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ABSTRACT

order ambiguity function (HAF) is proposed. It reds the
computational cost but it has lower performances.

This paper describes a processing method to estimathe proposed approach consists in estimating abketh

parameters of chirp signals for Laser Doppler Anereioy
(LDA). The Doppler frequency as well as additionakful
parameters are considered here. These parameteithear
burst width and the frequency rate. Different eatons
based on the spectrogram are proposed. Cramer-draml®
are given and performance of the estimators condgarthe
state of the art
synthesized LDA signals. The characteristics ofs¢he
signals are provided by a flight test campaign. praposed
estimation procedure takes into account the remgrds for
a real-time application.

1. INTRODUCTION

Laser Doppler Anemometry is increasingly used ipesb
estimation systems. When crossing the laser beach e
particle, naturally present in the atmosphere, gere a
burst signal which is a chirp with a Gaussian shipe-
varying amplitude. The frequency varies with tinmel ahe
central frequency corresponds to the Doppler fraquelt
provides information on the particle speed. Thesbwidth
is the crossing time of the particle in the lasear and the
frequency rate represents the frequency speedanigeh
The problem of parameter estimation of LDA signhés
received a great deal of attention [1], [2], [3].hes been
shown that estimators of the Doppler frequency hethe

Cramer-Rao Bounds (CRB) for a Signal to Noise Ratio

(SNR) over 4 dB. Estimators of the burst width gsi
Kalman filter [1] or a wavelets transform [2] habeen
studied, but they do not reach the CRB. Estimatdrthe
frequency rate using nonlinear
approaches have been proposed [4], [5]. It has pemren
that they are close to the Cramer-Rao bounds fdr &bbve
5 dB. Nevertheless, these methods are time conguarid
cannot be used in a real-time application. In [4h
additional method using the NLS approach with tlighh

parameters with one method, whose characteristies a
accuracy and ease of on-line implementation. The
spectrogram (square module of the Short-Time Fourie
Transform) has these characteristics, due to thedspf the
Fast Fourier Transform (FFT) and its robustnessoise for
spectral line analysis. Moreover, it was succebsfided in

using Monte-Carlo simulations fora previous flight test campaign for an LDA applioat[6].

This paper is organized as follows: in sectionh#, signal
model is presented. The time-frequency representas
presented in section 3. The proposed methods ifiashn
are described in section 4, the CRB are calculisteection
5 and the results of numerical simulations are gves] in
section 6 to illustrate the performance of our neatbrs
compared to those proposed in [2] and [4].

2. SIGNAL MODEL

The backscattered signal is a linear chirp, whogeession
isis(t) =x(t) +w(t),0<t<T

2
x(t) = Agexp (— B(tDEO) ) cos (Zn (th + é (t— to)z)) (1)
A, is the signal intensity antg is the time instant when the
particle crosses the laser beam axis. The Dopmeguéncy
fp carries the speed information. The burst widih
corresponds to the crossing time of the particléhin laser
beam.5 is the frequency rate.
w is a Gaussian white noise, its power spectralitjeisss2.

3. TIME-FREQUENCY REPRESENTATION

The time-frequency representations are commonly dise
non-stationary signals analysis in real-time agpions. The

least-squares  (NLSgpectrogram is computationally efficient and rokteshoise

for spectral line analysis. Its main drawback, tfee present
problem, is a poor time-frequency concentrationolheads
to a bad localization of chirps. The proposed estims are
designed to compensate for this, by using centemags
computations and least squares approaches.
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Figure 1: Spectrogram of an LDA signal:fp is the dotted
line, ty the dashed line ang? the slope of the solid line.
The spectrogram of the analytic signal associatedk t

t2

. . 1 .
(Eq. 1) with the windowh(t) = = exp (-4 AZ) is [7]:

A(t—to)?+B(f —fo)*—C(t—to) (f —fo)
S(t, f) = Spexp (— 0 " 0% )
with:

)

A
 poam (4 1)

2
- Y = (16+l) +4_n.2ﬁ2
Figure 1 illustrates the spectrogram of a LDA slgmad the
parameters of interest.

4. ESTIMATION PROCEDURE

The proposed estimators are based on the spectrogiee

first step consists in detecting the signal andigitog points
representing it in the spectrogram. Then, the pané used
to estimate the three parameters of interest. Thppl2r

frequency is the frequency center of mass. Thet lwidth

is proportional to the standard deviation in time tioe

spectrogram amplitude, which is a Gaussian procEss.
burst width estimator is biased and a method ipgsed to
compensate for it. The frequency rate is estimagdg a
weighted least squares approach, assuming thate& dot
vary with time.

4.1.Detection

In the spectrogram, a signal is composed of allneated
points whose amplitude is greater than a givenstioll.
This threshold has been chosen to allow a low falaem
rate and a high probability of detecting a signalfalse
alarm occurs when a point due to noise is gredizn the
threshold. It has been determined experimentaby &hdB
over the noise power spectral density is the optivatue
for the threshold.

4.2.Estimation of the Doppler frequency

The Doppler frequency is the barycenter of all poénts
representing the signal in the spectrogram.

;= J [ £S@t, Hdtdf
PTfS@, faedf

4.3.Estimation of the burst width

The durationD corresponds to the crossing time of the
particle in the laser beam. At the extremities lué taser
beam, the energy density i 8mes lower than on the axis.
Therefore, the particle goes out of the laser badren the
amplitude isA(t) = Agexp(—2).
The spectrogram of the signal has a Gaussian divape
varying amplitude (Eq .2), and its variance is gibs:

2 = @~ t0)*S(t fdedf

I s, Hdtdf

Let us introduce from the spectrogram (Eq.p#) which
can be seen, for short windows, as an approximatiche
instantaneous power multiplied by the energy of the

: . (t=to)? .
window: p(t) = [ S(¢t, f)df = peexp (— 7) with
o =D2/32 4+ A2/2

Po

p(t)
~
-

Py

Figure 2 : p(t)

o is estimated using the points of the time freqyenc
representation whose amplitude is higher thanhfreshold.
These points are betweefn— b andty + b (Fig. 2). The

estimation ofg, &, does not take into account all the points
totb,, 2 _b_2
Jigop (& = 8)*p (D)t _\Fbaexp( 262)
to+b T b
fto_b p(t)dt erf(ﬁg)
-1

representing the signal, and is lower than Using the
~2 to—b
b Po _ p(to=b)+p(to+b)
with o= ’ZIn (pb) andp, = BT
2 exp(—b—z)
=% (1= |22 ) _ £(2
Cf B (1 \/;U erf(%) ) f (G)

spectrogram, the estimated variance is:
o~ = =0
A correction factor is proposed to compensateterttias:

®3)



The estimation ob is:

D =4 |262¢, — 22

4.4.Estimation of the frequency rate

For LDA signals, the instantaneous frequencyjis:(t) =

fo +B(t—ty). It can be approximated b{}% for
short windows (1 « D/4). Simulations show that
estimating the instantaneous frequency as a ceffiterass
instead of the spectrogram maxima reduces theteffetbe
discretization and is more robust to the noise ghort
windows. The frequency rate is estimated using ihted
least squares approach according to:

S22 Finst (8 = f2) (£ = t)p(0)dt

p= oF
S22 = to)?p(e)dt

5. CRAMER-RAO BOUNDS

The vector of unknown parameters is therefdre=
[fo D B]T. It is estimated from the noisy LDA signal
s(t) =x()+w(t),0<t<T.xis a chirp signal (Eq. 1)
and w is supposed to be a Gaussian white noise with
power spectral density2. The joint probability of having
for a givend is:

exp (— %f;(s(t) - x(t))zdt)

p(sl6) = Vama.

The Fisher information matri is composed of elements:
1 [ dx(t) ax(t)

~oz) "6, 06,

The CRB are the diagoonal elements of the inverséhef

Fisher information matrix. The expressions of tHeBCfor
the parameters of interest are:

F

CRB(D) = 16Da?
=
802
CRB() =———
31242 (D /4)5
1 2 2
CRB(fp) = ("Z(D“)g +4°0) 0k
) =
NI

6. PERFORMANCES

Monte-Carlo simulations of an LDA signal are catrieut

estimating the three parameters with the same rdetras
never considered, to the best of the authors’ kadgs.

As in [6], the spectrogram used in the proposeinesors
has been computed witirpoints (N = 512) windowed FFT.
The overlap of the windows is 96.88 % instead oR4@5n
[6]. The parameters estimation requir@$N;Nlog,(N))
operations wheré\s is the number of spectrum containing
the signal F, « N) for spectrogram computation and
0(N,) operations wheréls is the number of points of the
signal on the spectrogram (typically ~ N).

6.1.Burst width and Doppler frequency estimation
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Figure 3 : Mean error (a) and variance (b) of the birst
width using the spectrogram and the wavelet estimats

a0

The wavelet estimator is evaluated on an LDA sigith a
Gaussian shape time varying amplitude and a canstan
Doppler frequency. In [2], the wavelet estimataaatees the
CRB for the Doppler frequency estimation for an SNR

and the performances of the proposed burst widtth arhigher than 4 dB. For the burst width, the estimato
Doppler frequency estimators are compared with thBiased. In the present method, the burst width tred

wavelet estimator [2]. The proposed frequency

performance estimator is compared with the NLSvestors
[4]. Then, estimations of the three parameterstypical
LDA signals are computed and the proposed speemnogr

rat@oppler frequency estimations are computed withstume

signals as those described in [2] for the LDA caleese
parameters aré, = 0.986 MHz andD/4 = 2.6 us. The
estimators’ performances are compared in figurasd4.

estimators are compared with the CRB. The problém d-igure 3 shows the burst width estimation perforceaThe



proposed method seems to outperform
estimator. It reduces the bias as well as the neeaThe

the wavel@roposed estimators are computed with the samealsign

The results are presented Fig. 5 and the NLS ettima

proposed correction factor (Eq. 3) decreases thas, bi shows the best performance (it reaches the CRBf@NR

especially for low SNR. The proposed estimator wifik

greater than 5 dB). The HAF estimator has lower

correction factor is bias free for an SNR over 7. dBperformance (its variance is about 3.6 times highan the

Moreover, its variance is close to the CRB for adRS
higher than 11 dB.

The results of the Doppler frequency estimatiorg.(F)
show that our estimator is bias free for an SNRr é&veB.
The variance is close to the CRB for an SNR ovéB9
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Figure 4 : Mean error (a) and variance (b) of the
Doppler frequency using the spectrogram and the
wavelet estimators

6.2. Estimation of the frequency rate

In [4], two frequency rate estimators are proposecthirp
signals with time-varying amplitude. The NLS estiora
relies on nonlinear least-squares estimation of ¢higp
parameters and, according to the author; it isanetable
method for real-time applications. In order to regluithe
computational cost of this estimator, the authascdbes a
second method in the same article, which combinedigh

CRB) but its cost is lower. The proposed estimétas an
error lower than 1 % for an SNR over 7 dB. The aace is
five times greater than the CRB for an SNR overdB3 It
has a lower accuracy and computational cost tharNthS
estimator. The performance and the cost of the queg
estimator are close to the HAF estimator. Moreovbhe,
performance of the spectrogram estimator dependthen
frequency rate value. For LDA signals, the varianE®ur
estimator is three times lower than the CRB (F@.dhd, in
this case, it outperforms the HAF estimator.
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Figure 5 : Mean error (a) and variance (b) of the
frequency rate using the spectrogram and NLS
estimators

6.3. Estimation of typical LDA signal’'s parameters
The proposed estimators are evaluated with symeubti

LDA signals using typical parameters encounteredngu
the flight test campaign made by Thales [6]. Theapeeters

order ambiguity function (HAF) and the NLS approacharef, = 40 MHz, D = 2 ps andf = 0.5 MHz/us The

Performances of these estimators are presented] iwith
the following parameterss = 3.10* and f, = 0.18. The

sampling frequency is 200 MHz and the SNR is define
in [2], SNR = 4% /62 . The performances of spectrogram



estimators are compared to the CRB.

The burst width estimator is not biased for an St\er 7
dB and the variance (Fig. 6a) is close to the CRBan
SNR over 11 dB.

The estimator of the Doppler frequency has no fbasan
SNR higher than 2 dB. It has a variance very clos€ERB
over 11 dB (Fig. 6b).

The frequency rate estimator is bias free for alRSNer 7
dB. For an SNR greater than 12 dB, the varianaghti
decreases, from 3 to 1.5 times the CRB (Fig. 6¢).
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Figure 6 : Variance of the estimation of the burstidth
(a), the Doppler frequency (b) and the frequency ri (c)

The burst width and the Doppler frequency estinsatave
similar performance for signals described in [2]d d@or
typical LDA signals. The performance of the freqoenate
estimator is improved for typical LDA signals comga
with those used in [4]: the estimator has no biad &he
variance is closer to the CRB.

7. CONCLUSION

In this paper, the problem of estimating the patanseof
LDA signals is addressed. Estimators based on a&-tim
frequency representation are proposed and Cramer-Ra
bounds are given. It is proven that they nearlychethe
CRB for the Doppler frequency and the burst widthe
frequency rate is also estimated without signifidaias (the
variance is similar to the one obtained in [4]).r&lover, the
proposed estimators can be used in a real-timeepsoc
Spectrogram  refinement methods, like spectrogram
reassignment [8], will be studied in futures works,
particularly to improve the frequency rate estimati

REFERENCES

[1] T. Gaudo and B. Rais, “Real-time estimator a$dr
Doppler Anemometer signal parameters based on Kalma
filtering”, 16" International Conference on Digital Signal
Processing, Santorini, Greece, July 2009.

[2] H. Nobach and H. R. E. van Maanen, “LDA and PDA
signal analysis using wavelets’, Experiments inidduvol.
30, No 6, pp. 613-625, 2001.

[3] A. Le Duff, G. Plantier, J.-C. Valiere and Rer#@riau,
“Acoustic velocity measurements in the air by meafis
laser Doppler velocimetry: Cramer-Rao bounds and
maximum likelihood estimation”, |EEE International
Conference on Acoustics, Speech and Signal Proggssi
Orlando, USA, May 2002.

[4] O. Besson, M. Ghogho and A. Swami, “Parameter
Estimation for Random Amplitude Chirp Signals”, [EE
Trans. On Signal Processing, vol. 47, No. 12, @083
3219, Dec. 1999.

[5] P. M. Djuric and S. M. Kay, “Parameter Estinwatiof
Chirp Signals”, IEEE Trans. On Acoustics, Speechl an
Signal Processing, vol. 38, No. 12, pp. 1068-1086c.
1990.

[6] T. Katsibas, T. Semertzidis, X. Lacondemine add
Grammalidis, “Signal processing for a laser basediaa
system in commercial aircrafts”, 16European Signal
Processing Conference, Lausanne, Switzerland 2D4g.

[7] E. Chassande-Mottin, “Méthodes de réallocatians le
plan temps-fréquence pour l'analyse et le traitenes
signaux non stationnaires”, Thése de I'UniversigéGergy-
Pontoise, Sep. 1998.

[8] F. Auger and P. Flandrin, “Improving the reatligp of
time-frequency and time-scale representations bg th
reassignment method”, IEEE Trans. on Signal Praugss
vol. 43, 99. 1068-1089, May 1995.



