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Abstract—In this work, we propose a novel power allocation
mechanism which allows one to optimize the energy-efficiency of
base stations operating in the downlink. The energy-efficiency
refers to the amount of bits that can be transmitted by the
base station per unit of energy consumed. This work studies
the impact of flow-level dynamics on the energy efficiency
of base stations, by considering user arrivals and departures.
Our proposed power allocation scheme optimizes the energy-
efficiency, accounting for the dynamic nature of users (referred
to as the global energy-efficiency). We emphasize our numerical
results that study the influence of the radio conditions, transmit
power and the user traffic on the energy-efficiency in an LTE
compliant framework. Finally, we show that the power allocation
scheme that considers traffic dynamics, is significantly different
from the power allocation scheme when the number of users is
considered as constant, and that it has a better performance.

I. INTRODUCTION

For a long time, the problem of energy in the field of

communications revolved around autonomous, embarked, or

mobile terminals. Nowadays, with the existence of large

networks involving both fixed and nomadic terminals and

the larger data rates supported, the energy consumed by

the fixed infrastructure has also become a central issue for

communications engineers [1]. As stated by the project Green-

Touch, the telecommunications industry currently account for

2% of the global carbon footprint, of which the major portion

comes through the energy consumed at base stations [2]. This

has led to the growing awareness for the need to reduce energy

consumption as well as to optimize the use of energy in order

to gain maximum benefit out of every unit of energy spent. The

present work falls into this framework, more specifically, our

goal is to devise the power allocation schemes for base stations

in green wireless networks with the focus on downlink. The

novelty of this work is in treating the problem of energy-

efficiency and power allocation for dynamic users, i.e for users

who, like in most practical cases, arrive randomly with a finite

workload and depart after finishing it.

Among the pioneering works on energy-efficient power

control is the work by Goodman et al [5] in which the authors

define the energy-efficiency of a communication as the ratio

of the net data rate to the radiated power; the corresponding

quantity is a measure of the average number of bits suc-

cessfully received per joule consumed at the transmitter. This

metric has motivated many works. A survey on works that

deal with this metric can be found in [6]. Other works like

[8] deal with the energy-efficiency metric, and it is applied

to the problem of distributed power allocation in multi-carrier

CDMA (code division multiple access systems) systems, in

[4] it is used to model the users delay requirements in energy-

efficient systems.

Summarizing the literature overview for energy-efficiency

optimization, we conclude that although several works con-

sider deal with this problem, they do not take into account

several key-aspects of the network. First, in the definition of

energy-efficiency, the number of users in the system is fixed,

corresponding to a full buffer traffic model. In a real system,

users arrive and depart and the number of users in the system

is a dynamic quantity. Secondly, the transmission cost usually

corresponds to the radiated power that is, the power of the

radio-frequency signals. In this paper, we propose a power al-

location scheme that responds to these two needs: considering

the dynamic behaviour of users and taking into account the

whole power consumption and not only the radiated power.

This work uses a cross-layer approach, which deals with both

the Media Access Control (MAC) layer, as well as the flow

level (user arrivals and departures) in Orthogonal Frequency-

Division Multiple Access (OFDMA) systems that are LTE

compliant. Similar cross-layer approaches have been used in

works like [9] and [7], but the metric used is often the capacity

or data rates maximized under power constraints, while in this

work we deal here with energy-efficiency optimization.

The original contributions of this paper are summarized as

follows:

1) We consider a new energy efficiency metric that ac-

counts for the overall power consumption of the base

station, including common channel and fixed consump-

tion parts.

2) We derive an optimal power allocation scheme that max-

imizes the energy efficiency, while preserving Quality of

Service (QoS).

3) We show that the power allocation that considers the

dynamic behavior of users is significantly different from

the scheme optimized locally for each state of the

network. In addition to that, the former performs better

than the latter. To the best of our knowledge, this is

the first time where such a flow level power allocation

scheme is derived.



This paper is structured as follows. In Section II, we present

the system model and define the proposed performance metric.

In Section III, we derive the optimal power allocation scheme

when supposing that the number of users is fixed. Section IV

shows how to deal with the dynamic behavior of users. Sec-

tion V provides numerical results comparing both approaches

(local vs. global optimization). Finally, we conclude the paper

and suggest some possible extensions to this work.

II. SYSTEM MODEL

A. System description

We consider a transmitting base station with buffers of

infinite (or very large) size. The base station sends packets

into a queue for each user which is stored in these buffers.

The packets arrive at each time slot TP (expressed in seconds),

each packet being of size Sp (expressed in bits). The data rate

Rp is equal to
Sp

TP
. The throughput when using all the available

bandwidth is denoted by R(ρ) (expressed in bits per second),

when the receiver has an average signal to interference plus

noise ratio (SINR) of ρ. This SINR depends directly on the

transmit power P (expressed in Watts) as ρ = P
σ2 . Here

σ2 represents the average noise for a given radio condition

(expressed in Watts) and it depends on the distance of the

receiver from the base station. Note that in this work, the

effects of fast fading are not studied and we just consider the

average SINR.

All packets of a user are assumed of the same size and the

average throughput on the radio interface, when the queue

for the corresponding user is active, is denoted by Ra(ρ)
(expressed in bits per second) which depends on the bandwidth

available. When all the packets in the queue are transmitted

the queue becomes empty and inactive. We assume that the

transmitter always transmits packets while the queue is not

empty. Each packet stored in the buffer is a collection of

frames that are transmitted over the symbol time Ts (expressed

in seconds). Each frame is transmitted or retransmitted till

it goes through and an acknowledgment is received. With

these assumptions we proceed to calculate the average packet

duration Td in the buffer.

Td =
Sp

Ra(ρ)
(1)

If this duration exceeds TP , the time by which the next packet

arrives, the queue size becomes infinite and the transmitter is

always on. Otherwise, the probability of the transmitter to be

active (Φ(ρ)) is given by the ratio of Td to TP . Thus we have:

Φ(ρ) = max

(

Rp

Ra(ρ)
, 1

)

(2)

In this work, we focus on an OFDMA system that suits

LTE standards, and obtain the throughput R(ρ) by link level

simulations as described in [3]. The values taken for R(ρ)
from [3], are in fact, averaged over the fast fading and are

thus suitable for our model. When there are several users in

the network, the available bandwidth is divided among the

active users. We assume the bandwidth allocation to be equal

among all users and this implies that if N users are all active

and experience the same radio conditions, the throughput is

reduced to
R(ρ)
N

.

B. Proposed performance metric

In the broadcast channel there are multiple users that have to

be served. In practice, users arrive randomly, and depart once

they finish downloading their requested data. New arrivals

are blocked when the total number of users crosses a certain

limit defined by the base station. Each user may experience a

different radio condition from its peers.

For convenience, we divide the area covered by the base

station into “zones”. Every user in the same zone, experiences

the same radio conditions. This implies that if the base

station transmits at a certain power, then all the users in the

same zone experience the same SINR. The radio conditions

are determined by the average distance of the zone to the

base station. If we have M zones in total, we can define

{σ2
1 , σ

2
2 , · · · , σ

2
M} as the channel conditions for each zone. We

then define the “state” of the system s̄ = {N1, N2, · · · , NM}.

The state s̄ represents the number of users in each zone. For

example if there are two zones, and there are no users the state

is {0, 0}. When a user arrives to zone one, the state becomes

{1, 0}.

For a state s̄ = {N1, N2, · · · , NM}, the power allocation

scheme defined as P = {P1, P2, · · · , PM} results in an SINR

distribution of ρ̂ = {ρ1, ρ2, · · · ρM} among the zones 1 to M ,

where ρj =
Pj

σ2

j

.

First, we define the notion of energy-efficiency for a given

state or the “local” energy-efficiency. This is useful as in

practice, the base station can easily measure this quantity

only for a given state as it is unable to predict when a new

user will arrive. The “global” energy-efficiency defined as the

average of the energy-efficiency in each state weighted by their

probabilities.

If there is always one and only one user, the energy-

efficiency can be defined based on [5] and other works as

ηSU =
R(ρ)Φ(ρ)

b+ PΦ(ρ)
(3)

where b is the constant power consumed by the base station

while serving at least one user1. The proposed form is easy to

interpret as R(ρ) represents the average throughput when the

transmitter is active and P is the cost when the transmitter is

active.

When the system is state s̄, the energy-efficiency is defined

as:

ηs̄(P) =
R̄s̄(ρ̂)

P̄s̄(P)
(4)

where R̄s̄ and P̄s̄ represent the total throughput and power

consumed respectively in state s̄.

1This cost can have several origins like energy spent on the power amplifier,
computation, cooling mechanisms etc. Details of the power consumption
model are given in [1].



When the number of users is random, then the global

energy-efficiency function is defined as:

η̂ =
∑

s̄

π(̄s)R̄s̄

P̄s̄

(5)

Where π(̄s) is the probability of finding the base station at

state s̄ of user distribution. The global energy-efficiency could

alternately be defined as ratio of the total throughput over all

states to the total power over all states. However, in practice,

calculating the energy-efficiency for each state and taking

the average, is easier and more reasonable. The goal of this

work is to improve the above defined energy-efficiency of a

transmitting base station.

This metric can be physically interpreted as the average

number of bits that can be transmitted by spending one Joule

of energy. Alternately, the average power cost of the base

station can be written an Traffic
η

. Hence, optimizing the global

energy-efficiency amounts to minimizing the average power

consumption of the base station.

III. OPTIMAL POWER ALLOCATION FOR A FIXED NUMBER

OF USERS

In this section we consider the case where the number

of users is fixed. We will refer to the optimization of the

metric defined in this section as “local” optimization as it

deals with the optimization of a single state of the wireless

network. When the state of the network is given, we know

the number of users in each zone and can thus calculate

the relevant information required to obtain and optimize the

energy-efficiency. For our calculations we assume a knowledge

of the average noise levels for each zone, i.e {σ2
1 , σ

2
2 , · · · , σ

2
M}

are known.

A. Homogeneous radio conditions

First, we consider the problem where all users experience

the same average SINR, as the model is easier to be under-

stood; the case of heterogeneous SINRs will be exposed next.

Let the total number of users in the cell be N . As all the users

experience the same radio conditions, s̄ = {N}. In this case

if we define the average throughput experienced by any queue

as Ra, we can derive:

Ra(ρ) =
N−1
∑

i=0

(

N − 1

i

)

Φ(ρ)i(1− Φ(ρ))N−1−iR(ρ)

i+ 1
(6)

where Φ(ρ) denotes the probability that any of the N users

are actively being served and is given as in equation 2. The

summation is upto N −1 as Ra is the throughput experienced

by an active user, and so we consider the remaining N − 1
users. The Ra for every user is identical as all users experience

the same SINR for the same transmit power. This symmetry

can be exploited to conclude that the transmit power for each

user will be equal when optimized. Note that Ra(ρ) depends

on Φ(ρ) and Φ(ρ) depends on Ra(ρ) leading to a fixed point

equation.

Clearly if N is large enough, then the demand in data

rate will exceed the maximum available throughput and Φ(ρ)

becomes 1. On the other hand, if N is small enough, the users

may transmit their data faster than the packet arrival speed

causing the queue to empty occasionally. In this period, other

users can take advantage of the excess bandwidth.

From Φ(ρ), the total power consumed can be calculated as

P̄s̄ = b+ P (1− (1− Φ(ρ))N ) (7)

Here (1−Φ(ρ))N is the probability of all queues being empty.

If any queue is active the power consumed is P . The total

throughput is R̄s̄ = NΦ(ρ)Ra leading to an energy-efficiency

of

ηs̄ =
NΦ(ρ)Ra(ρ)

b+ P (1− Φ(ρ))N
(8)

B. Heterogeneous radio conditions

Consider a more realistic setting where users experience

different radio conditions in each zone. Denoting the average

throughput experienced by zone j as Ra:j , we can compute

Ra:j(ρ̂) = R(ρj)

N1
∑

i1=0

N2
∑

i2=0

· · ·

Nj−1
∑

ij=0

· · ·

NM
∑

iM=0

(

N1

ii

)

×

(

N2

i2

)

· · · ×

(

Nj − 1

ij

)

× · · · ×

(

NM

iM

)

× (Φ1(ρ̂))
i1

× (Φ2(ρ̂))
i2 × · · · × (ΦM (ρ̂))iM × (1− Φ1(ρ̂))

N1−i1

× (1− Φ2(ρ̂))
N2−i2 × · · · × (1− Φj(ρ̂))

Nj−ij−1

× · · · × (1− ΦM (ρ̂))NM−iM ×
1

i1 + i2 + · · ·+ iM + 1
(9)

where

Φ(ρ̂)j = max

(

Rp

Ra:j(ρ̂)
, 1

)

(10)

Leading to a set of fixed point equations that can be solved

to calculate all Ra:j(ρ̂) for a given P. Equation (9) is similar

to (6), but considers the presence of users in other zones as

well. The average power can be calculated as

P̄s̄(P) = b+

N1
∑

i1=0

· · ·

NM
∑

iM=0

(1− δ(i1 + · · ·+ iM ))

× (Φ1(ρ̂))
i1 × · · · × (ΦM (ρ̂))iM ×

P1i1 + · · ·+ PM iM

i1 + · · ·+ iM

× (1− Φ1(ρ̂))
N1−i1 × · · · × (1− ΦM (ρ̂))NM−iM (11)

Where the δ function is used to exclude the state where all

zones are empty (δ(x) = 0 for all real x but 0, and δ(0) =
1). The energy-efficiency in this state can be calculated with

R̄s̄(ρ̂) =
∑M

i=1 NiΦ(ρ̂)iRa:i and total power from equation

(11).

IV. OPTIMAL POWER ALLOCATION CONSIDERING THE

DYNAMIC BEHAVIOR OF USERS

In the previous section, we optimized the energy-efficiency

for fixed numbers of users. To analyze the impact of power

allocation on the network performance and account for the

users arrivals and departures, a flow-level capacity analysis is

required. The arrival rate can be modeled through a Poisson

process (of intensity λi in zone i) and users leave when they



finish streaming a file of average size F (we assume that F is

the same for all users). When the total number of users exceed

a given threshold Nmax, new user arrivals are blocked.

A. Processor sharing analysis

When users with a finite workload are considered, the

number of users is not constant but varies dynamically during

time. The distribution of the number of users is determined

by the traffic intensity within the cell. Indeed, if the traffic

intensity is large, more users connect to the system per unit

time and the average number of active users increases. In

this section, we show how to compute the distribution of the

number of users knowing the traffic intensity.

The heterogeneity in radio conditions translates into a larger

service time for cell edge users. When the system is in state

s̄ = {N1, N2, · · · , NM}, the total number of users in the cell

is N (̄s) = N1 + · · · + NM . Based on [7], we can model

the system as a Generalized Processor Sharing queue, whose

evolution is just described by the overall number of users in a

cell. The solution of the Markov process has the simple form

π(̄s) =
1

Γ

N (̄s)!
∏M

i=1 Ni!

M
∏

c=1

ΩNc
c

∏Nc

j=1 jΦc;̄s(Nc=j)Ra:c;̄s(Nc=j)

(12)

where Ωc = Sλc and Γ is a normalizing constant. The notation

s̄(Nc = j) is used to take the Φ and Ra for the state s̄ with

j users in zone c.

In this model, the user blocking rate can be calculated as

α =
∑

i λi

∑

x π(x), x such that the system is full (N(x) =
Nmax). Quality of service (QoS) is measured through the user

blocking rate. The QoS constraint is thus α ≤ ǫ, where ǫ is

the maximum tolerable blocking rate.

B. Optimal power allocation

The steady-state probabilities defined in the previous section

are calculated knowing the throughputs for each state of the

network. This throughput will of course depend on the power

allocation as explained in Sections II and III. The power

allocation has thus to be optimized taking into account the

dynamics of users. A power allocation policy P̂ is defined as

a set of actions for each of the possible states:

P̂ =
⋃

s̄

Ps̄ (13)

The global energy efficiency; knowing the policy P̂, is given

by:

η̂(P̂) =
∑

s̄

π(̄s)R̄s̄(ρ̂)

P̄s̄(Ps̄)
(14)

The optimization problem can be defined as

P̂∗ = argmax[η̂(P̂)] (15)

And the maximum global energy-efficiency possible is η̂(P̂∗).
The idea behind this global optimization is that the power

allocation does not depend uniquely on the actual state of the

network, but takes also into account the future evolutions of the

network. For instance, a power allocation decision that is taken

at one moment may have an influence on the evolution of the

state of the network by favoring a subset of users by a better

throughput. We will study in the next section the difference

between this global policy maximization and a local one, as

defined in section III.

V. NUMERICAL RESULTS

In this section, we use simulations and numerical calcula-

tions to study the properties of the energy-efficiency function

and obtain the power allocation that maximizes it. We consider

the receiver and the transmitter to have two antennas each

forming a 2 × 2 MIMO system. The data rates for this

configuration which are LTE compliant are taken from [3] and

are given as a function of the SINR. For the single zone case

we take σ2 = 1 mW while for the two zone case we have

{σ2
1 , σ

2
2} = {1, 1

8} mW. We begin by illustrating the results

when the network is optimized supposing that the number of

users is fixed. The dynamic behavior of users is taken into

account afterwards and the performance of the network is

compared for both schemes.

A. Numerical results for the local optimization

We begin by illustrating the power allocation scheme when

the dynamic behavior of users is not taken into account, and

when all users are subject to the same radio conditions. In

figure 1, we show the energy-efficiency as a function of the

transmit power. Here, due to symmetry, all the users use

the same power. The results show that the energy efficiency

begins by increasing with the transmit power increases, as

users are able to reach higher throughputs. However, starting

from one point, users reach the maximal throughput they are

able to reach as, in LTE, modulation schemes are limited; the

energy efficiency begins thus decreasing as throughputs remain

constant while power consumption increases.

Fig. 1. η vs P with b

σ2
= 100 (20dB). Note that the energy-efficiency is

peaked at higher powers with additional users.

In figure 2, we consider the case of two users: one in the

“inner” zone (near base station) and the other in the “outer”

zone (at cell edge). In this case, the system has a sufficient

capacity to support both users and the energy efficiency is

optimized when more power is used on the outer zone which



compensates for its lower SINR. Here the total throughput can

thus be increased by using more power on the outer zone user.

However in figure 3, we have three users in both the inner and

outer zones. Here the throughput of the wireless network is

not sufficient for all the users and so the energy-efficiency is

optimized by simply putting more power in the inner zone

with the higher SINR as the total throughput is not improved

by putting more power into the outer zone.

Fig. 2. η over combinations of P1 and P2 with b

σ2

1

= 100 (20dB), N1 =

N2 = 1. Zone 2 corresponds to a lower SINR and in this case the efficiency
is optimized by using more power on the zone 2 user.

Fig. 3. η over combinations of P1 and P2 with b

σ2
= 100 (20dB), N1 =

N2 = 3. As before, zone 2 corresponds to a lower SINR and interestingly, in
this case, the efficiency is optimized by using more power along the zone 1
user. This is because with 3 users in each zone, the demanded rate exceeds the
maximum available throughput and so, optimization is done by using power
on users with a better SINR.

B. Numerical results for the global optimization

We have illustrated, till now, the performance of the system

when the number of users is fixed. In this section, we consider

the dynamic behavior of users. In this setting, the power

allocation is not determined for a fixed number of users, but for

a given traffic intensity. the number of users is thus a random

variable whose distribution depends on the traffic intensity.

The optimal power allocation is the one that maximizes the

energy efficiency while maintaining a constraint on the QoS.

Note that this optimal power allocation is a matrix that gives,

for each state of the network composed of the number of users

in the cell, the power allocation for each of the users.

Initially we consider the cell with homogeneous radio con-

ditions, i.e. we suppose that all the users experience the same

SINR on average. In this setting, if Nmax is the maximum

number of users allowed, optimization is performed over

Nmax variables, i.e. the power used in each state. For the

single zone case we take σ2 = 1 mW. The optimal power

allocation is shown in figure 4. Note that, in this case, the

power allocation is a vector and not a matrix, as all users

experience the same radio conditions and have, by symmetry,

the same allocated power.

Fig. 4. The power allocation scheme (P1, · · · , P4) plotted against the traffic
Ω when η̂ is optimized. Also note that the QoS constraint of maintaining the
blocking rate below 0.01 is satisfied.

Figure 5 compares the energy-efficiency obtained for the

local and the global optimizations. Recall that, by local, we

mean that the optimization is done for each state independently

from the others, taking into account only the observed number

of users and not the future evolutions of the system. As seen

from the simulations (Figure 5), using a global optimization

does not seem to yield much gains in the energy-efficiency

for the single zone case. This is because the throughput, and

thus service times, are the same for all users. We next move

on to the two-zone case (cell center and cell edge). Here we

consider a cell divided into two concentric rings, and define the

outer zone as the region when the SINR is 4.8 dB (3 times)



Fig. 5. η̂ plotted against the traffic Ω when η̂ is optimized and when η is
optimized for each state separately.

lower than the SINR for the inner zone, when the transmit

power is unchanged. The outer zone also has 3 times the area

of the inner zone causing λ2 = 3λ1. With these parameters

we attempt to calculate the optimal global energy-efficiency

and corresponding power allocation for given values of λ1.

We have {σ2
1 , σ

2
2} = {1, 1

3} mW. Figure 6 shows the energy

efficiencies corresponding to local and global optimizations.

It is obvious that global optimization yields much higher

efficiency when users have heterogeneous radio conditions.

This is because, in the local optimization setting, the notion

of call duration cannot be taken into account as users are

considered as always active. The optimal power allocation

will then tend to favor cell center users in order to maximize

throughput. However, when the dynamic behavior of users is

taken into consideration, it is sometimes better to use more

power on cell edge users in order to let them finish their service

quickly and quit the system. Applying the policy obtained from

the local optimization will lead to users accumulating at the

cell edge as they are not able to finish their transfers.

Fig. 6. η̂ plotted against the traffic Ω1 = λ1S when η̂ is optimized and when
η is optimized for each state separately. Also note that the QoS constraint of
maintaining the blocking rate below 0.01 is satisfied at all points shown.

VI. CONCLUSION

In this work we study and optimize the flow level energy

efficiency of base stations in LTE. We introduce the notion

of a “global” energy-efficiency which is defined as the aver-

age of the energy-efficiencies of each state the cell can be

in. These states represent the traffic configurations, i.e. the

numbers and positions of users in the cell. Through extensive

simulations we see that optimizing the global efficiency yields

a different power allocation from optimizing the efficiency of

each individual state. Although this difference can be neglected

when considering a cell in which all users experience the same

average SINR, when considering a more realistic setting where

users are subject to heterogeneous radio conditions, the global

optimization yields a considerable gain. This is because, when

users are considered as static, it may be optimal to give more

power to cell center in order to increase throughputs. However,

when the dynamic behavior of users is taken into account,

giving more power to users with bad radio conditions will

allow them leaving the system faster and thus alleviating load

in the future. When compared to the local optimization, it is

observed that the global optimization improves the energy-

efficiency up to a factor of 50%.
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