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Abstract—In this work, we propose a new energy efficiency
metric which allows one to optimize the performance of a
wireless system through a novel power control mechanism.
The proposed metric possesses two important features. First,
it considers the whole power of the terminal and not just the
radiated power. Second, it can account for the limited buffer
memory of transmitters which store arriving packets as a queue
and transmit them with a success rate that is determined by the
transmit power and channel conditions. Remarkably, this metric
is shown to have attractive properties such as quasi-concavity
with respect to the transmit power and a unique maximum,
allowing to derive an optimal power control scheme. Based on
analytical and numerical results, the influence of the packet
arrival rate, the size of the queue, and the constraints in terms of
quality of service are studied. Simulations show that the proposed
cross-layer approach of power control may lead to significant
gains in terms of transmit power compared to a physical layer
approach of green communications.

I. INTRODUCTION

For a long time, the problem of energy mainly concerned
autonomous, embarked, or mobile communication terminals.
Nowadays, with the existence of large networks involving both
fixed and nomadic terminals, the energy consumed by the fixed
infrastructure has also become a central issue for communica-
tions engineers [1]. The present work precisely falls into this
framework. More specifically, our goal is to provide insights
to researchers and engineers on how to devise power control
schemes in green wireless networks. Among pioneering works
on energy-efficient power control we find the paper by Good-
man et al [4]. Therein, the authors define the energy-efficiency
of a communication as the ratio of the net data rate (called
goodput) to the radiated power; the corresponding quantity is
a measure of the average number of bits successfully received
per joule consumed at the transmitter. This metric has been
used in many works. For example, in [16] it is applied to
the problem of distributed power allocation in multi-carrier
CDMA (code division multiple access systems) systems, in
[3] it is used to model the users delay requirements in energy-
efficient systems. In [5] it is re-interpreted as a capacity per
unit cost measure in MIMO (multiple input multiple output)
systems and in [6], it is used for subcarrier assignment in
distributed OFDMA (orthogonal frequency division multiple
access) multicellular networks. Although fully relevant, the
performance metric introduced in [4] has left several issues
unexplored which has motivated the work reported here.

First, in the definition of energy-efficiency given in works
like [11],[4] or [5], the transmission cost corresponds to

the radiated power that is, the power of the radio-frequency
signals; this is very useful in situations where electromagnetic
pollution has to be cut down. However, more generally, the
consumption of the whole device matters (e.g., because of the
power amplifier consumption). Second, in [4], the packets are
lost due to bad channel conditions while, here, we propose to
take into account the losses induced by the finite size of the
queue at the transmitter (which can model limited memory or
a certain delay constraint). Third, in [4] and related references,
energy-efficiency can be maximized while having a bad quality
of service (QoS) e.g., in terms of packet loss or equivalently in
terms of goodput. In this paper, we show that these three issues
can be, in fact, dealt with quite easily. The analysis is, however,
more complicated than some analysis like the one conducted
in [3] where the delay constraint is translated into a constraint
on the minimum signal-to-noise ratio (SNR). This is due to
a double effect, resulting from integrating a queueing model
(justifying the term “cross-layer design”) and considering the
whole terminal power (instead of the radiated power). The
queuing model is used in the spirit of [18] where a queuing
model is used to reach a certain QoS in CDMA systems with
multiple classes of traffic, but without energy considerations.
Another cross-layer queuing model has been proposed in [19]
but considering Shannon capacity under power constraints and
not energy-efficiency.

At this point, it is important to note that this work focuses
on point-to-point communications, which may be surprising
since power control is the problem of interest. There are at
least two strong reasons for this choice. First, the single-user
case captures the main effects we want to emphasize and
allows us to describe the proposed approach in a clear manner.
Second, as advocated by the existing works on power control
(see e.g., [4] and related works), once the single-user case is
fixed, the multiuser case is tractable provided some conditions
are met. One of these conditions is that the performance metric
has to possess some desirable properties (quasi-concavity, that
is shown to be verified for the proposed metric, is one of
them) and reasonably complex multiuser channel models are
considered (the multiple access channel is one of them).

This paper is structured in the following format. In Section
II, we present the system model and define the proposed
performance metric. In Section III, we conduct an analytical
study of the performance metric while Section IV provides
many numerical results to sustain the proposed approach.
Finally, we conclude the paper and some possible extensions



to this work are provided.

II. SYSTEM MODEL

We consider a buffer of size K at the transmitter. The
packets arrival follows a Bernoulli process with probability
q, i.e., at each time slot t (time is slotted) a new packet
arrives in the queue with probability q (this corresponds to
classical ON/OFF sources). All packets are assumed to be
of the same size S. The throughput on the radio interface
equals to R (bit/s) and depends on several parameters such
as the modulation and coding scheme. We consider that the
transmitter is always active, meaning that it always transmits
its packet while the buffer is not empty. Each packet trans-
mitted on the channel is received without any errors with a
probability which depends on the quality of the channel and
transmission power. We denote the transmission power by p
and we have f(p) as the success probability of transmission
of the packet on the channel. The channel fading due to path
loss is not treated separately but is integrated into the average
power of noise σ2. The success probability depends in fact on
the SNR = p

σ2 . However, based on the block fading channel
assumption, we make a slight abuse of notations by using the
notation f(p) instead of f(SNR). In some places in this paper,
we even remove the variable p for the sake of clarity and
use the notation f . We denote by Qt the size of the queue
at the transmitter at time slot t. The size of the queue Qt
is a Markov process on the state space Q = {0, . . . ,K}.
We have the following transition probabilities ∀i, j ∈ Q,
Pi,j := IP (Q(t+ 1) = i|Q(t) = j) given by:

• P0,0 = 1− q + qf ,
• PK,K = (1− q)(1− f) + q,
• for any state i ∈ {0, . . . ,K − 1}, Pi,i+1 = q(1− f),
• for any state i ∈ {1, . . . ,K}, Pi,i−1 = (1− q)f ,
• for any state i ∈ {1, . . . ,K−1}, Pi,i = (1− q)(1−f) +
fq.

A new packet is lost if the queue is full when it comes
in and the transmission of the packet currently on the radio
interface failed on the same time slot. Indeed, we consider that
a packet is in service (occupying the radio interface) until it is
transmitted successfully. Thus, a packet in service blocks the
queue during 1

f(p) time slots on the average. We assume that
an arrival of a packet in the queue and a departure (successful
transmission) at the same time slot can occur.

Given the transition probabilities above, the stationary prob-
ability of each state is given by (see e.g., [13]):

∀s ∈ S, Πs =
ρs

1 + ρ+ . . .+ ρK
, (1)

with

ρ =
q(1− f)

(1− q)f
. (2)

When a packet arrives and finds the buffer full (meaning that
the packet currently on the radio interface is not transmitted
successfully), it is blocked and this event is considered as a

packet loss. The queue is full in the stationary regime with
probability ΠK :

ΠK =
ρK

1 + ρ+ . . .+ ρK
=
ρK(ρ− 1)

ρK+1 − 1
. (3)

A. Proposed performance metric

In order to evaluate the performance of this system, we
first determine the expression for the packet loss probability.
A packet is lost (blocked) only if a new packet arrives when
the queue is full and, on the same time slot, transmission of
the packet on the radio interface failed. Note that these two
events are independent because the event of “transmit or not”
for the current packet on the radio interface, does not impact
the current size of the queue, but only the one for the next
time slot. This amounts to considering that a packet coming at
time slot t, is rejected at the end of time slot t, the packet of
the radio interface having not been successfully transmitted.
We consider the stationary regime of the queue and then, the
fraction of lost packets, Φ, can be expressed as follows:

Φ(p) = [1− f(p)]ΠK(p). (4)

Thus the average data transmission rate is q[1 − Φ(p)]R.
Now, let us consider the cost of transmitting. For each packet
successfully transmitted, there have been 1

f(p) attempts on
an average [4]. For each time slot, irrespective of whether
transmissions occur, we assume that the transmitter consumes
energy. A simple model which allows one to relate the radiated
power to the total device consumed power is provided in
[14] is given by Pdevice = ap + b, where a ≥ 0, b ≥ 0
are some parameters; b precisely represents the consumed
power when the transmit power is zero. The average power
consumption is in our case b + pq(1−Φ)

f(p) (we assume without
loss of generality that a = 1). We are now able to define the
energy-efficiency metric η(p) as the ratio between the average
net data transmission rate and the average power consumption,
which gives:

η(p) =
q[1− Φ(p)]R

b+ pq[1−Φ(p)]
f(p)

. (5)

The above expression shows that the cross-layer design ap-
proach of power control is fully relevant when the transmitter
has a cost which is independent on the radiated power;
otherwise (when b = 0), one falls into the original framework
of [4].

B. Constraints on QoS and maximum power

As already mentioned in Section I, of the recurrent problems
with most works using the performance metric introduced in
[4] is that energy-efficiency can be maximized at a power level
which does not guarantee a minimum QoS. This is why we
also consider a constraint when maximizing (5): we assume
ΠK [1−f(p)] has to be less than ε where ε is the upper bound
on the packet loss. For example, in cellular systems, typical
values for ε are 0.1 or 0.01, based on the system requirements.
Adding this constraint restricts the range of power usable by
the transmitter by adding a lower bound on the power. This



lower bound depends on the entry probability q and on the
size of the queue K. An upper bound on the usable transmit
power Pmax can also be added to model realistic situations
when there is a limitation on the maximum power that can be
utilized.

III. ANALYTICAL RESULTS

Having defined the energy efficiency function, we will now
examine its properties.

A. The impact of the packet entry probability

First let us study the special case when q = 1: Here
we have, limq→1 ΠK = 1, then Φ = 1 − f(p) and we
have a simplified expression of the energy efficiency function
η = Rf(p)

b+p . This energy efficiency is a more general form of
the metric introduced in [4]. This particular case is in fact
identical to the situation when the system is modeled with a
purely physical layer approach. As the queue is always full,
transmission always takes place and so the energy efficiency of
the entire system is just the energy efficiency of transmission.

The next part of this section examines η as q decreases.
Logically, as q decreases, the average duration when the
buffer is empty increases causing a wasted consumption of
the fixed power during which no data is transmitted. Here, we
have a proposition that formulates and proves this reasoning
mathematically.

Proposition 1: The energy efficiency function is an increas-
ing function of q, i.e., dη

dq > 0.

Proof : η = 1
b

(1−Φ)q
+ p

f(p)

. If dΦ
dq <

1−Φ
q , then d (1−Φ)q

dq > 0

and from this, it follows that dη
dq > 0.

To prove this, we first calculate dρ
dq = 1−f(p)

f(p)
−1

(1−q)2 . Now

let us consider dΦ
dq = −Φ2 d(Φ−1)

dq . The term Φ−1 = 1 + 1
ρ +

..+ 1
ρK

and so we have dΦ−1

dq = ( 1
ρ2 + ..+ K

ρK+1 ) 1−f(p)
f(p)

−1
(1−q)2 .

Simplifying and using inequalities we have dΦ
dq ≤

1−Φ
q .

�

B. The limiting case of infinite queue size

Consider the extreme case of an infinite queue, i.e., K →
∞.
• Case 1: f(p) < q; i.e., ρ > 1. We have that

limK→∞ΠK = ρ−1
ρ and a simplification yields Φ =

1−f(p)
q . Thus the energy efficiency becomes η = Rf(p)

b+p .
These expressions make sense as in the steady state, due
to a higher probability of entrance than exit, the queue
size blows up and there are always packets to transmit.

• Case 2: f(p) ≥ q; i.e., ρ ≤ 1. If f(p) = q, then ΠK = 1
K

and limK→∞ΠK = 0. For f(p) > q, we have also that
limK→∞ΠK = 0 and then simplification yields Φ = 0.
Thus the energy efficiency becomes η = R

b
q + p

f(p)

. These
expressions also make sense as in the steady state due to
a higher probability of exit, the buffer is never full and
there is no packet loss.

C. Optimizing the energy efficiency

In this paragraph, we prove that there exists a unique power
where the energy efficiency function is maximized when the
transmission rate is a sigmoidal or ”S”-shaped function of p.
In [11], it was shown that having a sigmoidal success rate f(p)

implies quasi-concavity and a unique maximum for f(p)
p . This

assumption was shown to be highly relevant from a practical
viewpoint in [4] as well as from an information theoretical
viewpoint in [5].

Theorem 1: The energy efficiency function η is quasi-
concave with respective to p and has a unique maximum de-
noted by η(p∗) if the efficiency function f(p) has a sigmoidal
shape.

Proof : Consider the asymptotic cases when p → 0 and
p → ∞, we have the limiting cases as limp→0 f(p) = 0 and
limp→∞ f(p) = 1 respectively.
• When p → 0: We have limp→0 Φ = 1 trivially and
limp→0 η = 0.
• When p→∞: limp→∞Φ = 0 and limp→∞ η = 0.
Thus from the extension of the mean value theorem proposed
in [17], we have dη

dp = 0 for at least one p.
Consider the function 1

η = A(p) + B(p), where A(p) =
p

f(p)R and B(p) = b
Rq(1−Φ) . From the earlier work in [11],

we have that A(p) is convex and that 1
A(p) is quasi-convex

and has a unique maximum at p∗0. df(p)
dp > 0 for all p. We

also know that for p > p∗0, and d2f(p)
dp2 < 0.

Now let us study the derivatives of the function B(p).

dB(p)

dp
=

b

Rq(1− Φ)2

dΦ

dp
(6)

and we have

d2B(p)

dp2
=

b

Rq(1− Φ)2
(
d2Φ

dp2
+

(
dΦ

dp
)2 2

1− Φ

)
. (7)

If B(p) is a monotonically decreasing function and is
convex for p ≥ p∗0, then we have 1

A(p)+B(p) to be quasi-
concave [15]. So in the following section of this proof we
will show that dB(p)

dp < 0 and d2B(p)
dp2 > 0.

For dB(p)
dp < 0, by examining equation 6, we see that showing

dΦ
dp < 0 is sufficient as the other terms are always positive.

Similarly, for d2B(p)
dp2 > 0, by examining equation 7, we see

that showing d2Φ
dp2 > 0 is sufficient as the other terms are also

always positive.

dΦ

dp
= (1− f(p))

dΠK

dp
−ΠK

df(p)

dp
. (8)

d2Φ

dp2
= (1− f(p))

d2ΠK

dp2
− 2

dΠK

dp

df(p)

dp
−ΠK

d2f(p)

dp2
. (9)

For dΦ
dp < 0, by examining equation 8, we see that showing

dΠK

dp < 0 is sufficient.
We have ρ = q

1−q
1−f(p)
f(p) and dρ

dp = −q
(1−q)f(p)2

df(p)
dp which is



negative. Express 1
ΠK

= 1 + 1
ρ + .. 1

ρK
. Differentiating with

respect to p, we have

dΠK

dp
= Π2

K

dρ

dp
(

1

ρ2
+ ..

K

ρK+1
). (10)

Similarly, for d2Φ
dp2 > 0, by examining equation 9, we see

that showing d2ΠK

dp2 > 0 is sufficient as d2f(p)
dp2 < 0 for p > p∗0

and dΠK

dp < 0. And from equation 10 we observe that as p
increases dΠK

dp increases. Thus following the argument from
the start, we have η(p) to be quasi-concave.
Since there exists some power p for which η(p) is maximized,
we have proved that there exists a unique p∗ for which the
energy efficiency is optimized. �

We are then able to determine the optimal power p∗ which
maximize the energy efficiency function, by solving the fol-
lowing equation:

0 =
−dΦ

dp
{b+

pq(1− Φ)

f(p)
}+(1−Φ){dΦ

dp

p

f(p)
+

d(p/f(p))

dp
}.

(11)

D. Behavior of p∗ with respect to q

When q → 0, the optimization problem is reduced to finding
p that maximizes f(p)

p . This can be obtained by calculating the
derivative of p∗ from equation 11 and applying the limit on q.
Indeed we have that limq→0

dΦ
dp = 0 and then equation (11)

is reducing to d(p/f(p))
dp = 0.

When q → 1, the optimization problem is reduced to finding
p that maximizes f(p)

p+b . This can be obtained by simply using
same ideas as previously.

E. Power Control with the QoS and maximum power con-
straint

The QoS constraint requires that Φ ≤ ε and then we have
to find the new properties of the energy efficiency function
satisfying this constraint. We define p0 := min(p|Φ(p) ≤ ε).

Proposition 2: For all p > p0, the constraint is satisfied,
i.e., Φ(p > p0) ≤ ε.

Proof : This is quite easy to see because from our earlier
proof we have that dΦ

dp < 0 and so Φ(p) ≤ Φ(p0) ≤ ε for all
p > p0. �

Additionally we also have another proposition which gives
the properties of p0 when the arrival probability, q, changes:

Proposition 3: If q2 > q1, then p0(q2) ≥ p0(q1).
Proof : This result can also be easily proved. From our earlier
proof we have dΦ

dq > 0 and so with the power p0(q2), we have
Φ(q1) ≤ Φ(q2) ≤ ε. Thus p0(q1) ≤ p0(q2). �

With these results, we show in the following proposition that
the energy efficiency function with the constraint, denoted by
η∗, can still be optimized and has a unique maximum.

Proposition 4: Given η(p) with a unique p∗ and a constraint
on Φ as Φ ≤ ε, satisfied by p ≥ p0; the modified energy
efficiency η∗ has a unique p∗∗ = min[max(p0, p

∗), pmax].
Proof : To proceed with our proof we solve the problem using
the KKT conditions (see e.g., [15]). The Lagrangian is defined

by:

L(p, λ1, λ2, λ3) = −η(p) +λ1(Φ−L) +λ2(p−Pmax)−λ3p.
(12)

The KKT conditions applied to the above quasi-convex opti-
mization problem yield

dL
dp = 0

Φ− L ≤ 0
p− Pmax ≤ 0

−p ≤ 0
λ1(Φ− L) = 0

λ2(p− Pmax) = 0
λ3(−p) = 0

λ1 ≥ 0
λ2 ≥ 0
λ3 ≥ 0

(13)

�

IV. NUMERICAL RESULTS

In this section we use simulations and numerical calcula-
tions to study the effectiveness of our proposal as well as the
advantages offered.

A. Convergence to steady state

So far in our model, we assume the system to be in the
steady state. However, in reality, it takes some time for the
system to reach the steady state. In order to study the rela-
tionship between the observed values for packet loss, and the
theoretical values, we devise the following simulation: Using
random number generators and a virtual queue we study the
fraction of packets lost for a fixed packet count (representing
time) to see how fast the simulated queue converges to the
steady state. For each total packet count, the simulation is
iterated 106 times for a queue size of K = 10. We observe
that with a packet count of about one thousand, the simulated
values of Φ are on an average the theoretically predicted value
(±4%).

B. Energy efficiency and power control

In this section we present some numerical results that bring
to focus the advantage of this cross layer approach over a
purely physical layer approach.

In the following section we consider the transmitter-receiver
pair to be a single input single output link with the success
function f(p) = exp(−(2

R
R0 −1)σ

2

p ). We also always consider
a queue of maximum size K = 10, Pmax = 35dBm,Pmin =
10dB, R = 4000bps and R0 = 1000. Note that as we
have q = 1 case being identical in theory to the case where
we just model the energy efficiency with a purely physical
layer approach as in [4] (after accounting for the fixed power
consumption of the transmitter b); if we optimize the energy
efficiency it will be optimal to use the power p∗(q = 1).
However if we consider the cross layer model the energy
efficiency is optimized at a different p∗ based on the transition
probability q. As p∗ ≤ p∗(q = 1), using the cross layer



optimization we have a gain which can be expressed as
10 log10(p

∗(q=1)
p∗ ) in dB.

In Figure 1 we study the energy efficiency of a system with
b
σ2 = 100. Here we see that as q decreases p∗ decreases. Also
seen from the same figure is the quasi-concavity of the energy
efficiency function and the asymptotic behavior.

Fig. 1: η vs p of a system with b
σ2 = 100 (20dB). Observe that the

function is quasi-concave for all q and that p∗ decreases as
q decreases.

In Figure 2 we study the energy efficiency of a system with
b
σ2 = 100 (20dB) and with a packet loss constraint of L =
0.01, i.e., Φ ≤ 0.01. Here we see that as q decreases the
minimum power required to satisfy the constraint. The quasi-
concavity of the energy efficiency function is clearly preserved
after the constraint and it has a unique maximum.

Fig. 2: EE of system with b
σ2 = 100 (20dB) and L = 0.01. Note

that in this plot, the quasi-concavity is retained and that p0
increases with q

In Figure 3 we study the gain in power with q = 0.5 plotted
against b

σ2 . For low values of b
σ2 we see that the gain for

ε = 0.1 is due to the constraint causing it to decrease with
b
σ2 , however beyond a certain value of b

σ2 , even the efficiency
function for q = 0 is optimized at p∗ (the constraint is met
for p ≤ p∗), the gain is due to the difference in p∗ which
increases with b

σ2 just like for the ε = 1 case.

Fig. 3: The gain in the optimal power while using a cross layer
model as opposed to a purely physical layer model i.e p∗(q=1)

p∗

plotted against b
σ2 .

In Figure 4 we study the gain in power with b
σ2 = 100

plotted against q. For low values of q we clearly see that
the gain in using the cross layer approach is the highest and
decreases with q.

Fig. 4: The gain in the optimal power while using a cross layer
model as opposed to a purely physical layer model i.e p∗(q=1)

p∗

plotted against q.

C. Application of the results on some useful cases

In a realistic situation, when there is no packet to transmit,
a base station consumes about 50% of the power it consumes
at full load [1]. On the other hand, the entry probability q can
change based on the service, protocol, traffic, etc:
• For q = 0.5, R = 256Kbps and R0 = 64Kbps, our

numerical calculations show that, for an SNR of 30 dB,
using p∗ = 3% of the transmit power is optimal. While
if the user was at a distance where the received SNR
is 20dB, using p∗ = 13% of the power is optimal. The
relationship between the optimal powers is clearly not
linear with the SNR.

• Consider now a system with q = 1
25 like in some

streaming systems that have data sent in one out of 25



frames. In this case, for the user with a SNR of 30dB,
p∗ = 1.5% and for 20dB, p∗ = 15%. The explanation for
this can be seen from the theoretical section, as q → 0,
optimizing η is the same as optimizing f(p)

p which has a
solution that is linear with the SNR.

V. THE MULTIUSER POWER CONTROL GAME

This is what we have to do now Consider the envoirnment
where there are K users sharing the same bandwidth on
the uplink competing for the best SINR. We study the non-
cooperative game in which each user chooses their transmit
powers Pk to maximize its overall utility. In other words, each
user (selfishly) decides how much power to transmit to achieve
the highest overall utility ηk. Let G = [κ, {Ak}, {ηk}] denote
the proposed non-cooperative game where κ = {1, ...,K}, and
Ak = [0,∞] is the strategy set for the kth user. The utility
function (the energy efficiency) for user k is defined as before
but with f(ρ) replaced with f(γk) where γk = gkPk

σ2+Σi6=kgiPi

now represents the SINR, i.e

ηk =
q[1− Φ(γk)]R

b+ pq[1−Φ(γk)]
f(γk)

(14)

Where R is the target rate (assumed to be the same for all
users without any loss in generality), f() is the success rate,
γk,l is the SINR of user k on carrier l, hence, the resulting
non-cooperative game can be expressed as the following
maximization problem:

max
P1,..,PK

max(ηk)∀k ∈ {1, ..K} (15)

A. Existence of the Nash equilibrium

Proved easily

B. Uniqueness of the Nash equilibrium

Using Best response?

C. Finding the Nash equilibrium

D. Dynamically reaching the Nash equilibrium

E. Comparison with cooperative PA

VI. CONCLUSION

We have examined the energy efficiency function consider-
ing the packet level dynamics of a system and incorporated
the effect of the finite buffer size. We find that modeling the
system in this form changes the shape of the energy efficiency
function. However the energy efficiency function retains its
property of quasi-concavity and has a unique maximum. In
this work, we also observe that if the packet entry probability
is small, the energy efficiency is deformed to a higher extent
causing the optimal power to be smaller than in a model
ignoring the packet level dynamics. This deformation is due
to the constant power consumption of the transmitter even
when it does not transmit. The effect of the constant power
consumption decreases as the path loss or noise increases and
in fact, it is the ratio between the constant power consumption
and the noise (with path loss) that determines the deformation.

If we impose a constraint on the packet loss, clearly the
buffer helps in decreasing this loss which causes a further
deformation in the shape of the energy efficiency function.
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