranteed state estimators for continuous-time linear models known as interval observers. Interval observers were introduced in [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF] and extended and applied in many studies, see, for instance, [START_REF] Bernard | Closed loop observers bundle for uncertain biotechnological models[END_REF], [START_REF] Mazenc | Asymptotically stable interval observers for planar systems with complex poles[END_REF]- [START_REF] Mazenc | Interval Observers for Linear Systems with Delay[END_REF], [START_REF] Moisan | Near optimal interval observers bundle for uncertain bioreactors[END_REF], [START_REF] Nejjari | Robust fault detection for LPV systems using interval observers and zonotopes[END_REF]- [START_REF] Rami | Tight robust interval observers: An LP approach[END_REF]. Typically, they bound the actual state between the solutions of two deterministic and possibly coupled dynamical systems, which form a framer. It is also required that the upper and lower bounds asymptotically converge to one another in the absence of state perturbation. The constructions of interval observers rely more or less directly on the notion of cooperative system [START_REF] Smith | Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems[END_REF], but they are not limited to this type of system, as explained in [START_REF] Mazenc | Asymptotically stable interval observers for planar systems with complex poles[END_REF] and [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF].

Until recently, interval observers were designed for systems without output or with continuously measured outputs. This was a severe limitation as most, if not all, measurements are collected at discrete instants of time. In the pioneering contributions [START_REF] Goffaux | Improving continuousdiscrete interval observers with application to microalgae-based bioprocess[END_REF], [START_REF] Goffaux | Continuous-discrete interval observers for monitoring microalgae cultures[END_REF], interval observers for nonlinear continuous-time systems using discrete-time measurements were introduced. The ideas of these contributions are: (i) to construct classical framers for the system under study, (ii) to reinitialize the framer at each measurement time, taking into account the current estimate and measured outputs.

The aim of the present work is to propose a new approach for building interval observers for continuous-time linear systems with discrete-time outputs. Our result differs significantly from those presented in [START_REF] Goffaux | Improving continuousdiscrete interval observers with application to microalgae-based bioprocess[END_REF], [START_REF] Goffaux | Continuous-discrete interval observers for monitoring microalgae cultures[END_REF] because the interval observers of [START_REF] Goffaux | Improving continuousdiscrete interval observers with application to microalgae-based bioprocess[END_REF], [START_REF] Goffaux | Continuous-discrete interval observers for monitoring microalgae cultures[END_REF] have discontinuous solutions whereas those proposed here have continuous solutions.

The key ideas of our approach can be decomposed into three steps. First, under a classical detectability condition, we construct an observer that would be exponentially stable if the outputs were available at all instants of time and no disturbances were acting. However, with discrete-time measurements and additive state disturbances, instability may occur (even if the disturbances are bounded, as we shall assume) in the sense that some trajectories may go to infinity when the time intervals between two measurements are larger than some threshold. We give conditions ensuring that this phenomenon does not occur. Second, we determine the error equation and transform the time-invariant part of it into a cooperative system through the possibly time-varying change of coordinates introduced in [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF]. Third, using the observer and modified error equation, we construct an interval observer for the original system (with additive disturbances), which is discontinuous with respect to time. It admits continuous solutions and produces upper and lower bounds for the solutions which, in the absence of disturbances, converge exponentially to one another. It is worth mentioning that the observer on which we base our interval observer for systems with discrete-time measurements differs from those presented in [START_REF] Andrieu | Observer design for Lipschitz systems with discrete-time measurements[END_REF], [START_REF] Deza | High gain estimation for nonlinear systems[END_REF] and [START_REF] Hammouri | Constant gain observer design for continuous-discrete time uniformly observable systems[END_REF], which rely on an impulsive correction of the estimated solution that is carried out when a new measurement becomes available and thereby yield discontinuous solutions. Finally, we wish to point out that, in general, the classical interval observers that are valid for systems with continuous-time outputs do not even frame the solutions when the outputs are only available at discrete time instants. We will show that through a counter-example inspired from that in [START_REF] Mazenc | Interval Observers for Linear Systems with Delay[END_REF].

The paper is organized as follows. Section II is devoted to definitions, notation and a motivating counter-example.

The system under study is introduced in Section III, where observer for it is constructed. A family of interval observers is proposed and studied in Section IV. Concluding remarks are drawn in Section V.

II. NOTATION, DEFINITIONS AND MOTIVATING COUNTER-EXAMPLE

A. Basic notation and definitions

The Euclidean norm of vectors of any dimension and the induced norm of matrices of any dimensions are denoted || • ||. For any integer k, the identity matrix of any dimension k is denoted by I and any k × n matrix, whose entries are all 0 is denoted by 0. Inequalities must be understood componentwise (partial order of R r ), so for instance W a = (w a1 , ..., w ar ) ⊤ ∈ R r and W b = (w b1 , ..., w br ) ⊤ ∈ R r are such that W a ≤ W b if and only if, for all i ∈ {1, . . . , r}, w ai ≤ w bi . max{A, B} for two matrices A = (a i j ) and B = (b i j ) of the same dimensions is the matrix M such that each entry is m i j = max{a i j , b i j }. A matrix A = (a i j ) ∈ R n×p is nonnegative (resp. positive) if a i j ≥ 0, i = 1, ..., n, j = 1, . . . , p, (resp. a i j > 0, i = 1, ..., n, j = 1, ..., p). In this case, we will write A ≥ 0 (resp. A > 0). A 0 is used to express the fact that A ∈ R n×n is a symmetric matrix such that, for all vector V ∈ R n , V ⊤ AV ≥ 0. A real square matrix is cooperative (or Metzler) if all its off-diagonal entries are nonnegative.

For a continuous function ϕ :

[-τ, +∞) → R k , for all t ≥ 0, the function ϕ t is defined by ϕ t (θ ) = ϕ(t + θ ) for all θ ∈ [-τ, 0].
The argument of the functions will be omitted or simplified when the context is such that no confusion can arise.

B. Interval observer: definition

For the sake of generality, we introduce a definition of interval observers for perturbed time-varying nonlinear systems with outputs containing noisy measurements of the state taken at discrete time instants. It differs from the one used in [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF].

Definition 1: Consider a continuous-time dynamical system

ẋ(t) = F (t, x(t), u(t), w(t)) , y(t) = H (x(t i ), w(t)), when t ∈ [t i ,t i+1 ), (1) 
where x ∈ R n is the state, w ∈ R ℓ is the state perturbation, y ∈ R p is the output, and u ∈ R q is the input. The measurement times t i form an increasing sequence with t 0 = 0 and are such that there are two constants ε > 0, τ ≥ ε such that t i+1 -t i ∈ [ε, τ] for all integers i ∈ N. F and H are functions of class C1 with respect to x, u, w and F is piecewisecontinuous with respect to t. The state perturbation w is piecewise-continuous and such that there exist known bounds

w(t) = (w -(t), w + (t)) ∈ R 2ℓ , continuous and such that, for all t ≥ 0, w -(t) ≤ w(t) ≤ w + (t). (2) 
Then, the continuous-time dynamical system

ż(t) = A (t, z(t), y(t), u(t), w t ) , (3) 
where z ∈ R r , where the function A is locally Lipschitz with respect to z, y, u and w t 1 on any bounded set of

R × R r × R p × R q × C 0 ([-τ, 0]
) and piecewise-continuous with respect to t, associated with the initial condition z 0 = B(s 0 , x + 0 , x - 0 ) ∈ R r and bounds for the solution x:

x + = C + (t, z), x -= C -(t, z), with C + , C -, B Lipschitz contin- uous of appropriate dimension, is called an interval observer for (1) if (i) for any vectors x 0 , x - 0 and x + 0 in R n satisfying x - 0 ≤ x 0 ≤ x +
0 and any u(•), w(•), w(•) bounded on any interval [0,t), t ≥ 0 such that (2) is satisfied, the solutions of ( 1), (3) with x 0 , z 0 = B(s 0 , x 0 + , x 0 -) as initial conditions at t = s 0 , denoted respectively x(t) and z(t), are defined for all t ≥ s 0 and satisfy, for all t ≥ s 0 , the inequalities x -(t) ≤ x(t) ≤ x + (t).

(ii) for any vectors x - 0 and x + 0 in R n satisfying x - 0 ≤ x + 0 , the solution z(t) of the system (3), with w(•) identically equal to zero and with z 0 = B(s 0 , x 0 + , x 0 -) as initial condition at t = s 0 , is such that lim

t→+∞ ||x + (t) -x -(t)|| = 0.

C. Counter example

In this section, we show, through a simple example, that classical continuous-time interval observers are not robust relative to sampling of their outputs, no matter how small the largest sampling interval is. This motivates the construction of interval observers for systems with sampled outputs to be presented in the subsequent sections.

Observe first that, for the one-dimensional system

ẋ(t) = x(t) (4)
with the output y(t) = x(t), the system

ż+ (t) = -z + (t) + 2y(t), ż-(t) = -z -(t) + 2y(t), (5) 
associated with the bounds x + = z + , x -= z -and the initial conditions z + 0 = x + 0 , z - 0 = x - 0 , is an interval observer [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF]. Now, if, for all t ∈ [t i ,t i+1 ), we replace y(t) in (5) by y(t i ), where t i = iτ for all i ∈ N with τ any positive real number, we obtain, for all t ∈ [t i ,t i+1 ),

ż+ (t) = -z + (t) + 2y(t i ), ż-(t) = -z -(t) + 2y(t i ). (6) 
This system with the bounds x + = z + , x -= z -and the initial conditions z + 0 = x + 0 , z - 0 = x - 0 is not an interval observer for (4). Let us prove this. Let z + = z +x. We have, for all t ∈ [t i ,t i+1 ),

ż+ (t) = -z + (t) + 2x(t i ) (1 -e t-t i ) . (7) 
By considering the initial condition x(s 0 ) = 1, z + (s 0 ) = 1, s 0 = 0 and integrating [START_REF] Chisci | Recursive state bounding by parallelotopes[END_REF] over the interval [t 0 ,t 1 ) = [0, τ), we obtain that z + (t) = 2e -te t , for all t ∈ [0, τ). It follows that z + (t) < 0 for all t ∈ (0, τ). This allows us to conclude.

III. OBSERVERS FOR SYSTEMS WITH DISCRETE-TIME

MEASUREMENTS

We now focus on the system

ẋ(t) = Ax(t) + Bu(t) + δ 1 (t), y(t) = Cx(t i ) + δ 2 (t), when t ∈ [t i ,t i+1 ), (8) 
where the matrices A ∈ R n×n , B ∈ R n×q , and C ∈ R p×n are constant, δ 1 and δ 2 are piecewise-continuous functions (which typically represent state perturbations and measurement noise) and t i is an increasing sequence with t 0 = 0 and such that there exist two constants τ ≥ ε > 0 for which

0 < ε ≤ t i+1 -t i ≤ τ, for all i ∈ N. (9) 
In this section, we present an observer for continuous-time linear systems described by [START_REF] Deza | High gain estimation for nonlinear systems[END_REF]. This result will later be used to construct interval observers for the system [START_REF] Deza | High gain estimation for nonlinear systems[END_REF]. However, it is of interest for its own sake. To the best of our knowledge, it is new, in spite of its simplicity. Note that typically the disturbance δ 2 (t) is constant over each interval [t i ,t i+1 ) since y(t) mostly represents discrete-time measurements. This fundamental case is covered by Theorems 1-2 below since δ 2 is assumed piecewise-continuous. Two assumptions are needed. Assumption 1: There exists a constant matrix K ∈ R n×p such that the matrix

H = A + KC ( 10 
)
is Hurwitz. Moreover, L = KC = 0. Assumption 1 ensures that there is a symmetric and positive definite matrix S ∈ R n×n such that the matrix inequality

H ⊤ S + SH -I (11) 
is satisfied. Assumption 2: There exists a real number a * ∈ [||A||, +∞), a * > 0 such that the constant τ introduced in (9) satisfies

τ ∈ 0, 1 a * ln 1 + a * 2||L|| , (12) 
and

τ ∈ 0, 1 a * ln 1 2 + 1 2 1 + a * 2||SL|| (2||L|| + a * ) , ( 13 
)
where L is the matrix in Assumption 1 and S is a matrix satisfying [START_REF] Goffaux | Continuous-discrete interval observers for monitoring microalgae cultures[END_REF].

We are ready to prove the following result: Theorem 1: Assume that the system (8) satisfies Assumptions 1 and 2. Then the system defined by

ẋ(t) = A x(t) + Bu(t) + K[C x(t i ) -y(t)] ( 14 
)
when t ∈ [t i ,t i+1
) is an observer for the system [START_REF] Deza | High gain estimation for nonlinear systems[END_REF]. Moreover, the error variable x = xx, satisfies for all t ∈ [t i ,t i+1 ) the following error equation, which is input-to-state stable (see [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF]) with respect to (δ 1 , δ 2 ),

ẋ(t) = H x(t) + L M (t,t i ) -1 -I x(t) + δ 4 (t,t i ), (15) 
where

M (t, s) = e A(t-s) + t s e A(t-ℓ) dℓ L (16)
and

δ 4 (t, s) = δ 3 (t) -LM (t, s) -1 t s e A(t-ℓ) δ 3 (ℓ)dℓ, (17) 
with

δ 3 (t) = δ 1 (t) + Kδ 2 (t). (18) 
Discussion of Theorem 1.

• Assumption 1 is a detectability condition, which ensures that an observer for the system ẋ(t) = Ax(t) with the output Cx(t) can be constructed.

• When A = 0, the constant a * can be chosen equal to ||A||. Moreover, since L = 0 and S is invertible, it follows that SL = 0. Therefore the constants in Assumption 2 are welldefined and positive.

• In Assumption 1, we have assumed that L = 0. This simplifies the statements and proofs of our results, but is by no means necessary.

• The term Bu in (8) plays no direct role in the context of the construction of an observer of the type (14) for the system (8). However, its presence shows that our results apply in the context of systems whose inputs are used to give them desirable properties.

Proof. Since δ 1 and δ 2 are piecewise-continuous functions of t, the system (8)-( 14) is forward-complete (see [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF] for the definition of forward-complete systems). Next, we write the error equation. We obtain, for all t ∈ [t i ,t i+1 ),

ẋ(t) = Ax(t) -A x(t) -K[C x(t i ) -y(t)] + δ 1 (t). ( 19 
)
Since L = KC, (19) can be rewritten, for all t ∈ [t i ,t i+1 ), as

ẋ(t) = A x(t) + L x(t i ) + δ 3 (t), (20) 
where δ 3 is the function defined in [START_REF] Kurzhanski | Ellipsoidal Calculus for Estimation and Control[END_REF]. By multiplying both sides of ( 20) by e -At and integrating, one can prove that, for all t ∈ [t i ,t i+1 ),

M (t,t i ) x(t i ) = x(t) - t t i e A(t-ℓ) δ 3 (ℓ)dℓ, ( 21 
)
where M is the function defined in [START_REF] Kieffer | Guaranteed nonlinear state estimation for continuous-time dynamical models from discrete-time measurements[END_REF]. Observe that the requirement (12) in Assumption 2 and Lemma 2 in Appendix ensure that M (t,t i ) is invertible for all t ∈ [t i ,t i+1 ). Thus, for all t ∈ [t i ,t i+1 ),

ẋ(t) = A + LM (t,t i ) -1 x(t) + δ 4 (t,t i ). (22) 
It follows that ( 15) is satisfied for all t ∈ [t i ,t i+1 ).

Next, we analyze the stability of the system (15) through a Lyapunov approach. To conduct this analysis, we introduce the positive-definite quadratic function

S (ξ ) = ξ ⊤ Sξ , ( 23 
)
where S is a symmetric positive-definite matrix such that (11) is satisfied. Its derivative along the trajectories of ( 15) satisfies, for all t ∈ [t i ,t i+1 ),

Ṡ (t) = 2 x(t) ⊤ S H + L(M (t,t i ) -1 -I) x(t) +2 x(t) ⊤ Sδ 4 (t,t i ). (24) 
By [START_REF] Goffaux | Continuous-discrete interval observers for monitoring microalgae cultures[END_REF] and the triangle inequality, it follows that, for all t ∈ [t i ,t i+1 ),

Ṡ (t) ≤ -3 4 || x(t)|| 2 +2||SL|| M (t,t i ) -1 -I || x(t)|| 2 +4||S|| 2 ||δ 4 (t,t i )|| 2 . ( 25 
)
On the other hand, the requirement [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF] in Assumption 2 and Lemma 2 imply that, for all t ∈ [t i ,t i+1 ),

M (t,t i ) -1 -I ≤ 2||L|| a * + 1 (e a * τ -1) e a * τ (26) 
and therefore

Ṡ (t) ≤ -3 4 || x(t)|| 2 + 2||SL|| 2 a * + 1 (e a * τ -1) e a * τ || x(t)|| 2 + 4||S|| 2 ||δ 4 (t,t i )|| 2 . ( 27 
)
From the requirement (13) in Assumption 2, we deduce that, for all t ∈ [t i ,t i+1 ),

Ṡ (t) ≤ -1 2 || x(t)|| 2 + 4||S|| 2 ||δ 4 (t,t i )|| 2 . ( 28 
)
Finally, through lengthy but simple calculation, one can prove that the ISS inequality

|| x(t)|| ≤ c 3 e s-t 4||S|| || x(s)|| + c 2 sup ℓ∈[s,t] (||δ 1 (ℓ)|| + ||δ 2 (ℓ)||), ( 29 
) with c 2 = 2||S||c 2 λ S , c 3 = ||S|| λ S
, is satisfied.

IV. INTERVAL OBSERVER FOR SYSTEMS WITH DISCRETE-TIME MEASUREMENTS

In this section, our goal it to construct interval observers for the system (8) under Assumptions 1 and 2.

A. Preliminary step

Before constructing interval observers, we need to introduce a new assumption that pertains to the disturbances in [START_REF] Deza | High gain estimation for nonlinear systems[END_REF] and establish technical results.

Assumption 3: A continuous function δ d : [0, +∞) → [0, +∞) is known, such that for all t ≥ 0 and l = 1, 2,

||δ l (t)|| ≤ δ d (t).
(30) We assume that the system (8) satisfies Assumptions 1 to 3. Then Theorem 1 applies and leads to the error equation [START_REF] Karafyllis | Robust global stabilisability by means of sampled-data control with positive sampling rate[END_REF]. To facilitate the design of interval observers, we need to transform this error equation into an equation that is cooperative in the absence of δ 4 and of the term L M (t,t i ) -1 -I x(t). This can be done by applying the technique of [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF]. Since H is a constant and Hurwitz matrix, [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF] shows how to build a C ∞ function P : R → R n×n that is invertible for all t ∈ R, bounded in norm with a first derivative bounded in norm and such that, for all t ∈ R,

Ṗ(t) = -P(t)H + GP(t), ( 31 
)
where G is a constant cooperative and Hurwitz matrix and T : R → R n×n , T (t) = P(t) -1 for all t ∈ R is a C ∞ function bounded in norm. It follows that there exist a symmetric and positive-definite matrix Q such that the matrix inequality

QG + G ⊤ Q -I (32) 
is satisfied and a positive real number

p * = sup t∈R {||P(t)||, || Ṗ(t)||, ||P(t) -1 ||}. (33) 
Now, we introduce the time-varying change of coordinates

m(t) = P(t) x(t). (34) 
Using [START_REF] Karafyllis | Robust global stabilisability by means of sampled-data control with positive sampling rate[END_REF], elementary calculations give

ṁ(t) = Ṗ(t) x(t) +P(t) H x(t) + L(M (t,t i ) -1 -I) x(t) + δ 4 (t,t i ) . (35) 
From [START_REF] Rami | Tight robust interval observers: An LP approach[END_REF], it follows that

ṁ(t) = GP(t) x(t) + P(t)L(M (t,t i ) -1 -I) x(t) +P(t)δ 4 (t,t i ) = Gm(t) + P(t)L(M (t,t i ) -1 -I)P(t) -1 m(t) +P(t)δ 4 (t,t i ). (36) 
This leads us to the system

ṁ(t) = [G + R(t,t i )]m(t) + δ 5 (t,t i ), (37) 
with

R(t,t i ) = P(t)L M (t,t i ) -1 -I P(t) -1 , δ 5 (t,t i ) = P(t)δ 4 (t,t i ). (38) 
It is worth noticing that the system ṁ(t) = Gm(t) is cooperative but not necessarily the system ṁ(t) = [G + R(t,t i )]m(t).

One can check easily that the definition of δ 4 in ( 17) and (57) in Lemma 2 imply that, for all t ∈ [t i ,t i+1 ),

||δ 4 (t,t i )|| ≤ ||δ 3 (t)|| + 2||L||e 2a * τ t t i ||δ 3 (ℓ)||dℓ. (39) 
This inequality, Assumption 2, the definition of p * in [START_REF] Schweppe | Uncertain Dynamic Systems[END_REF] and

δ 3 = δ 1 + Kδ 2 imply that ||P(t)δ 4 (t,t i )|| ≤ p * ||δ 1 (t) + Kδ 2 (t)|| + 2p * ||L||e 2a * τ t t i ||δ 1 (ℓ) + Kδ 2 (ℓ)||dℓ (40) 
for all t ∈ [t i ,t i+1 ). From Assumption 3 we deduce that, for all integer i ∈ N and for all t ∈ [t i ,t i+1 ), the inequalities 

-δ * (t) ≤ δ 5 (t,t i ) ≤ δ * (t) (41) 
with δ * (t) = p * (1 + ||K||)ψ(t)(1...1) ⊤ , (42) 

B. Interval observer

Denote the entries of the matrix function R(t,t i ) defined in (38) by r k,l (t,t i ) and the entries of the matrix G by g k,l and recall that T -1 (t) = P(t). Let

R + (t,t i ) = (r + k,l (t,t i )), R -(t,t i ) = R + (t,t i ) -R(t,t i ), P + (t) = max{P(t), 0}, P -(t) = P + (t) -P(t), T + (t) = max{P(t) -1 , 0} T -(t) = T + (t) -P(t) -1 , (43) 
with

r + k,l (t,t i ) = r k,l (t,t i ) if k = l or g k,l + r k,l (t,t i ) ≥ 0 and r + k,l (t,t i ) = 0 if k = l and g k,l + r k,l (t,t i ) ≤ 0.
Observe for later use that G+R + is a cooperative function and all functions R -, P + , P -, T + and T -are nonnegative.

We are ready to prove the following result. Theorem 2: Consider the system (8) under Assumptions 1 to 3. Let G and p * be the matrix and the constant defined in Section IV-A. Then the system described by 

           ẋ(t) = A x(t) + Bu(t) + K[C x(t i ) -y(t)], ṁ+ (t) = [G + R + (t,t i )]m + (t) -R -(t,t i )m -(t) + δ * (t), ṁ-(t) = [G + R + (t,t i )]m -(t) -R -(t,t i )m + (t) -δ * (t), (44) 
+ (t) = x(t) + T + (t)m + (t) -T -(t)m -(t), x -(t) = x(t) + T + (t)m -(t) -T -(t)m + (t), (46) 
is an interval observer for the system (8) when either for all integer i ∈ N and all t ∈ [t i ,t i+1 ), the matrix 

G + R + (t,t i ) is cooperative or τ ∈ (0, τ B ] , (47) 
with τ B = 1 a * ln 1 2 + 1 2 √ 1 + b * , (48) 
(t) = R + (t,t i ), ρ -(t) = R -(t,t i ) for all t ∈ [t i ,t i+1
) and all positive integers i are discontinuous, the (m + , m -)-subsystem (44) is discontinuous with respect to t. However ρ + and ρ -are piecewise-continuous. Hence, existence and uniqueness of the solutions are guaranteed. The solutions of the systems ( 8) and (44) are thus defined over [0, +∞) when u(•), δ * (•) and δ 1 (•) are bounded on any interval [0,t), t > 0. Now, for the sake of simplicity, we consider the initial time s 0 = 0. The case where s 0 > 0 can be handled similarly.

Let x 0 ∈ R n be an initial condition of (8) at the instant t

= 0. Let x + 0 ∈ R n , x - 0 ∈ R n be such that x - 0 ≤ x 0 ≤ x + 0 . Let ( x0 , m + 0 , m - 0 ) ∈ R 3n
, be an initial condition of (44) at the instant t = 0 satisfying

m + 0 = P + (0)(x + 0 -x0 ) -P -(0)(x - 0 -x0 ), m - 0 = P + (0)(x - 0 -x0 ) -P -(0)(x + 0 -x0 ). (49) 
Next, we consider the solutions of ( 8) and (44) with respectively x 0 and ( x0 , m + 0 , m - 0 ) as initial condition at t = 0. We denote these solutions (x(t), x(t), m + (t), m -(t)). Since the functions P + and P -are nonnegative, the inequalities

P + (0)x - 0 ≤ P + (0)x 0 ≤ P + (0)x + 0 , P -(0)x - 0 ≤ P -(0)x 0 ≤ P -(0)x + 0 , (50) 
are satisfied. It follows that

P + (0)x - 0 -P -(0)x + 0 ≤ P(0)x 0 , P(0)x 0 ≤ P + (0)x + 0 -P -(0)x - 0 . (51) 
From the equality P + (0) -P -(0) = P(0), (49) and ( 51), we deduce that m - 0 ≤ P(0)x 0 -P(0) x0 ≤ m + 0 , or, equivalently,

m - 0 ≤ P(0) x0 ≤ m + 0 , (52) 
with x0 = x 0 -x0 . On the other hand, we know that m(t) = P(t) x(t), with x(t) = x(t)x(t) and m 0 = P(0) x0 as initial condition, is solution of (37). Our next objective is to prove that, for all t ≥ 0, m -(t) ≤ m(t) ≤ m + (t), where m + (t) and m -(t) are the components of the solution defined above. To prove this, we introduce the notation V. CONCLUSION Under a detectability assumption, we have constructed a family of interval observers for all linear time-invariant systems with bounded additive disturbances and discrete-time measurements affected by bounded additive noise. Much remains to be done. A comparison to an approach where the discrete-time measurements are taken into account by setinversion via interval analysis [START_REF] Kieffer | Guaranteed nonlinear state estimation for continuous-time dynamical models from discrete-time measurements[END_REF], [START_REF] Kieffer | Guaranteed estimation of the parameters of nonlinear continuous-time models: contributions of interval analysis[END_REF] will be the subject of a future study. Extensions to nonlinear, time-varying systems or to systems with delay may be also the subject of future work.

m + (t) = m + (t) -m(t), m -(t) = m(t) -m -(t). (53) 

  when t ∈ [t i ,t i+1 ), with δ * defined in (42), and associated at t = s 0 ≥ 0 with the initial conditions s 0 ) x+ 0 -P -(s 0 ) x-0 P + (s 0 ) x-0 -P -(s 0 ) + 0 -x0 , x-0 = x - 0 -x0 and the bounds x

  2||L||+a * ) . Proof. Since the functions ρ + : R → R n×n and ρ -: R → R n×n defined by ρ +

  R + (t,t i )]m + (t) +R -(t,t i )m -(t) + δ * (t) -δ 5 (t,t i ), ṁ-(t) = [G + R + (t,t i )]m -(t) +R -(t,t i )m + (t) + δ 5 (t,t i ) + δ * (t). From (52), we deduce that m + (0) ≥ 0 and m -(0) ≥ 0. Since G + R + (t,t i ) is cooperative for all i ∈ N and t ∈ [t i ,t i+1 ) and the functions R -(t,t i ), δ * (t) -δ 5 (t,t i ), δ 5 (t,t i ) + δ * (t) are nonnegative (see (43) and (41)), it follows that m + (t) ≥ 0 and m -(t) ≥ 0 for all t ∈ [t 0 ,t 1 ). Since the solution (m + (t), m -(t)) is continuous, it follows that m + (t 1 ) ≥ 0 and m -(t 1 ) ≥ 0. Next, we prove by induction that, for any integer i ∈ N, and any t ∈ [t i ,t i+1 ], m + (t) ≥ 0 and m -(t) ≥ 0. Consequently, the inequalities m -(t) ≤ m(t) ≤ m + (t) are satisfied for all t ≥ 0. From this inequality, we can deduce, through calculations omitted for the sake of conciseness, that for all t ≥ 0, x -(t) ≤ x(t) ≤ x + (t), with (x + (t), x -(t)) defined in (46). Consequently, (44) with the initial conditions (45) and the bounds (46), is a framer for (8). Thus, to prove that (44) is an interval observer for the system (8), it remains to demonstrate that lim

	Bearing (37) and (44) in mind, using (43) and grouping the
	terms, we obtain, for all t ∈ [t i ,t i+1 ),     ṁ+ (t) = [G + (54)
	
	 

t→+∞ ||x + (t)x -(t)|| = 0 when δ * is not present. Since the functions ||T + || and ||T -|| are bounded, the equality lim t→+∞ ||x + (t)x -(t)|| = 0 is satisfied if lim t→+∞ ||m + (t)m -(t))|| = 0. Due to space limitation, the proof of this is omitted.

Note that w t in (3) should not be confused with w(t) (see Section II-A for the meaning of the notation w t ).

APPENDIX

Lemma 1: Let M ∈ R l×l be a matrix whose entries are denoted by m i j . Let N ∈ R l×l be any matrix, whose entries n i j are such that either n i j = m i j or n i j = 0. Then ||N|| ≤ √ n||M||. Proof. The proof is omitted because of page limitation.

Lemma 2: Let A ∈ R n×n and L ∈ R n×n be constant matrices. Let M be the function defined in [START_REF] Kieffer | Guaranteed nonlinear state estimation for continuous-time dynamical models from discrete-time measurements[END_REF]. Let τ be a real number such that

where a * is a real number such that a * > 0, a * ≥ ||A||. Then for all s ∈ R and t ∈ [s, s + τ], the matrix M (t, s) is invertible and, for all s ∈ R and t ∈ [s, s + τ]

and ||M (t, s) -1 || ≤ 2e a * τ .

(57) Proof. The proof is omitted because of page limitation.