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Abstract—The iterative decoding of BICM is analyzed from
an optimization point of view. The objective function underlying
the standard iterative decoding is a coarse approximation of
the optimal Maximum Likelihood Decoding. This approximation
is suitable when large block of data are processed but may
be critical for short blocks. In this contribution, it is proved
that refined approximations can be obtained by propagating
extrinsics on groups of bits. The particular case of pairwise
joint probability propagation is investigated. Its computational
complexity is similar to standard iterative decoding. Simulations
show the favorable behavior of the proposed method.

I. INTRODUCTION

Bit-Interleaved Coded Modulation (BICM) was first sug-

gested by Zehavi in [1] to improve the Trellis Coded Modu-

lation performance over Rayleigh-fading channels. BICM has

been used in recent standards like DVB-S2, wireless LANs,

DSL and WiMax because of its flexibility and simplicity.

BICM combines error-correcting codes with higher-order

modulation schemes. Although originally developed for single-

input single-output (SISO) fading channels [1][2], BICM has

quickly found its way in state-of-the-art multi-antenna systems

(MIMO systems). BICM can combine high data rates while

still maintaining high diversity. In BICM, the diversity order

is increased by using bit-interleavers instead of symbol in-

terleavers. This improvement is achieved at the expense of a

reduced minimum Euclidean distance leading to a degradation

over non-fading Gaussian channels [1]. This drawback can

be overcome by using iterative decoding (BICM-ID) at the

receiver where the channel decoder and the demodulator

exchange extrinsic information in a Turbo-like process [3].

The iterative decoding scheme used in BICM-ID is very

similar to serially concatenated turbo-decoders. In BICM-ID,

the inner decoder is replaced by a demapper which is less

computationally demanding than a decoding step. The turbo-

like iterative decoding was not originally introduced as a

solution to an optimization problem, rendering its analysis

difficult. In [4], it is proved that iterative decoding proceeds

from an approximation of the optimal Maximum Likelihood

Decoding (MLD). The extrinsics propagation is a natural

consequence of the Jacobi/Gauss-Seidel scheduling which is

used to obtain an iterative procedure.

The literature on BICM systems is mainly focused on the

design of the three constitutive elements of the transmitter

namely the encoder, the interleaver and the mapping strategy.

We conjecture that the algorithmic procedure used at the

receiver is also a key element for improving the performance

of the whole system. This paper provides a generalization

of the framework in [4] taking inspiration from [5]. The

scheme in [4] is general and can be applied for seeking the

maximum of a sum of functions with discrete variables. The

approximation is meaningful when the direct optimization is

rendered intractable by forming the sum of the functions.

In section II-A, a family of approximate objective functions,

with key parameter r, is derived. A coarse approximation is

obtained when r = 1, refined approximations can be obtained

by increasing r. Standard iterative decoding makes use of the

coarse approximation (r = 1) which may not be enough for

short blocks of data. An iterative procedure with r = 2, is

proposed in section III-B without any extra computational cost.

The resulting algorithm propagates pairwise joint probabilities

instead of single bit probabilities. A comparison of these

iterative schemes is provided in section IV.

II. OPTIMIZATION PROBLEM

A. General framework

We consider the general problem of finding the maximum

of a sum of functions with binary variables x1, ..., xn:

xopt = arg max
x∈{0;1}n

fα(x) + fβ(x) (1)

where x = (x1, x2, ..., xn) and where fi(x), i ∈ {α, β}, is

a real-valued functions with fi(x) < +∞. This leads to the

following optimization problem:

xopt = arg max
x∈{0;1}n

pα(x)pβ(x) (2)

where pi(x) = efi(x). A convenient formulation of (2) can

be obtained by replacing the discrete variable x with the

continuous variable p(x) as:

popt = argmax
p∈E

∑

x

pα(x)pβ(x)p(x) (3)

where E contains all the possible PMFs on x. A global opti-

mum popt(x) is the Kronecker delta function popt(x) = δx,xopt

since another weighting with the constraint
∑

x p(x) = 1
produces a lower value of the objective function. As a conse-

quence, the maximization of (3) gives a solution to the original

problem in (1).

We assume that the intractability of (3) arises from forming

the product pα(x)pβ(x). Our framework of approximations

will be restricted to problems where the expectations with

pα or pβ and relative to some suitable p(x) are tractable. A



class of suboptimal objective functions can be obtained by

relaxing the full-agreement for pα(x) and pβ(x) over n bits

(x1, x2, ...xn) to a partial agreement over a subset of r bits

(r < n). The set Er of r-factorized PMFs is defined without

any loss of generality as Er = {q ∈ E : q(x) = q1(x̃
r
1)× ...×

qk(x̃
r
k) × ... × qu(x̃

r
u)} with x̃r

k = (x(k−1)r+1, ..., xkr) and

ur = n. For any value of r, the global optimum popt = δx,xopt

is a r-factorized PMF. The continuous variable p(x) is now

split into two intermediate variables l(x) and q(x) such that:

p(x) = l(x)q(x) and l, q ∈ Er. The problem in (3) reads

(lopt, qopt) = arg max
l,q∈Er

∑

x

pα(x)pβ(x)l(x)q(x) (4)

with global solution lopt(x) = qopt(x) = δx,xopt
. The formu-

lation in (4) is equivalent to the original problem since the

two solutions lopt, qopt both select the optimal sequence xopt.
Let Copt denote the objective function in (4). By grouping

together the terms with the same value of x̃k, we obtain

another expression for the original problem

(lopt, qopt) = arg max
l,q∈Er

∑

x̃r
k

∑

x:x̃r
k

pα(x)pβ(x)l(x)q(x) (5)

We are ready for applying the main approximation which

consists in replacing the marginals of the product by the

product of the marginals leading to the suboptimal problem:

C̃k,r(l, q) =
∑

x̃r
k

(∑

x:x̃r
k

pα(x)q(x)
∑

x′:x̃r
k

pβ(x
′)l(x′)

)
(6)

This approximation deserves some comments. From the opti-

mal problem in (5), we have derived a family of n
r

approximate

objective functions. The objective function C̃k,r(l, q) is the sum

of all the instances of the product pα(x)q(x)pβ(x
′)l(x′) for

pairs (x,x′) such that x̃r
k = x̃′

r

k (ie agreement for the r bits

of x̃r
k and x̃′

r

k). This suggests that C̃k,r(l, q) should be used

for determining the optimal value of the r common bits. For

that purpose, l and q are restricted to Er. The original problem

is thus replaced by the next n
r

optimization problems:

arg max
lk,qk∈E

C̃k,r(l, q) 1 ≤ k ≤
n

r
(7)

This is a distributive optimization strategy. The joint objective

function is defined as C̃r(l, q) =
∑n

r

k=1 C̃k,r(l, q). The value of

C̃r(l, q) is a performance rating on the efficiency of the joint

optimization process. Using synchronization considerations,

we can also observe that terms such that x̃r
k = x̃′

r

k ∀k
will appear on every objective function C̃k,r whereas terms

such that x̃r
k 6= x̃′

r

k ∀k will never appear. With this line of

arguments, we obtain a new expression for the joint objective

function

C̃r(l, q) =
n

r

n
r∑

v=0

(
1− v

r

n

)
Nv(l, q) (8)

=
n

r

(
Copt +

n
r
−1∑

v=1

(
1−

r

n
v

)
Nv(l, q)

)
(9)

where Nv(l, q) contains the products pα(x)q(x)pβ(x
′)l(x′)

with v elements in common (x̃r
i , x̃

′
r

i ) (x̃r
i 6= x̃′

r

i , i ∈ I,

card(I) = v) and n/r − v distinct elements (x̃r
j , x̃

′
r

j)

(x̃r
j = x̃′

r

j , j ∈ J , card(J ) = n
r
− v). It turns out that

C̃r(l, q) is a weighted sum involving the original criterion Copt
and extra terms due to the approximation. The choice of r is

a trade-off between fidelity to the original criterion (r = n)

and computational complexity (r = 1). It is interesting to

note that this approximation shares common ideas with [6],

[7] developed in the context of belief propagation.

B. Iterative maximization

The kth approximate optimization problem (7) reads:

arg max
lk,qk∈Er

∑

x̃r
k

qk(x̃
r
k)lk(x̃

r
k)fx̃r

k
(pα, q−k)fx̃r

k
(pβ , l−k) (10)

with fx̃r
k
(pα, q−k) =

∑
x:x̃r

k
pα(x)

∏
i 6=k qi(x̃

r
i ) and where

q−k(x) =
∏

i 6=k qi(x̃
r
i ). The same definitions hold for

fx̃r
k
(pβ , l−k) and l−k. Since 0 ≤ qk(x̃

r
k)lk(x̃

r
k) ≤ 1, a

global optimum is given by qk,opt(x̃
r
k)lk,opt(x̃

r
k) = δx̃r

k
,x̂r

k

where x̂r
k,opt is a global maximum (with respect to x̃r

k) of

fx̃r
k
(pα, q−k)fx̃r

k
(pβ , l−k). This is an hard-decision process.

In order to limit the number of local maxima in the iterative

scheme, soft-decisions are preferred [8]:

qk(x̃
r
k)lk(x̃

r
k) ∝ fx̃r

k
(pα, q−k)fx̃r

k
(pβ , l−k) (11)

The choice of a scheduling gives the algorithm. Without prior

information, a natural choice for l(0) and q(0) is uniform

distributions. An hybrid Jacobi/Gauss-Seidel scheduling can

be applied:

Step 1: Computation of q
(it)
k for 1 ≤ k ≤ n

r
based on the

estimates of the previous iteration l
(it−1)
−k , q

(it−1)
−k

Step 2: Computation of l
(it)
k for 1 ≤ k ≤ n

r
based on available

estimates l
(it−1)
−k , q

(it)
−k

Stop if l
(it)
k q

(it)
k = l

(it−1)
k q

(it)
k for 1 ≤ k ≤ n

r

The updates are:

q
(it)
k (x̃r

k) ∝ fx̃r
k
(pα, q

(0)
−k)fx̃r

k
(pβ , l

(it−1)
−k ) (12)

l
(it)
k (x̃r

k) ∝
fx̃r

k
(pα, q

(it)
−k )

fx̃r
k
(pα, q

(0)
−k)

(13)

The number of quantities to be computed at each iteration (12-

13) is n
r
2r+1. The value of n

r
2r+1 is linearly increasing with

n and exponentially increasing with r. With r = 2 and also

with r = 1, n
r
2r+1 = 4n. In the next section, this general

framework is applied to BICM.

III. APPLICATION TO BICM

A. Transmission scheme and iterative decoding

A BICM system [2] is built from a serial concatenation

of a convolutional encoder, a bit interleaver and an M -ary

bits-to-symbol mapping (where M = 2m) as shown in Fig.

1. The sequence of information bits b of length nb is first

encoded by a convolutional encoder to produce the output



Fig. 1. BICM transmission scheme

encoded bit sequence c of length n which is then scrambled

by a bit interleaver operating on bit indexes. Let d = π(c)
denote the interleaved sequence. Then, m consecutive bits

of d are grouped as a symbol. The transmitted signal sk,

1 ≤ k ≤ n/m, is then chosen from an M -ary constellation

ψ where ψ denotes the mapping scheme. The symbols sk are

passed over a noisy memoryless channel to get the channel

outputs yk. The maximum likelihood sequence detection reads:

b̂MLD = arg max
b∈{0,1}nb

p(y | b) (14)

where p(y | b) is the likelihood function which results from

concatenating the encoder with the channel. Since there is a

one-to-one correspondence between the binary message b and

the interleaved sequence d, eq. (14) is equivalent to searching

d̂MLD as:

d̂MLD = arg max
d∈{0,1}n

pch(y | d)Ico(d) (15)

where pch(y | d) is the probability of receiving y when the

sequence transmitted through the channel is the mapping of d

and where Ico(d) is the indicator function of the code meaning

that Ico(d) = 1 if c = π−1(d) is a codeword and 0 elsewhere.

Another way to tackle this problem consists in finding the

prior PMF on d which maximizes the a posteriori probability

of having received y

p̂MLD(d) = argmax
p∈E

∑

d

Ico(d)pch(y | d)p(d) (16)

This is exactly the optimization problem in (3). It is proved in

[4] that the turbo-like iterative decoding of BICM is exactly

equations (12-13) with r = 1. Agreement is required on

a unique bit (x̃1
k = dk) and the iterative decoding propa-

gates probabilities on a single bit. The involved quantities

are fdk
(pch(y | d), l

(it−1)
−k ) and fdk

(Ico(d), q
(it)
−k ). These

quantities are respectively the output given by the demapping

sub-block and the second one is the output given by a BCJR

algorithm [9] at the decoder side. In the coding community,

lk(dk), qk(dk) are usually called extrinsics and lk(dk)qk(dk)
is the APP (A Posteriori Probability). We have seen in section

II-A that C̃r
r→n
−→ Copt. In BICM-ID, r is set to 1 leading to a

rough approximation of the MLD whereas higher values of r
are expected to provide an accurate approximation. Complex-

ity is a critical issue in BICM and in turbo-like algorithms in

general. We mentioned in the previous section that the number

of exchanged quantities is the same for both r = 1 and r = 2
whereas this number is increasing exponentially with r when

r > 2. In the next section, a new algorithm based on (12-13)

is proposed for BICM with r = 2.

B. Extended algorithm

Considering r = 2, x̃2
k is a slice of two bits that can be either

consecutive within the interleaved sequence d, consecutive

within the coded sequence c or chosen with another one-to-

one mapping. The updates in (12-13) reads

q
(it)
k (x̃2

k) ∝
∑

x:x̃2

k

pch(y | d)
∏

i 6=k

l
(it−1)
i (x̃2

i ) (17)

l
(it)
k (x̃2

k) ∝
∑

x:x̃2

k

Ico(d)
∏

i 6=k

q
(it)
i (x̃2

i ) (18)

Since, when q(0) is a uniform distribution, fx̃2

k
(Ico(d), q

(0)
−k) =

1
4 ∀ x̃2

k ∈ {0, 1}2. For a memoryless channel, pch(y |
d) =

∏
j=1 pch(yj | sj) with sj = ψ(dm(j−1)+1, ..., djm).

The demapping task is less complex if the two bits

(dΩ(2(k−1)+1), dΩ(2k)) of x̃2
k belong to the same symbol,

x̃2
k = (d2(k−1)+1, d2k) (19)

In standard BICM systems (r = 1) with convolutive code,

the decoding task may be performed by a BCJR algorithm

[9]. The BCJR algorithm returns single variable probability.

An extension of the BCJR to compute higher order joint

probability has been published in [10]. As a special case, this

algorithm computes pairwise joint probabilities. The structure

of a BCJR algorithm is based on the trellis representation

of a convolutive code. The probability of transition between

two states is connected with the probability of the source. In

the iterative decoding context of BICM, the probability of the

source is the extrinsic q which is used as a prior information.

In a trellis representation, the transitions between two states

are associated to a particular value of a group of consecutive

bits in the sequence c (a group of 2 bits if a convolutive code

with rate R = 1/2 is considered). Thus consecutive bits of the

coded sequence c should be assigned to x̃2
k,

x̃2
k = (c2(k−1)+1, c2k) = (dπ(2(k−1)+1), dπ(2k))) (20)

BICM makes uses of a bit-interleaving. In this case, (19)

and (20) are antagonists requirements that can not be met at

the same time. The propagation of pairwise probabilities is

possible by changing the standard iterative decoding. Three

modified schemes are possible:

Relax requirement (19) (demapping): the demapping is more

complex since the whole sequence has to be considered for

the marginal computation in (17).

Relax requirement (20) (decoding): the decoding task can

not be handled by a BCJR algorithm leading to an extra

computational cost.

Maintain both requirements (interleaver): in this case, the bit-

interleaver is replaced by a pairwise interleaver ie both bits

c2(k−1)+1 and c2k belong to the same pair, the interleaver

operates on index k.

The last solution maintains the computational cost to the level

of the standard iterative decoding. The others strategies are

not under the scope of this paper. The role of the interleaver

in fading channels is to guarantee that consecutive coded



bits are affected by independent fades. In both fading and

non-fading channels, the interleaver breaks the dependency

between consecutive elements of the sequence d. This is

fundamental to obtain efficient approximations of (5) even

with small value of r. The restriction on the interleaver may

lead to a degraded channel probability with fading channels

but not necessarily with the AWGN channel. However an

interleaver compatible with the value of r is needed for

an accurate approximation. In the simulation part, this new

strategy is compared to the usual one for the AWGN channel.

Preliminary results are also reported for channels with fading.

IV. SIMULATIONS

A BICM transmitter is considered with (115, 177)8 convo-

lutive code of rate 1
2 and a 16-QAM constellation. Several as-

sociations mapping/interleaver/synchronization are compared

(see table I). It is proved in [11] that the performance of BICM

can be improved in non-fading channels when the interleaver

takes a trivial form meaning that the bits are not interleaved

at all provided that an appropriate mapping is chosen. The

mapping under consideration in [11] is the binary reflected

Gray code (BRGC) of [12]. Under this setting, the modified

scheme is expected to provide some improvements over the

usual iterative decoding (r = 1). In the simulations, the

number of iterations is 10. When using BRGC however the

iterative decoding does not take benefits of the iterations since

the BER does not decrease after iteration 2. In this paper,

short blocks are considered. The number of information bits

is nb = 400 and the number of encoded/interleaved bits is

n = 800. It is proved in [8] that the value of the joint

Name Mapping Interleaver r
Gray BRGC trivial 1
SP-1bit Set Partitioning bit-interleaver 1
SP-2bit Set Partitioning pairwise-interleaver 2

TABLE I
PLOT LABELING

objective function is a performance rating on the efficiency of

the optimization process and is also indicative of the vicinity

of the solution to the maximum likelihood optimal. The value

of r
n
C̃r(l, q) is plotted as a function of the number of errors

(on the encoded bits) in the particular case of an AWGN

channel and Eb

N0

= 4.5dB. The results are reported in Fig. 2

for Gray and in Fig 3 for SP-1bit and SP-2bit. We observe the

following. With Gray, all points are located in the same area.

There is no local maxima but a significant number of frames

exhibits more than 10 errors. With SP-1bit, a threshold T1
can be applied to separate MLD solutions from local maxima.

We will choose in the following T1 = 0.6. When r
n
C̃r(l, q)

is above T1, the average number of errors on the encoded

bits is 0.0633 (smaller than with Gray) but for an important

number of frames the algorithm fails to converge to the MLD.

With SP-2bit, the threshold is fixed to T2 = 0.95 for SP-2bit.

When r
n
C̃r(l, q) is above T2, the average number of errors on

the encoded bits is 0.0225. We also observe frames in which
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Fig. 3. Plot of pairs (errors, C̃r(l, q)) for SP-1bit and SP-2bit settings,

AWGN channel,
Eb

N0
= 4.5dB

the algorithm fails to converge to the MLD. The number of

such pathological frames is 275 in SP-1bit and 26 in SP-2bit

(among a total of 1000 frames). This is a first illustration of the

superior properties of SP-2bit over SP-1bit. The Bit Error Rate

(BER) is plotted as a function of Eb

N0

for the AWGN channel in

Fig. 4. The experiment is conducted with the settings in table

I. The BER for curves with label Gray, SP-1bit and SP-2bit

was obtained by computation over all the frames. In the two

other curves, a threshold is applied and the BER is computed

only for frames such that r
n
C̃r(l, q) > Tr (at iteration 10). The

proportion of frames above Tr (r = 1, r = 2) is given in Fig.

5. This is indicative of the proportion of frames with MLD

solution at the end of the iterative process. We conjectured

that choosing r = 2 rather than r = 1 could decrease the

number of local maxima. This is confirmed by the simulation.

For example, with Eb

N0

= 4dB, the proportion of frames with

MLD solution at iteration 10 is 88% with r = 2 and 38.73%
with r = 1 and the BER computed among those frames is

slightly better with r = 2 than with r = 1. The global BER
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(among the whole frames) is improved with r = 2 (compared

to r = 1) due to the reduction of converging sequences toward

a local maximum. The good performance obtained with BRGC

mapping is due to the total absence of such sequences. In SP-

1bit and SP-2bit, it is possible to detect, at the receiver, MLD

solution based on the value reached by the objective function.

For an application where frames can be emitted again or with

cyclic redundancy check (CRC), SP-2bits is an interesting

alternative. For example, with Eb

N0

= 5.5dB, the BER (over

the whole frames) is 5.5 10−5 for Gray and SP-2bit. In SP-

2bit, the pathological sequences can be identified (1.67 10−2%
of the total). Among the remaining sequences (99.98%), the

BER is 1.67 10−6. The same kind of experiment is conducted

with the fading channel. The BER is plotted in Fig. 6, the

proportions of frames above treshold are not presented here

due to lack of space. However, the curves obtained are very

similar to Fig. 5. SP-2bit outperforms SP-1bit thanks to a

drastic reduction of the number of pathological frames. For

EbN0 > 7.5dB, the bit-interleaver gives an advantage to SP-

1bit. An hybrid structure (pairwise interleaver / bit interleaver)

is currently under study. Further results will be reported.
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V. CONCLUSION

In this paper, the iterative decoding of BICM is considered

from an optimization point of view. New algorithmic schemes

are specifically developed to improve the performance when

short blocks of data are processed. In particular, we propose

to propagate pairwise joint probability instead of probability

on single bits. The number of local maxima is significantly

reduced. A threshold on the objective function can be used for

selecting frames with MLD solutions. The BER is improved

for both AWGN and fading channel. The computational cost of

the proposed method is similar to standard iterative decoding.
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