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In this paper, we study the performance of Spatial Modulation (SM-) Multiple-Input-Multiple-Output (MIMO) wireless systems over generic fading channels. More precisely, a comprehensive analytical framework to compute the Average Bit Error Probability (ABEP) is introduced, which can be used for any MIMO setups, for arbitrary correlated fading channels, and for generic modulation schemes. It is shown that, when compared to state-of-the-art literature, our framework: i) has more general applicability over generalized fading channels; ii) is, in general, more accurate as it exploits an improved union-bound method; and, iii) more importantly, clearly highlights interesting fundamental trends about the performance of SM, which are difficult to capture with available frameworks. For example, by focusing on the canonical reference scenario with independent and identically distributed (i.i.d.) Rayleigh fading, we introduce very simple formulas which yield insightful design information on the optimal modulation scheme to be used for the signalconstellation diagram, as well as highlight the different role played by the bit mapping on the signal-and spatial-constellation diagrams. Numerical results show that, for many MIMO setups, SM with Phase Shift Keying (PSK) modulation outperforms SM with Quadrature Amplitude Modulation (QAM), which is a result never reported in the literature. Also, by exploiting asymptotic analysis, closed-form formulas of the performance gain of SM over other single-antenna transmission technologies are provided. Numerical results show that SM can outperform many single-antenna systems, and that for any transmission rate there is an optimal allocation of the information bits onto spatialand signal-constellation diagrams. Furthermore, by focusing on the Nakagami-m fading scenario with generically correlated fading, we show that the fading severity plays a very important role in determining the diversity gain of SM. In particular, the performance gain over single-antenna systems increases for fading channels less severe than Rayleigh fading, while it gets smaller for more severe fading channels. Also, it is shown that the impact of fading correlation at the transmitter is reduced for less severe fading. Finally, analytical frameworks and claims are substantiated through extensive Monte Carlo simulations.

I. INTRODUCTION

S PATIAL modulation (SM) is a digital modulation con- cept for Multiple-Input-Multiple-Output (MIMO) wireless systems, which has recently been introduced to increase the data rate of single-antenna systems by keeping a lowcomplexity transceiver design and by requiring no bandwidth expansion [START_REF] Chau | Space modulation on wireless fading channels[END_REF]- [START_REF] Di Renzo | Spatial modulation for multiple-antenna wireless systems -A survey[END_REF]. Unlike conventional spatial multiplexing schemes [START_REF] Song | A channel hopping technique I: Theoretical studies on band efficiency and capacity[END_REF], [START_REF] Mesleh | Spatial modulation[END_REF], in SM the multiplexing gain is realized through mapping a block of information bits into two information-carrying units: the conventional signalconstellation diagram (e.g., Phase Shift Keying (PSK) or Quadrature Amplitude Modulation (QAM)) and the so-called spatial-constellation diagram, which is the antenna-array at the transmitter. Like in conventional modulation schemes, the first sub-block of information bits determines the point of the signal-constellation diagram that is actually transmitted. Specific to SM is that the second sub-block identifies the single active transmit-antenna. As a result, the point of the signal-constellation diagram is transmitted through a single active antenna belonging to the spatial-constellation diagram. This simple modulation concept brings two main advantages: i) for each channel use, the data rate increases by a factor equal to the logarithm of the number of antennas at the transmitter [START_REF] Song | A channel hopping technique I: Theoretical studies on band efficiency and capacity[END_REF], [START_REF] Mesleh | Spatial modulation[END_REF]; and ii) the receiver can detect the whole block of bits through single-stream demodulation, as the second sub-block of bits is only implicitly transmitted through the activation of the transmit-antenna [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF]. With respect to single-antenna systems, the net gain is a multiplexing gain for the same decoding complexity, while the price to pay is the need of more antennas at the transmitter. Recent results have showcased the performance gain of SM with respect to other state-of-theart transmission technologies for single-and multi-antenna systems [START_REF] Mesleh | Spatial modulation[END_REF]- [START_REF] Sugiura | Generalized space-time shift keying designed for flexible diversity-, multiplexing-and complexitytradeoffs[END_REF]. Finally, it is worth mentioning that SM seems to be an appealing transmission technology for highrate and low-complexity MIMO implementations that exploit the recently proposed "massive MIMO" or "large-scale antenna systems" paradigm [START_REF] Marzetta | Noncooperative cellular wireless with unlimited numbers of base station antennas[END_REF], [START_REF] Wright | GreenTouch initiative: Large scale antenna systems demonstration[END_REF]. In fact, in these systems it is envisaged that improved performance and energy efficiency can be achieved by using tens or hundreds antenna elements at the base station, instead of exploiting base station cooperation. In this perspective, SM can be regarded as a low-complexity modulation scheme that exploits the "massive MIMO" idea but with a single active RF chain. The design of MIMO schemes that retain the benefits of multiple-antenna transmission while having a single active RF element is another recent and major trend in current and future MIMO research [START_REF] Mohammadi | Single RF front-end MIMO transceivers[END_REF].

Since its introduction, many researchers have been studying the performance of SM-MIMO over fading channels, either through time-consuming Monte Carlo simulations or through analytical modeling. Despite being more challenging, analytical modeling is, in general, preferred because: i) it allows a deeper understanding of the system performance; ii) it enables a simpler comparison with other competing transmission technologies; and iii) it provides opportunities for system optimization. A careful look at current state-ofthe-art reveals the following contributions. The vast majority of analytical frameworks are useful for a special case of SM, which is called Space-Shift-Keying (SSK) modulation [START_REF] Jeganathan | Space shift keying modulation for MIMO channels[END_REF]. SSK modulation is a low-complexity and low-data-rate version of SM where only the spatial-constellation diagram is exploited for data modulation. This transmission technology is extensively studied in [START_REF] Di Renzo | Improving the performance of space shift keying (SSK) modulation via opportunistic power allocation[END_REF]- [START_REF] Di Renzo | Space shift keying (SSK-) MIMO with practical channel estimates[END_REF] for various MIMO setups and channel models. The analytical study conducted in [START_REF] Di Renzo | Improving the performance of space shift keying (SSK) modulation via opportunistic power allocation[END_REF]- [START_REF] Di Renzo | Space shift keying (SSK-) MIMO with practical channel estimates[END_REF] has highlighted fundamental properties of the spatialconstellation diagram with respect to fading severity, channel correlation, power imbalance, transmit-diversity, as well as robustness to multiple-access interference and channel estimation errors. However, these frameworks are of limited use to understand the performance of SM, as the signal-constellation diagram is neglected. On the other hand, analytical modeling of SM is limited to a very few papers, which have various limitations. In [START_REF] Mesleh | Spatial modulation[END_REF] and [START_REF] Alshamali | Performance of spatial modulation in correlated and uncorrelated Nakagami fading channel[END_REF], the authors study a sub-optimal receiver design and the Symbol Error Probability (SEP) is computed by resorting to numerical integrations, which are not easy to compute and, in some cases, are numerically unstable. In [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF], the authors study the Average Bit Error Probability (ABEP) of the Maximum-Likelihood (ML) optimum receiver over independent and identically distributed (i.i.d.) Rayleigh fading. The framework is based on the union-bound method. Due to the absence of a scaling factor in the final formula [START_REF] Di Renzo | Upper bounds for the analysis of trellis coded spatial modulation over correlated fading channels[END_REF], this bound is rather weak. Furthermore, and, more importantly, the framework is valid for real-valued signal-constellation points, and, thus, it cannot be used, e.g., for PSK and QAM. In [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF], the authors provide a first closed-form framework to compute the ABEP of SM-MIMO over generically correlated Rician fading and for arbitrary modulation schemes. Also, the framework highlights some fundamental behaviors of SM, such as its incapability to achieve transmit-diversity [START_REF] Di Renzo | Transmit-diversity for spatial modulation (SM): Towards the design of high-rate spatially-modulated space-time block codes[END_REF]. However, [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF] has the following important limitations: i) the analysis is applicable to Rician fading only; ii) the framework is based on conventional union-bound methods, whose accuracy degrades for high modulation orders and small numbers of receive-antennas; and iii) signal-and spatialconstellation diagrams are treated as a single entity, which does not highlight the role played by each of them for various fading channels and modulation schemes.

In this depicted context, this paper is aimed at proposing a comprehensive analytical framework to study the ABEP of SM-MIMO over generalized fading channels. More specifically, we are interested in studying: i) the interplay of signaland spatial-constellation diagrams, and whether an optimal allocation of the information bits between them exists; ii) the effect of adding the spatial-constellation diagram on top of the signal-constellation diagram, and whether conventional signal modulation schemes (e.g., PSK and QAM) are the best choice for SM, or whether new optimal modulation schemes should be designed to fully exploit the benefits of this hybrid modulation scheme; and iii) advantages and disadvantages of SM with respect to conventional single-antenna PSK/QAM and SSK modulations, as a function of the MIMO setup and fading scenario. To this end, we propose a new analytical framework that foresees to write the ABEP as the summation of three contributions: 1) a term that mainly depends on the signal-constellation diagram; 2) a term that mainly depends on the spatial-constellation diagram; and 3) a joint term that depends on both constellation diagrams and highlights their interactions. This new analytical formulation allows us to introduce an improved union-bound method, which is more accurate than conventional union-bound methods, and enables a deeper understanding of the role played by both information carrying units for various channel models and MIMO setups. Some of the most important and general results of this paper are as follows: i) we show that SM outperforms single-antenna PSK/QAM schemes only for data rates greater than 2bpcu (bits per channel use), and that SM with QAM-modulated points in the signal-constellation diagram is never superior to single-antenna QAM for single-antenna receivers. On the other hand, for multi-antenna receivers and higher data rates SM can significantly outperform single-antenna PSK/QAM. Closed-form expressions of this performance gain over i.i.d. Rayleigh fading are given; ii) unlike single-antenna systems, where QAM always outperforms PSK, we show that SM with PSK-modulated points in the signal-constellation diagram can outperform SM with QAM-modulated points. This is due to the interactions of signal-and spatial-constellation diagrams, and for i.i.d. Rayleigh fading we show analytically that the ABEP of SM does not depend only on the Euclidean distance of the points in the signal-constellation diagram. This provides important information on how to conceive new modulation schemes that are specifically optimized for SM; iii) by considering, as a case study, Nakagami-m fading, we show that the fading severity, m Nak , plays an important role on the performance of SM. More specifically, like conventional modulation schemes, the ABEP gets worse for wireless channel with fading more severe (0.5 ≤ m Nak < 1) than Rayleigh. However, with respect to single-antenna PSK/QAM modulation, the performance gain of SM increases thanks to the higher diversity gain experienced by the information bits mapped onto the spatial-constellation diagram. On the contrary, the performance gain decreases for less severe (m Nak > 1) fading because the diversity-gain of the bits mapped onto the spatial-constellation diagram is independent of the fading parameter m Nak . Also, it is shown that channel correlation at the transmitter has a less impact when 0.5 ≤ m Nak < 1.

The remainder of this paper is organized as follows. In Section II, the system model is described. In Section III, the improved union-bound is introduced, and the specific contribution of spatial-and signal-constellation diagrams is shown. In Section IV, closed-form expressions of the ABEP for various fading channels and modulation schemes are provided. In Section V, the canonical i.i.d. Rayleigh fading channel is studied in detail, and closed-form expressions of the gain with respect to single-antenna PSK/QAM and SSK modulations are given. In Section VI, numerical results are shown to substantiate claims and analytical derivations. Finally, Section VII concludes this paper.

II. SYSTEM MODEL

We consider a generic N t × N r MIMO system, where N t and N r denote the antennas at the transmitter and at the receiver, respectively. We assume that the transmitter can send digital information via M complex symbols. In SM literature [START_REF] Di Renzo | Spatial modulation for multiple-antenna wireless systems -A survey[END_REF], the set of N t antennas (n t = 1, 2, . . . , N t ) is called spatial-constellation diagram, while the set of M complex points (χ l for l = 1, 2, . . . , M ) is called signal-constellation diagram. The basic idea of SM is to map blocks of information bits into two information carrying units [START_REF] Mesleh | Spatial modulation[END_REF]: 1) a symbol, which is chosen from the complex signal-constellation diagram; and 2) a single active transmit-antenna, which is chosen from the spatial-constellation diagram.

More specifically, SM works as follows. At the transmitter, the bitstream is divided into blocks containing log 2 (N t ) + log 2 (M ) bits each, with log 2 (N t ) and log 2 (M ) being the number of bits needed to identify a transmit-antenna in the spatial-constellation diagram and a symbol in the signalconstellation diagram, respectively. Each block is split into two sub-blocks of log 2 (N t ) and log 2 (M ) bits each. The bits in the first sub-block are used to select the transmitantenna that is switched on for transmission, while all the other antennas are kept silent. The bits in the second subblock are used to choose a symbol in the signal-constellation diagram. At the receiver, the detector can recover the whole block of log 2 (N t ) + log 2 (M ) information bits by solving an N t ×M -hypothesis detection problem, which jointly estimates the transmit-antenna that is not idle and the signal waveform that is transmitted from it.

In this paper, the generic block of log 2 (N t )+log 2 (M ) bits is called "message", and it is denoted by µ (n t , χ l ), where n t = 1, 2, . . . , N t and l = 1, 2, . . . , M univocally identify the active transmit-antenna, n t , and the complex symbol, χ l , transmitted from it, respectively. The N t × M messages are equiprobable.

A. Notation

Throughout this paper, we use the notation as follows. i) We adopt a complex-envelope signal representation. ii)

j = √ -1 is the imaginary unit. iii) (•) * is the complex- conjugate operator. iv) (x ⊗ y) (t) = +∞ -∞ x (ξ) y (t -ξ) dξ is the convolution of x (•) and y (•). v) |•| is the absolute value. vi) E {•} is the expectation operator. vii) Re {•} and Im {•} are real and imaginary part operators. viii) Γ (x) = +∞ 0 ξ x-1 exp (-ξ) dξ is the Gamma function. ix) Q (x) = 1 √ 2π +∞ x exp -t 2 2 dt is the Q-function. x) E m is the average energy per transmission. xi) T m is the transmission time-slot of each message. xii) w (•) is the unit-energy, i.e., +∞ -∞ |w (t)| 2 dt = 1, elementary transmitted pulse waveform that is non-zero only in [0, T m ].
xiii) The signal related to µ (n t , χ l ) and transmitted from antenna n t is denoted by s ( t| µ

(n t , χ l )) = √ E m χ l w (t). xiv) The generic point of the signal-constellation diagram, χ l , is defined as χ l = χ R l + jχ I l = κ l exp (jφ l ), where χ R l = Re {χ l }, χ I l = Im {χ l }, κ l = χ R l 2 + χ I l 2
, and φ l = arctan χ I l χ R l . xv) Pr {•} denotes probability. xvi) The noise η nr at the input of the n r -th (n r = 1, 2, . . . , N r ) receive-antenna is a complex Additive White Gaussian Noise (AWGN) process, with power spectral density N 0 per dimension. Across the receive-antennas, the noises η nr are statistically independent. • is the binomial coefficient. xxviii) N H ñt , χ l → (n t , χ l ) is the Hamming distance of messages µ ñt , χ l and µ (n t , χ l ), i.e., the number of positions where the information bits are different, with

0 ≤ N H ñt , χ l → (n t , χ l ) ≤ log 2 (N t M ).

B. Channel Model

We consider the frequency-flat slowly-varying fading channel model as follows:

• h nt,nr (ξ) = α nt,nr δ (ξτ nt,nr ) is the channel impulse response of the wireless link from the n t -th transmitantenna to the n r -th receive-antenna. α nt,nr = α R nt,nr + jα I nt,nr = β nt,nr exp (jϕ nt,nr ) is the complex channel gain, and τ nt,nr is the propagation time-delay. No specific distribution for the channel envelopes,

β nt,nr = α R nt,nr 2 + α I nt,nr
2 , the channel phases, ϕ nt,nr = arctan α I nt,nr α R nt,nr , and α R nt,nr = Re {α nt,nr }, α I nt,nr = Im {α nt,nr } is assumed a priori. • The delays τ nt,nr are assumed to be known at the receiver, i.e., perfect time-synchronization is considered. Also, we assume τ 1,1 ∼ = τ 1,2 ∼ = . . . ∼ = τ Nt,Nr , which is a realistic assumption when the distance between transmitter and receiver is much larger than the spacing of the antenna elements [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF]. Due to these assumptions, the delays τ nt,nr are neglected in the next sections.

C. ML-Optimum Detector

Let µ ñt , χ l be the transmitted message 1 . The signal received by the n r -th receive-antenna, if µ ñt , χ l is transmitted, is:

z nr (t) = s ch,nr t| µ ñt , χ l + η nr (t) (1) 
where 

s ch,nr t| µ ñt , χ l = s •| µ ñt , χ l ⊗ h ñt,nr (t) = √ E m α ñt,
ABEP = E α    1 N t M 1 log 2 (N t M ) Nt nt=1 M l=1 Nt ñt=1 M l=1 N H ñt , χ l → (n t , χ l ) Pr nt , χ l = (n t , χ l ) ñt , χ l    (3) ABEP ≤ 1 N t M 1 log 2 (N t M ) Nt nt=1 M l=1 Nt ñt=1 M l=1 N H ñt , χ l → (n t , χ l ) APEP ñt , χ l → (n t , χ l ) (4) 
Equation ( 1) is a general N t × M -hypothesis detection problem [START_REF] Simon | Digital Communication over Fading Channels[END_REF]Sec. 7.1], [START_REF] Van Trees | Detection, Estimation, and Modulation Theory, Part I[END_REF]Sec. 4.2,pp. 257] in AWGN, when conditioning upon fading channel statistics. Thus, the MLoptimum detector with full Channel State Information (CSI) and perfect time-synchronization at the receiver is given in (2) on top of this page [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF], [START_REF] Simon | Digital Communication over Fading Channels[END_REF]Sec. 7.1]. The outcome of (2) is the estimated message µ nt , χ l . Thus, the receiver is successful in decoding the whole block of bits if and only if µ nt , χ l = µ ñt , χ l , i.e., nt = ñt and χ l = χ l.

III. ABEP OVER GENERALIZED FADING CHANNELS: IMPROVED UNION-BOUND

The exact ABEP of the detector in (2) can be computed in closed-form, for arbitrary fading channels and modulation schemes, as given in (3) on top of this page [36, Eq. (4) and Eq. (5)], where: i) α is a short-hand to denote the set of N t × N r complex channel gains, i.e., α nt,nr for n t = 1, 2, . . . , N t , n r = 1, 2, . . . , N r ; and ii) E α {•} is the expectation computed over all the fading channels.

For arbitrary MIMO systems, the estimation of Pr nt , χ l = (n t , χ l ) ñt , χ l is very complicated, as it requires, in general, the computation of multidimensional integrals. Because of that, it is common practice to exploit union-bound methods [START_REF] Simon | Digital Communication over Fading Channels[END_REF] to compute the ABEP in (3), as shown in (4) on top of this page, where APEP ñt , χ l → (n t , χ l ) = E α(nt,ñt) Pr ñt , χ l → (n t , χ l ) is the Average Pairwise Error Probability (APEP), i.e., the probability of detecting µ(n t , χ l ) when, instead, µ ñt , χ l is transmitted, under the assumption that µ(n t , χ l ) and µ ñt , χ l are the only two messages possibly being transmitted, and E α(nt,ñt) {•} is the expectation computed over the fading channels from the n t -th and ñt -th transmit-antennas and the N r receive-antennas. The APEP is equal to [START_REF] Di Renzo | Space shift keying (SSK-) MIMO over correlated Rician fading channels: Performance analysis and a new method for transmit-diversity[END_REF]Eq. (10), Eq. ( 11)]:

APEP ñt , χ l → (n t , χ l ) = E α(nt,ñt) Pr D ñt , χ l < D (n t , χ l ) = E α(nt,ñt)    Q   γ Nr nr=1 α ñt,nr χ l -α nt,nr χ l 2      ( 5 
)
The union-bound in (4) has been used in [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF] 2 , [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF], [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF]- [START_REF] Di Renzo | Space shift keying (SSK-) MIMO over correlated Rician fading channels: Performance analysis and a new method for transmit-diversity[END_REF]. However, as mentioned in Section I, it has some limitations: i) the roles played by spatial-and signal-constellation diagrams (and the related bit mapping) are hidden in the four-fold summation; ii) it is not accurate enough for large M and small N r [START_REF] Hedayat | Analysis of space-time coding in correlated fading channels[END_REF], as it is shown in Section VI; and iii) its computational complexity is the same irrespective of modulation scheme and fading channel, when, instead, simpler formulas can be obtained in several cases.

A. Improved Upper-Bound

To avoid the limitations of the conventional union-bound when used for performance analysis of SM, and, more importantly, to get more insights about the expected performance of SM, we propose an improved upper-bound. The new bound is summarized in Proposition 1.

Proposition 1: The ABEP in (3) can be tightly upperbounded as follows:

ABEP ≤ ABEP signal + ABEP spatial + ABEP joint [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF] where ABEP signal , ABEP spatial , and ABEP joint are defined in [START_REF] Yang | Information-guided channel-hopping for high data rate wireless communication[END_REF] and [START_REF] Jeganathan | Space shift keying modulation for MIMO channels[END_REF] on top of the next page, and: i) N H (ñ t → n t ), N H χ l → χ l are the Hamming distances of the bits transmitted through spatial-and signal-constellation diagrams, respectively; ii) E α(nt) {•} is the expectation computed over the fading channels from the n t -th transmit-antenna to the N r receive-antennas; iii)

γ (nt,ñt) = Nr nr=1 |α ñt,nr -α nt,nr | 2 ; iv) γ (nt,χl,ñt,χl) = Nr nr=1 α ñt,nr χ l -α nt,nr χ l 2 ; v) Ψ l (n t , ñt ) = (1/π) π/2 0 M γ (n t , ñt ) γκ 2 l 2 sin 2 (θ) dθ; and vi) Υ n t , χ l , ñt , χ l = (1/π) π/2 0 M γ ( n t ,χ l , ñt ,χ l ) γ 2 sin 2 (θ) dθ. Proof : See Appendix I.
Let us analyze each term in [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF]. 1) ABEP signal is the summation of N t addends ABEP MOD (•). By direct inspection, we notice that each addend is the ABEP of a conventional modulation scheme whose points belong to the signal-constellation diagram of SM, and are transmitted only through the n tth transmit-antenna. So, ABEP MOD (•) depends only on the

                 ABEP signal = 1 Nt log 2 (M ) log 2 (NtM ) Nt nt=1 ABEP MOD (n t ) ABEP spatial = 1 M log 2 (Nt) log 2 (NtM ) M l=1 ABEP SSK (l) ABEP joint = 1 NtM 1 log 2 (NtM ) Nt nt=1 M l=1 Nt ñt =nt=1 M l =l=1 N H (ñ t → n t ) + N H χ l → χ l Υ n t , χ l , ñt , χ l (7)          ABEP MOD (n t ) = 1 M 1 log 2 (M ) M l=1 M l=1 N H χ l → χ l E α(nt) Pr χ l = χ l χ l ABEP SSK (l) = 1 Nt 1 log 2 (Nt) Nt nt=1 Nt ñt=1 [N H (ñ t → n t ) Ψ l (n t , ñt )] (8)
Euclidean distance of the points in the signal-constellation diagram, and, thus, ABEP signal can be regarded as the term that shows how the signal-constellation diagram affects the performance of SM. 2) ABEP spatial is the summation of M addends ABEP SSK (•). From, e.g., [24, Eq. ( 35)], we observe that ABEP SSK (•) is the ABEP of an equivalent SSK-MIMO scheme, where γ is replaced by γκ 2 l . Except for this scaling factor, ABEP SSK (•) only depends on the Euclidean distance of the points in the spatial-constellation diagram, and, thus, ABEP spatial can be regarded as the term that shows how the spatial-constellation diagram affects the performance of SM. 3) ABEP joint has a more complicated structure, and it depends on the Euclidean distance of points belonging to signal-and spatial-constellation diagrams. Thus, it is called "joint" because it shows how the interaction of these two nonorthogonal diagrams affects the ABEP of SM.

Finally, let us emphasize that: i) even though Proposition 1 might seem a simple and less compact rearrangement of (3), in Section IV and in Section V we show that (6)-( 8) allow us to get very simple, and, often, closed-form expressions for specific modulation schemes and fading channels; and ii) unlike ABEP SSK (•) and ABEP joint , which are obtained through conventional union-bound methods, ABEP MOD (•) is the exact error probability related to the signal-constellation diagram. In other words, no union-bound is used to compute this term. The exact computation of ABEP MOD (•) avoids the inaccuracies of using the union-bound method for performance analysis of conventional modulation schemes, especially for large M and small N r [START_REF] Simon | Digital Communication over Fading Channels[END_REF], [START_REF] Hedayat | Analysis of space-time coding in correlated fading channels[END_REF]. For this reason, we call the framework in ( 6)-( 8) improved union-bound. The better accuracy of this new bound is substantiated in Section VI through Monte Carlo simulations. For the convenience of the reader, in Table I we report the exact expression of ABEP MOD (•) in [START_REF] Jeganathan | Space shift keying modulation for MIMO channels[END_REF] for PSK and QAM modulations. Formulas in Table I are useful for arbitrary fading channels, and when Gray coding is used to map the information bits onto the signal-constellation diagram.

IV. SIMPLIFIED EXPRESSIONS OF THE ABEP

Proposition 1 provides a very general framework to compute the ABEP for arbitrary fading channels and modulation schemes. By direct inspection, we notice that ( 6)-( 8) can be computed in closed-form if the MGFs of the Signal-to-Noise-Ratios (SNRs) γ (n t ), γ (nt,ñt) , and γ (nt,χl,ñt,χl) are available in closed-form. If so, the ABEP can be obtained through the computation of simple single-integrals and summations. More specifically, M γ(nt) (•) is available in [START_REF] Simon | Digital Communication over Fading Channels[END_REF] for many correlated fading channels, which allows us to compute ABEP MOD (•), and, eventually, ABEP signal . On the other hand, the computation of M γ (n t , ñt ) (•) and M γ ( n t ,χ l , ñt ,χ l ) (•)

deserves further attention, as they are not available in the literature for arbitrary fading channels. Thus, the objective of this section is threefold: i) to compute closed-form expressions of M γ (n t , ñt ) (•) and M γ ( n t ,χ l , ñt ,χ l ) (•) for the most common fading channel models; ii) to provide simplified formulas of the ABEP in ( 7) and ( 8) for specific modulation schemes and fading channels; and iii) to analyze the obtained formulas to better understand SM. To our best knowledge, and according to Section I, such a comprehensive study is not available in the literature.

A. Identically Distributed Fading at the Transmitter

Let us consider the scenario with identically distributed fading at the transmitter. We study uncorrelated and correlated fading, where in the latter case the term "identically distributed" means that all pairs of wireless links are equi-correlated. In formulas, this implies:

M γ(nt) (s) = M MOD γ (s), M γ (n t , ñt ) (s) = M SSK γ (s), and M γ ( n t ,χ l , ñt ,χ l ) (s) = M γ ( χ l ,χ l ) (s) for n t = 1, 2, .
. . , N t and ñt = 1, 2, . . . , N t , which means that the MGFs are the same for each n t or for each pair (n t , ñt ). Accordingly, the ABEP in Proposition 1 can be simplified as shown in Corollary 1. Corollary 1: For identically distributed fading, [START_REF] Yang | Information-guided channel-hopping for high data rate wireless communication[END_REF] in Proposition 1 simplifies as shown in [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF] on top of the next page, where ABEP MOD is the error probability in Table I [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF] reduces to [START_REF] Hwang | Soft-output ML detector for spatial modulation OFDM systems[END_REF] on top of the next two pages. Likewise, if a constant-modulus modulation, i.e., κ l = κ 0 for l = 1, 2, . . . , M , and independent and uniformly distributed channel phases are considered, then ABEP joint in [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF] simplifies to [START_REF] Ulla Faiz | Recursive leastsquares adaptive channel estimation for spatial modulation systems[END_REF] on top of the next two pages.

with M γ(nt) (s) = M MOD γ (s). If a constant-modulus modulation is considered, i.e., κ l = κ 0 for l = 1, 2, . . . , M , then ABEP spatial in
Proof : ABEP signal in (9) follows immediately from [START_REF] Simon | Digital Communication over Fading Channels[END_REF] [38, Eq.( 2), Eq.( 7)]

             ABEP signal = log 2 (M ) log 2 (NtM ) ABEP MOD ABEP spatial = 1 M log 2 (Nt) log 2 (NtM ) Nt 2 M l=1 1 π π/2 0 M SSK γ γκ 2 l 2 sin 2 (θ) dθ ABEP joint = 1 M 1 log 2 (NtM ) M l=1 M l =l=1 Nt log 2 (Nt) 2 + N H χ l → χ l (N t -1) 1 π π/2 0 M γ ( χ l ,χ l ) γ 2 sin 2 (θ) dθ (9) 
M = I M × J M . SQUARE-QAM MODULATION IS OBTAINED BY SETTING I M = J M = √ M . THE MGF OF γ (nt) = Nr nr =1 |hn t ,nr | 2 , M γ(n t ) (•), IS AVAILABLE IN CLOSED-FORM IN
             ABEP MOD (nt) = 1 log 2 (M ) M -1 l=1 2 l M -l M + 2 log 2 (M ) k=2 l 2 k -l 2 k P l (nt) P l (nt) = 1 2π π[1-(2l-1)/M ] 0 T - l (θ; nt) dθ -1 2π π[1-(2l+1)/M ] 0 T + l (θ; nt) dθ T - l (θ; nt) = M γ(n t ) 2γ sin 2 [π(2l-1)/M ] sin 2 (θ) ; T + l (θ; nt) = M γ(n t ) 2γ sin 2 [π(2l+1)/M ] sin 2 (θ) QAM [34, Eq.(4.2)]
[39, Eq.( 22)]

                   ABEP MOD (nt) = 1 log 2 (M ) log 2 (I M ) l=1 P l (I M ; nt) + log 2 (J M ) l=1 P l (J M ; nt) P l (K; nt) = 2 K 1-2 -l K-1 k=0 (-1) 2 l-1 k K 2 l-1 -2 l-1 k K + 1 2 T k (nt) T k (nt) = 1 π π/2 0 M γ(nt) γ 6(2k+1) 2 (I 2 M +J 2 M -2) sin 2 (θ) dθ i.i.d. Rayleigh Fading (ABEP Rayleigh MOD = ABEP MOD (nt) = ABEP MOD ) R (ξ) = 1 2 1 - ξ 2+ξ Nr Nr -1 nr =0 Nr +1-r r 1 2 1 + ξ 2+ξ nr PSK          P l (nt) = P l = (1/2) I Nr c -, ϑ --(1/2) I Nr c + , ϑ + I Nr c ± , ϑ ± is available in [34, Eq.(5A.24)] c ± = 4σ 2 0 γ sin 2 [π (2l ± 1) /M ] ; ϑ ± = π -π [(2l ± 1) /M ]
PSK approx.

[34, Eq.(8.119))]

ABEP MOD ∼ = 2 max{log 2 (M ),2} max{M/4,1} k=1 R 4σ 2 0 γ sin 2 (2k-1)π M QAM [34, Eq.(5A.4b)] T k (nt) = T k = R 24σ 2 0 γ(2k+1) 2 I 2 M +J 2 M -2 i.i.d. Rayleigh Fading -High-SNR (ABEP signal = [log 2 (M ) / log 2 (NtM )] ABEP Rayleigh MOD ) PSK [34, Eq.(8.119)]
[40, Eq.(14.4.18)]

     G PSK MOD (M ) = 2 max{log 2 (M ),2} max{M/4,1} k=1 sin (2k-1)π M -2Nr ABEP Rayleigh MOD γ≫1 = 2 -2Nr 2Nr -1 Nr G PSK MOD (M ) 4σ 2 0 γ -Nr QAM [40, Eq.(14.4.18)]                    G QAM MOD (K; k) = 2 K 1-2 -l K-1 k=0 (-1) 2 l-1 k K 2 l-1 -2 l-1 k K + 1 2 (2k + 1) -2Nr G QAM MOD (K) = 1 log 2 (M ) 6 I 2 M +J 2 M -2 -Nr log 2 (K) l=1 G QAM MOD (K; k) ABEP Rayleigh MOD γ≫1 = 2 -Nr 2Nr -1 Nr G QAM MOD (I M ) + G QAM MOD (J M ) 4σ 2 0 γ -Nr ABEP spatial = N t 2 log 2 (N t ) log 2 (N t M ) 1 π π/2 0 M SSK γ γκ 2 0 2 sin 2 (θ) dθ (10) 
ABEP joint = M (N t -1) 2 log 2 (M ) log 2 (N t M ) + N t (M -1) 2 log 2 (N t ) log 2 (N t M ) 1 π π/2 0 M SSK γ γκ 2 0 2 sin 2 (θ) dθ (11) ρ (nt,nr,ñt,ñr) Nak = E {[β nt,nr -E {β nt,nr }] [β ñt,ñr -E {β ñt,ñr }]} E [β nt,nr -E {β nt,nr }] 2 E [β ñt,ñr -E {β ñt,ñr }] 2 (12) 
(7) by taking into account that for identically distributed fading the M addends of the summation are all the same. ABEP spatial in ( 9) can be obtained by noticing that: i) for identically distributed fading, Ψ l (n t , ñt ) in ( 8) is the same for n t = 1, 2, . . . , N t and ñt = 1, 2, . . . , N t , and, thus, it can be moved out of the two-fold summation; and ii)

Nt nt=1 Nt ñt=1 N H (ñ t → n t ) = N 2 t 2 log 2 (N t )
for any bit mapping. Finally, some algebraic manipulations lead to [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF]. Equation [START_REF] Hwang | Soft-output ML detector for spatial modulation OFDM systems[END_REF] follows from ( 9) with κ l = κ 0 for l = 1, 2, . . . , M . ABEP joint in ( 9) can be obtained as follows: i) for identically distributed fading, Υ n t , χ l , ñt , χ l in ( 7) can be moved out of the two-fold summation with indexes n t and ñt because it is the same for each pair (n t , ñt ); and ii)

Nt nt=1 Nt ñt =nt=1 N H (ñ t → n t ) + N H χ l → χ l = N 2 t 2 log 2 (N t ) + N t (N t -1) N H χ l → χ l
for any bit mapping. Finally, some simplifications lead to [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF]. Equation ( 11) can be obtained from ( 9) and the following considerations: i) if the channel phases are uniformly distributed, then γ (nt,χl,ñt,χl) = Nr nr=1 α ñt,nr χ lα nt,nr χ l

2 d = Nr nr=1 α ñt,nr κ l -α nt,nr κ l 2 .
In fact, since adding a constant phase term to a uniformly distributed phase still yields a uniformly distributed phase, i.e., (ϕ nt,nr + φ l )

d = ϕ nt,nr , then α nt,nr χ l = [β nt,nr exp (jϕ nt,nr )] [κ l exp (jφ l )] = β nt,nr κ l exp (j (ϕ nt,nr + φ l )) d = β nt,nr κ l exp (jϕ nt,nr ) = α nt,nr κ l ; ii) if κ l = κ 0 for l = 1, 2, . . . , M , then γ (nt,χl,ñt,χl) = κ 2 0 Nr nr=1 |α ñt,nr -α nt,nr | 2 = κ 2 0 γ (nt,ñt) , which for identically distributed fading implies M γ ( χ l ,χ l ) (s) = M SSK γ κ 2 0 s
. Thus, the integral in ( 9) can be replaced by the integral in [START_REF] Ulla Faiz | Recursive leastsquares adaptive channel estimation for spatial modulation systems[END_REF]; and iii) for a constantmodulus modulation, the integral in (9) can be moved out of the two-fold summation, which can be simplified using the identity

M l=1 M l=1 N H χ l → χ l = M 2 2 log 2 (M )
for any bit mapping. Finally, some algebraic manipulations lead to [START_REF] Ulla Faiz | Recursive leastsquares adaptive channel estimation for spatial modulation systems[END_REF]. This concludes the proof.

Corollary 1 leads to two important considerations about the performance of SM: i) ABEP signal and [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF] shows that, for identically distributed fading, the ABEP of SM is independent of the bit mapping of the spatial-constellation diagram. This result is reasonable and agrees with intuition: if the channels are statistically identical, on average the Euclidean distance of pairs of channel impulse responses is the same. In this case, the bit mapping has no role in determining the ABEP. On the other hand, the complex-valued points of the signalconstellation diagram have different Euclidean distances, and this bit mapping plays an important role; and ii) under some realistic assumptions (i.e., constant-modulus modulation and uniform channel phases), ABEP joint in [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF], which in the most general case depends on both spatial-and signal-constellation diagrams, depends only on the signal-constellation diagram. Thus, since there are no terms in Table I, [START_REF] Hwang | Soft-output ML detector for spatial modulation OFDM systems[END_REF], and ( 11) that depend on both constellation diagrams, we conclude that they can be optimized individually. In particular, the best bit mapping for the signal-constellation diagram turns out to be the conventional one based only on the Euclidean distance.

Finally, we notice that, e.g., [START_REF] Hwang | Soft-output ML detector for spatial modulation OFDM systems[END_REF] and [START_REF] Ulla Faiz | Recursive leastsquares adaptive channel estimation for spatial modulation systems[END_REF] are very simple to be computed, and avoid the computation of fold-summations on N t and M . This is an important difference with respect to other frameworks available in the literature, where fourfold summations are always required, regardless of modulation scheme and channel model [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF], [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF]. Also, Corollary 1 simplifies the frameworks in [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF] and [START_REF] Di Renzo | Space shift keying (SSK-) MIMO over correlated Rician fading channels: Performance analysis and a new method for transmit-diversity[END_REF] for SSK modulation, as the two-fold summation can be avoided for some fading channels and modulation schemes. Furthermore, we mention that Corollary 1 provides closed-form results if the MGFs, which depend on the specific fading channel model, are available in closed-form, as well as if the related finite integral can be computed explicitly. In Section IV-B and in Section IV-C, we show some fading scenarios (Nakagami-m and Rice fading with arbitrary fading parameters and correlation) where the MGFs can be obtained in closed-form. Also, in Section V we study the i.i.d. Rayleigh fading scenario where foldsummations can be avoided and integrals can be computed in closed-form, thus leading to a very simple analytical framework for system analysis and optimization.

B. Nakagami-m Envelopes with Uniform Phases

In this section, the fading envelopes β nt,nr are Nakagami-m RVs with fading severity m , is defined in [START_REF] Di Renzo | Performance comparison of different spatial modulation schemes in correlated fading channels[END_REF] on top of this page. Also, the channel phases, ϕ nt,nr , are independent and

(nt,nr) Nak = E β 2 nt,nr 2 E β 2 nt,nr -E β 2 nt,
Mγ (n t , ñt ) (s) = Σ -1 trid m Nak 2 (4m Nak -4) Γ (m Nak ) +∞ k 1 =0 +∞ k 2 =0 +∞ k 3 =0   1 4 k 1 +k 2 +k 3 |p 12 | 2k 1 |p 23 | 2k 2 |p 34 | 2k 3 F (p 11 ,p 33 ) k (s) F (p 22 ,p 44 ) k (s) (k 1 !) (k 2 !) (k 3 !) Γ (k 1 + m Nak ) Γ (k 2 + m Nak ) Γ (k 3 + m Nak )   (13)        F (p11,p33) k (s) = (1/4) s -(m Nak +k1) p11 s -(m Nak +k2+k3) p33 G 1,2 2,2 -s 2 sp 11 sp 33 1 -m Nak -k 2 -k 3 1 -m Nak -k 1 0 0 F (p22,p44) k (s) = (1/4) s -(m Nak +k1+k2) p22 s -(m Nak +k3) p44 G 1,2 2,2 -s 2 sp 22 sp 44 1 -m Nak -k 3 1 -m Nak -k 1 -k 2 0 0 (14) 
uniformly distributed RVs in [0, 2π). We adopt the notation ϕ nt,nr ∼ U (0, 2π). Finally, channel phases and fading envelopes are assumed to be independent. Given this fading model, let us analyze and explicitly compute each term in [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF].

1) ABEP signal : M γ(nt) (•) has been widely studied in the literature, and closed-form expressions for non-identically distributed and arbitrary correlated Nakagami-m fading can be found in [34, Sec. 9.6.4].

2) ABEP spatial : For Nakagami-m fading, M γ (n t , ñt ) (•) is not well-known in the literature, and, only recently, it has been analyzed in [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF] for single-antenna receivers, i.e., N r = 1. Thus, we need to generalize [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF] for our system model. Two case studies are considered: i) correlated fading at the transmitter and independent fading at the receiver; and ii) correlated fading at both ends of the MIMO channel. In the first case study, by exploiting the independence of the fading at the receiver, we have M γ (n t , ñt ) (s) = 

(•) for N r = 2.
Proposition 2: Given 2N r arbitrary distributed and correlated Nakagami-m RVs with fading envelopes (β nt,nr and β ñt,nr ) distributed according to the multi-variate Nakagami-m PDF in [41, Eq. ( 2)] and channel phases uniformly and i.i.d. in [0, 2π), then M γ (n t , ñt ) (•) for N r = 2 is given in [START_REF] Serafimovski | Fractional bit encoded spatial modulation (FBE-SM)[END_REF] on top of this page, where: i) Σ is the 2N r × 2N r correlation matrix of the Gaussian RVs associated to β nt,nr and β ñt,nr , which can be computed from the amplitude correlation coefficients ρ (nt,nr,ñt,ñr) Nak by using the method in [START_REF] Zhang | A decomposition technique for efficient generation of correlated Nakagami fading channels[END_REF]; ii) Σ trid is the tridiagonal approximation of Σ, which can be obtained as described in [41, Sec. IV] and Appendix II; iii)

p ab = Σ -1 trid (a, b) are the entries of Σ -1 trid ; iv) m Nak = m (nt,nr) Nak = m
(ñt,nr) Nak is the fading parameter common to all links; and v) F [START_REF] Mesleh | Trellis coded spatial modulation[END_REF] on top of this page, where s p = s + (p/2).

(p11,p33) k (•), F (p22,p44) k (•) are defined in
Proof : See Appendix II. Formulas for N r > 2 can be obtained as described in Appendix II. For arbitrary N r , the final formula is given by the (2N r -1)-fold series of the product of N r terms F

(•,•) k (•).
It is worth mentioning that [START_REF] Mesleh | Trellis coded spatial modulation[END_REF] gives an exact result when Σ is tridiagonal, i.e., Σ = Σ trid . On the contrary, for arbitrary correlation, and by using the Green method [41, Sec. IV], it provides a very tight approximation (see Section VI). Finally, we mention that the series in ( 14) converge very quickly thanks to the factorial and the Gamma functions in the denominator.

3) ABEP joint : To compute M γ ( n t ,χ l , ñt ,χ l ) (•) we need Proposition 3. Proposition 3: For Nakagami-m fading envelopes and uniform phases, γ (nt,χl,ñt,χl) reduces to γ (nt,χl,ñt,χl) =

γ (nt,κl,ñt,κl) = Nr nr=1 α ( l) ñt,nr -α (l) nt,nr 2 
, where

α (l) nt,nr d = β (l) nt,nr exp (jϕ nt,nr ), β (l) nt,nr 
= κ l β nt,nr , and

β (l) nt,nr ∼ N m (nt,nr) Nak , Ω (nt,nr;l) Nak with Ω (nt,nr;l) Nak = κ 2 l Ω (nt,nr) Nak
.

Proof : The equality in law α

(l) nt,nr d = β (l)
nt,nr exp (jϕ nt,nr ) can be obtained by using the same analytical development used for [START_REF] Ulla Faiz | Recursive leastsquares adaptive channel estimation for spatial modulation systems[END_REF] in Corollary 1, and, more specifically, the identity in law (ϕ nt,nr + φ l ) d = ϕ nt,nr . This concludes the proof. Proposition 3 points out that γ (nt,ñt) and γ (nt,χl,ñt,χl) are related by a scaling factor in the mean power of each channel envelope, i.e., Ω (nt,nr;l) Nak Ω (nt,nr) Nak = κ 2 l . Accordingly, M γ ( n t ,χ l , ñt ,χ l ) (•) can be computed by using the same frameworks used to compute M γ (n t , ñt ) (•). In other words, for arbitrary correlation, M γ ( n t ,χ l , ñt ,χ l ) (•) is still given by [START_REF] Serafimovski | Fractional bit encoded spatial modulation (FBE-SM)[END_REF] but with a different correlation matrix Σ.

4) Diversity Analysis:

The accurate analysis of ABEP signal , ABEP spatial , and ABEP joint through closedform expressions of the MGFs allows us to provide important considerations about the diversity gain [START_REF] Wang | A simple and general parameterization quantifying performance in fading channels[END_REF] of SM in Nakagami-m fading, as well as to understand the constellation diagram that dominates the performance of SM for high-SNR. The main result is given in Proposition 4. for each wireless link. The diversity gain, Div SM , of SM is equal to Div SM = min {N r , m Nak N r }.

Proof : From (6), we have Div SM = min {Div signal , Div spatial , Div joint }, where Div signal , Div spatial , and Div joint are the diversity gains of ABEP signal , ABEP spatial , and ABEP joint , respectively. In fact, for high-SNR the worst term dominates the slope of the ABEP, and, thus, the diversity gain [START_REF] Wang | A simple and general parameterization quantifying performance in fading channels[END_REF]. From Section IV-B.1 and

         ABEP spatial = 1 Nt log 2 (NtM ) Nt nt=1 Nt ñt=1 1 π π/2 0 M SSK γ γκ 2 0 2 sin 2 (θ) dθ ABEP joint = 1 Nt log 2 (NtM ) Nt nt=1 Nt ñt =nt=1 M log 2 (M ) 2 + N H (ñ t → n t ) (M -1) 1 π π/2 0 M SSK γ γκ 2 0 2 sin 2 (θ) dθ (15) 
[34, Sec. 9.6.4], it follows that Div signal = m Nak N r . From Section IV-B.2, Section IV-B.3, [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF], and [START_REF] Di Renzo | Bit error probability of space modulation over Nakagami-m fading: Asymptotic analysis[END_REF], it follows that Div spatial = Div joint = N r . In fact, as analytically shown in [START_REF] Di Renzo | Bit error probability of space modulation over Nakagami-m fading: Asymptotic analysis[END_REF], M γ (n t , ñt ;nr ) (•) and

F (•,•) k (•)
have unit diversity gain regardless of the fading severity m Nak , and, thus, the diversity is determined only by the number N r of antennas at the receiver. This concludes the proof.

Proposition 4 unveils important properties of SM and provides information about the best scenarios where SM should be used. More specifically: i) in scenarios with less severe fading than Rayleigh, i.e., m Nak > 1, we have Div SM = Div spatial = Div joint = N r . We conclude that the ABEP is mainly determined by the spatial-constellation diagram (i.e., ABEP spatial ≫ ABEP signal and ABEP joint ≫ ABEP signal ), and that the diversity gain is independent of fading severity; ii) in scenarios with more severe fading than Rayleigh, i.e., 0.5 ≤ m Nak < 1, we have Div SM = Div signal = m Nak N r . We conclude that the ABEP is mainly determined by the signal-constellation diagram (i.e., ABEP signal ≫ ABEP spatial and ABEP signal ≫ ABEP joint ), and that the diversity gain strongly depends on fading severity; iii) due to the increasing diversity gain of ABEP signal with m Nak [START_REF] Simon | Digital Communication over Fading Channels[END_REF], it is expected that ABEP signal provides a negligible contribution for increasing m Nak , and that the ABEP gets better with m Nak . This behavior is similar to conventional modulations [START_REF] Simon | Digital Communication over Fading Channels[END_REF], but different from SSK [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF], [START_REF] Di Renzo | Space shift keying (SSK-) MIMO over correlated Rician fading channels: Performance analysis and a new method for transmit-diversity[END_REF]; iv) from [START_REF] Simon | Digital Communication over Fading Channels[END_REF], it is known that conventional single-antenna systems have the same diversity gain as ABEP signal , i.e., Div conventional = Div signal = m Nak N r . Thus, with respect to conventional modulations, the performance gain of SM is expected to increase for 0.5 ≤ m Nak < 1, while it is expected to decrease for m Nak > 1. This conclusion agrees with intuition, since SM encodes part of the information bits onto the spatialconstellation diagram, whose points are more closely-spaced if m Nak > 1; and v) from [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF], [START_REF] Di Renzo | Bit error probability of space modulation over Nakagami-m fading: Asymptotic analysis[END_REF], it is known that the diversity gain of SSK modulation is the same as ABEP spatial , i.e., Div SSK = Div spatial = N r , which is independent of m Nak . Thus, unlike conventional modulation schemes and SM, SSK modulation does not experience any diversity reduction when 0.5 ≤ m Nak < 1, and it can be concluded that, thanks to the higher diversity gain, it turns out to be, among SM and conventional modulations, the best transmission scheme in scenarios with fading less severe than Rayleigh. The price to be paid is the need of many antennas at the transmitter to achieve the same rate. On the contrary, in more severe fading channels, SSK modulation turns out to be worse than conventional modulation. In conclusion, the performance of SM in Nakagami-m fading strongly depends on m Nak , and there is no clear transmission technology better than others for any m Nak . This important result suggests the adoption of a multi-mode adaptive transmission scheme, which can switch among the best modulation according to the fading severity and the desired rate.

Finally, we close this section with the following corollary.

Corollary 2: For Nakagami-m fading envelopes, uniform channel phases, and a constant-modulus modulation, i.e., κ l = κ 0 for l = 1, 2, . . . , M , ABEP spatial and ABEP joint in ( 7) can be simplified as shown in [START_REF] Di Renzo | Performance analysis of spatial modulation[END_REF] on top of this page.

Proof : Equation ( 15) can be obtained through analytical steps similar to [START_REF] Hwang | Soft-output ML detector for spatial modulation OFDM systems[END_REF] and [START_REF] Ulla Faiz | Recursive leastsquares adaptive channel estimation for spatial modulation systems[END_REF], but without the assumption of identically distributed fading.

Corollary 2 shows that, for a constant-modulus modulation, ABEP spatial and ABEP joint can be computed only through M γ (n t , ñt ) (•) = M SSK γ (•). This makes even more evident the connection established between M γ (n t , ñt ) (•) and M γ ( n t ,χ l , ñt ,χ l ) (•) in Proposition 3. We note that in (15) neither ABEP spatial nor ABEP joint depend on the bit mapping used for the signal-constellation diagram. Thus, the optimality of usual bit mappings adopted for ABEP signal seems to be preserved.

C. Rician Fading

Let us consider a generic Rician fading [START_REF] Di Renzo | Space shift keying (SSK-) MIMO over correlated Rician fading channels: Performance analysis and a new method for transmit-diversity[END_REF], [START_REF] Cheng | Capacity of a class of fading channels with channel state information (CSI) feedback[END_REF]. In this case, α nt,nr are generically correlated complex Gaussian RVs, and α R nt,nr and α I nt,nr are independent by definition. We adopt the notation µ R nt,nr = E α R nt,nr , µ I nt,nr = E α I nt,nr , and σ 2 nt,nr

= E α R nt,nr -µ R nt,nr 2 = E α I nt,nr -µ I nt,nr 2 
. Also, we use the short-hands α R nt,nr ∼ G µ R nt,nr , σ 2 nt,nr and α I nt,nr ∼ G µ I nt,nr , σ 2 nt,nr . The analysis of Rician fading is simpler than Nakagami-m fading, and a unified framework can be used to compute [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF]. The main enabling result is summarized in Proposition 5.

Proposition 5: Given a complex Gaussian RV α nt,nr , then α 

(l) nt,nr = χ l α nt,nr is still a complex Gaussian RV such that Re α (l) nt,nr ∼ G µ R nt,nr,l , κ 2 l σ 2 nt,nr , Im α (l) nt,nr ∼ G µ I nt,nr,l , κ 2 l σ 2 nt,nr , with µ R nt,nr,l = µ R nt,nr κ l cos (φ l ) - µ I nt,
             ABEP signal = log 2 (M ) log 2 (NtM ) ABEP Rayleigh MOD ABEP spatial = 1 M log 2 (Nt) log 2 (NtM ) Nt 2 M l=1 R 4σ 2 0 γκ 2 l ABEP joint = 1 M 1 log 2 (NtM ) M l=1 M l =l=1 Nt log 2 (Nt) 2 + (N t -1) N H χ l → χ l R 2σ 2 0 γ κ 2 l + κ 2 l (16)    ABEP spatial = Nt 2 log 2 (Nt) log 2 (NtM ) R 4σ 2 0 γκ 2 0 ABEP joint = Nt(M -1) 2 log 2 (Nt) log 2 (NtM ) + M (Nt-1) 2 log 2 (M ) log 2 (NtM ) R 4σ 2 0 γκ 2 0 ( 17 
)
the same variance, simple algebraic manipulations conclude the proof.

From Proposition 5, we conclude that γ (nt) , γ (nt,ñt) , and γ (nt,χl,ñt,χl) in Table I and( 6)-( 8) are all given by the summation of N r square envelopes of arbitrary distributed and correlated Gaussian RVs. Thus, the related MGF can be computed by using the so-called Moschopoulos method [START_REF] Cheng | Capacity of a class of fading channels with channel state information (CSI) feedback[END_REF]. More specifically: i) M γ (n t ) (•) can be obtained from [45, Eq. ( 25)]; ii) M γ (n t , ñt ) (•) can be found in [26, Eq. ( 15)]; and iii) M γ ( n t ,χ l , ñt ,χ l ) (•) can still be obtained from [26, Eq. ( 15)] thanks to Proposition 5. The only difference between M γ (n t , ñt ) (•) and M γ ( n t ,χ l , ñt ,χ l ) (•) are the parameters of each Gaussian RV, which, however, can be related to one another as shown in Proposition 5. The same applies to the covariance matrices. 1) Diversity Analysis: Diversity can be studied by using the Moschopoulos method. In fact, [START_REF] Cheng | Capacity of a class of fading channels with channel state information (CSI) feedback[END_REF]Sec. 4.2] and [26, Sec. III-C] show that each ABEP term in [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF] has diversity gain equal to N r , i.e., Div SM = N r . Thus, unlike Nakagami-m fading, in Rician fading the ABEPs in (6) have the same slope. However, [26, Sec. V] has pointed out that ABEP spatial and ABEP signal have opposite behavior with the Rician factor: ABEP spatial increases and ABEP signal decreases when the Rician factor increases, respectively. So, the ABEPs in [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF] have different coding gains depending on the fading severity.

The Moschopoulos framework can be simplified for some fading channels, as shown in Corollary 3.

Corollary 3: For Rician fading, a constant-modulus modulation, and zero-mean fading, i.e., µ R nt,nr = µ I nt,nr = 0, then ABEP spatial and ABEP joint in (7) can be simplified as shown in [START_REF] Di Renzo | Performance analysis of spatial modulation[END_REF].

Proof : For zero-mean fading and a constant-modulus modulation, γ (nt,χl,ñt,χl) d = κ 2 0 γ (nt,ñt) because µ R nt,nr,l and µ I nt,nr,l are independent of φ l . Then, considerations similar to Corollary 2 lead to [START_REF] Di Renzo | Performance analysis of spatial modulation[END_REF].

We emphasize that, even though Corollary 2 and Corollary 3 provide the same result, the assumptions are different. In Nakagami-m fading, the channel phases need to be uniformly distributed. On the other hand, in Rician fading the complex channel gains need to have zero-mean (i.e., zero Rician factor). Furthermore, it should be noted that even though Rayleigh fading is a special case of either Rician or Nakagami-m fading, for correlated channels exploiting the framework for Rician fading leads to a more straightforward analytical derivation.

V. ABEP OVER I.I.D RAYLEIGH FADING

In this section, we study the canonical i.i.d. Rayleigh fading scenario. Our contribution is threefold: i) i.i.d. Rayleigh fading has already been studied in [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF]. However, [START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF] is useful only for real-valued signal-constellation points, while our framework is simple and applicable to generic signal-constellation diagrams. Also, we provide asymptotically-tight bounds, which highlight fundamental properties of SM; ii) i.i.d. Rayleigh fading is a special case of either Rician or Nakagami-m fading [START_REF] Simon | Digital Communication over Fading Channels[END_REF]. We show how the integrals in ( 6) can be computed in closed-form; and iii) closed-form expressions of the SNR difference between SM and other similar transmission technologies are provided. This allows us to understand the best transmission technology to use for every MIMO setup and data rate. To our best knowledge, these contributions make this section novel and important to understand the achievable performance of SM.

Let us consider the channel model in Section IV-C, which for i.i.d. Rayleigh fading reduces to µ R nt,nr = µ I nt,nr = 0 and σ 2 nt,nr = σ 2 0 . Corollary 4 summarizes the ABEP of SM over i.i.d. Rayleigh fading.

Corollary 4: For i.i.d. Rayleigh fading, the ABEP in (6) reduces to [START_REF] Sugiura | Coherent and differential spacetime shift keying: A dispersion matrix approach[END_REF] shown on top of this page, where ABEP Rayleigh MOD and R (•) are defined in Table I. Furthermore, for a constantmodulus modulation ABEP spatial and ABEP joint simplify as shown in [START_REF] Di Renzo | Transmit-diversity for spatial modulation (SM): Towards the design of high-rate spatially-modulated space-time block codes[END_REF] 

(s) = 1 + 2σ 2 0 κ 2 l + κ 2 l s -Nr
. The final integral can be computed using [34, Eq. (5A.4b)]. Finally, [START_REF] Di Renzo | Transmit-diversity for spatial modulation (SM): Towards the design of high-rate spatially-modulated space-time block codes[END_REF] follows from [START_REF] Sugiura | Coherent and differential spacetime shift keying: A dispersion matrix approach[END_REF] with κ l = κ 0 for l = 1, 2, . . . , M , M l=1 M l=1 N H χ l → χ l = M 2 2 log 2 (M ), and simple algebraic manipulations. This concludes the proof.

Formulas in ( 16) and ( 17) provide important considerations about the performance of SM. For example, [START_REF] Sugiura | Coherent and differential spacetime shift keying: A dispersion matrix approach[END_REF] shows that, regardless of the signal-constellation diagram, the bit mapping on the spatial-constellation diagram has no influence on the 

   ABEP spatial γ≫1 = Nt 2 1 M log 2 (Nt) log 2 (NtM ) 2 -Nr 2Nr-1 Nr Θ (M,Nr) spatial 4σ 2 0 γ -Nr ABEP joint γ≫1 = Nt 2 1 M log 2 (Nt) log 2 (NtM ) 2Nr-1 Nr Θ (M,Nr) joint + Nt-1 M 1 log 2 (NtM ) 2Nr-1 Nr Θ (M,Nr,H) joint 4σ 2 0 γ -Nr (18) 
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performance of SM. On the other hand, the bit mapping on the signal-constellation diagram plays an important role in ABEP joint . In particular, while conventional bit mappings (e.g., Gray coding) based on the Euclidean distance of the signal-constellation points turn out to be optimal to minimize ABEP signal , additional constraints might be introduced on the optimal choice of the signal-constellation diagram and on the related bit mapping to minimize ABEP joint (see Corollary 5 below as well). On the other hand, for a constantmodulus modulation we notice that ABEP joint is independent of the properties of the the signal-constellation diagram, and only depends on its cardinality M . Thus, the optimization criterion based on the Euclidean distance, which is optimal for ABEP signal , turns out to be optimal for the overall ABEP. Finally, we remark that ABEP spatial and ABEP joint are independent of the phases of the complex points of the signalconstellation diagram. Only the moduli of these points play a role. This result suggests that, to minimize ABEP spatial and ABEP joint , we can focus our attention only on the moduli and can neglect the phases.

To enable a deeper understanding of the achievable performance and a simpler comparison with other transmission technologies, in Corollary 5 we provide a tight high-SNR approximation of ( 16) and [START_REF] Di Renzo | Transmit-diversity for spatial modulation (SM): Towards the design of high-rate spatially-modulated space-time block codes[END_REF].

Corollary 5: For high-SNR, ABEP spatial and ABEP joint in ( 16) can be simplified as shown in [START_REF] Basar | Space-time block coded spatial modulation[END_REF] . Formulas for ABEP signal can be found in Table I. [START_REF] Proakis | Digital Communications[END_REF]Eq. (14.4.18)] and some algebra.

Proof : Equation (18) follows from R (ξ) γ≫1 = 2 -Nr 2Nr-1 Nr ξ -Nr
The high-SNR framework in ( 18) is simple, accurate, and shed lights on the performance of SM. i) By using [START_REF] Wang | A simple and general parameterization quantifying performance in fading channels[END_REF], it enables us to compute coding and diversity gains. In particular, the diversity gain is N r , while the coding gain depends on the MIMO setup, i.e., N t , M , and the spatial-constellation diagram. ii) The impact of the signal-constellation diagram comes into play only through Θ should be kept as small as possible for a given average energy constraint. Thus, the Euclidean distance criterion used for ABEP signal along with the minimization of the coefficients above give the cost functions that need to be jointly considered to optimize the performance of SM. In Section VI, we show the very interesting, and apparently unexpected, result that, for . Since the ABEP of SM is a weighted summation of all these terms, it turns out that SM-PSK might outperform SM-QAM. This leads to two important conclusions: 1) the best modulation scheme (between PSK and QAM) to use depends on M and N t for a given data rate; and 2) neither PSK nor QAM seem to be optimal signal-modulation schemes for SM. However, [START_REF] Basar | Space-time block coded spatial modulation[END_REF] provides the criterion to compute the optimal modulation scheme that minimizes the ABEP.

A. Comparison with Single-Antenna PSK/QAM and SSK Modulations

By exploiting Corollary 5, in this section we aim at computing in closed-form the SNR difference between SM and other transmission technologies with similar complexity, such as single-antenna PSK/QAM and SSK modulations. The high-SNR framework for PSK/QAM can be found in Table I, while for SSK we get

ABEP SSK = (N t /2) R 4σ 2 0 γ γ≫1 = 2 -Nr (N t /2) 2Nr-1 Nr 4σ 2 0 γ -Nr from
ABEP spatial in [START_REF] Basar | Space-time block coded spatial modulation[END_REF]. Due to space constraints, we cannot report all the details of the analytical derivation, but we can only summarize the main procedure used to compute the formulas in Table II. From [START_REF] Basar | Space-time block coded spatial modulation[END_REF] and Table I, for any transmission technology, X, the ABEP is

ABEP X = K X σ 2 0 γX -Nr = K X (SNR X ) -Nr .
Then, for any pair ABEP X and ABEP Y , Using Table II, in Table III we show some examples about the SNR advantage/disadvantage of SM with respect to SSK and single-antenna PSK/QAM. Further comments are postponed to Section VI.

we have ABEP X = ABEP Y ⇒ K X (SNR X ) -Nr = K Y (SNR Y ) -Nr . If

VI. NUMERICAL AND SIMULATION RESULTS

The aim of this Section is to substantiate frameworks and claims through Monte Carlo simulations. Two case studies are considered: 1) i.i.d. Rayleigh fading (Section V); and 2) identically distributed Nakagami-m fading (Section IV-B). In the first case study, we focus our attention on the better accuracy provided by our upper-bound, on the comparison of SM with other modulations, and on understanding the role played by the signal-and spatial-constellation diagrams. In the second case study, we turn our attention to analyze the effect of fading correlation and fading severity on the achievable diversity. Without loss of generality, we consider the identically distributed setup to keep the chosen parameters and variables reasonably low in order to maintain a sensible set of simulation results. This allows us to focus our attention on fundamental behaviors and to show the main trends. In particular, in the presence of channel correlation, we consider the constant correlation model [START_REF] Karagiannidis | An efficient approach to multivariate Nakagami-m distribution using Green's matrix approximation[END_REF]. The reason of this choice is twofold: i) to reduce the number of parameters needed to identify the correlation profile; and ii) to study a worstcase scenario, which arises when assuming that the constant correlation coefficient corresponds to the pair of antennas that are most closely-spaced.

A. Better Accuracy of the Improved Upper-Bound

In Fig. 1 and Fig. 2, we study the accuracy of the improved upper-bound in Section III-A against Monte Carlo simulations and the conventional union-bound. The frameworks for ABEP of QAM (M QAM = 64) and SM-QAM (M = 32, Nt = 2) against Em/N 0 . Accuracy of proposed analytical framework (denoted by "improved union-bound" in the legend) and conventional unionbound (denoted by "union-bound" in the legend) for unit-power (σ 2 0 = 1) i.i.d. Rayleigh fading (the rate is R = 6bpcu).

single-antenna PSK/QAM are obtained from Table I. It can be noticed that our framework is, in general, more accurate than the conventional union-bound, and that it well overlaps with Monte Carlo simulations. In particular, our bound is more accurate than the conventional union-bound for large M and small N r . Also, the figures compare the ABEP of SM and single-antenna PSK/QAM. In particular, the worst-case scenario with only N t = 2 is considered. We observe two different trends: i) in Fig. 1, SM-PSK always outperforms PSK, regardless of N r , and the gain increases with N r ; on the other hand, ii) in Fig. 2, SM-QAM is worse than QAM if N r = 1 and it outperforms QAM if N r = 3. This result is substantiated by the high-SNR framework in Table II. The general outcome of our study for i.i.d. Rayleigh fading is the following: i) SM-QAM never outperforms QAM for N r = 1; and ii) SM-QAM never outperforms QAM for data rates (R) less than R = 2bpcu. Further comments about this outcome are given in Section VI-B.

B. Comparison with PSK, QAM, and SSK Modulations

Motivated by Fig. 2, we exploit the framework in Table II to deeper understand the possible performance advantage of SM with respect to SSK and single-antenna PSK/QAM. The accuracy of the frameworks in Table II has been validated through Monte Carlo simulations, and a perfect match has been found. In particular, the interested reader might verify the accuracy of Table II by looking at the SNR difference estimated through Monte Carlo simulations in Figs. 345678. Table III provides the following outcomes: i) if N r = 1, SM-QAM never outperforms QAM, and the gap increases with the data rate; ii) whatever N r is and if R < 3bpcu, SM-PSK and SM-QAM never outperform PSK and QAM, respectively; iii) except the former setups, SM always outperforms PSK and QAM, and the gain increases with R and if more antennas are available at the transmitter, i.e., more information bits can be sent through the spatial-constellation diagram; and iv) the SNR gain increases with N r , which means that SM is inherently able to exploit receiver diversity much better than PSK/QAM. It is important to emphasize here that in Section V-A we have pointed out that QAM might not be the best modulation scheme for SM. This means that the optimal signal-constellation diagram for SM is still unknown and, . In other words, the noticeable gain offered by SM might be increased further, and possibilities of improvement for those setups where SM is worse than state-of-the-art might be found as well. Further comments about the impact of the signal modulation scheme on the performance of SM is available in Section VI-C. This study corroborates our analytical findings, and confirms that an adaptive multi-mode modulation scheme might be a very good choice. Finally, in Table III we compare SM-QAM with SSK as well. It can be noticed that, especially for high data rates, SSK outperforms SM-QAM. This result shows that, when R increases, it is convenient to transmit the information bits only through the spatial-constellation diagram, as this minimizes the ABEP over i.i.d. fading channels. However, the price to pay for this additional improvement is the need of larger antenna arrays at the transmitter. So, there is a clear tradeoff between the achievable performance and the number of antennas that can be put on a transmitter, and still being able to keep the i.i.d. assumption. In any case, these numerical examples corroborate the potential performance and energy gain benefits of exploiting SSK for low-complexity "massive" MIMO implementations [START_REF] Marzetta | Noncooperative cellular wireless with unlimited numbers of base station antennas[END_REF].

C. Interplay of Signal-and Spatial-Constellation Diagrams

In this section, we wish to give a deeper look at the performance of SM for various configurations of signal-and spatial-constellation diagrams, as well as at the effect of the adopted modulation scheme. More specifically, we seek to answer two fundamental questions: 1) is there, for a given data rate R, an optimal pair (N t , M ) that minimizes the ABEP? and ii) is the optimal modulation scheme for single-antenna systems still optimal for SM? The results shown in Figs. 345678provide a sound answer to both questions. In particular, if R = 4bpcu: i) the ABEP decreases by increasing N t , but the improvement is negligible for N t > 4. Thus, N t = 4 can be seen as the optimal choice in this scenario; ii) the SNR gain with N t is higher in SM-QAM than in SM-PSK; and iii) for N t = 2, SM-PSK outperforms SM-QAM, which substantiates the claims in Section V, while there is no difference between them for N t ≥ 4. In fact, in this latter case PSK and QAM lead to the same signal-constellation diagram. Thus, since PSK modulation is, in general, simpler to be implemented as the power amplifiers at the transmitter have less stringent linearity requirements [START_REF] Hasan | Green cellular networks: A survey, some research issues and challenges[END_REF], then SM-PSK seems to be preferred to SM-QAM in all cases. If R = 5bpcu: i) N t = 8 is the best choice to minimize both the ABEP and the size of the antenna-array at the transmitter; ii) for SM-PSK, the setup N t = 4 is a very appealing configuration as the ABEP is close to the optimal value but the complexity of the transmitter is very low; iii) for N t = 2, SM-QAM is definitely superior to SM-PSK, as the spatial-constellation diagram has a low impact on the overall performance; iv) for N t = 4, SM-PSK is much better than SM-QAM, and, in particular, for SM-QAM the net improvement when moving from N t = 2 to N t = 4 is negligible; and v) for N t ≥ 8, there is no difference between SM-PSK and SM-QAM since they have the same signal-constellation diagram, and, thus, SM-PSK is the best choice because simpler to implement. Also, if R = 6bpcu, we have a behavior similar to R = 4bpcu and R = 5bpcu. Thus, we focus only on two main aspects: i) the best ABEP is obtained when N t = 16. By comparing the best MIMO setup for different rates, we conclude that the best N t increases with the rate, and the rule of thumb seems to be: "double the number of transmit-antennas for each 1bpcu increase of the data rate". Even though this increase of the rate might appear to be small for every doubling of the number of antennas at the transmitter, this multiplexing gain is obtained with a single active RF chain and with low (single-stream) decoding complexity. These two features agree with current trends in MIMO research [START_REF] Marzetta | Noncooperative cellular wireless with unlimited numbers of base station antennas[END_REF], [START_REF] Mohammadi | Single RF front-end MIMO transceivers[END_REF], as mentioned in Section I; and ii) if N t = 8, SM-PSK is a very appealing choice to achieve very good performance with low-complexity. Also, we emphasize the good accuracy of our framework in all analyzed scenarios.

Finally, we close this section by mentioning that the good performance offered by SM-PSK against SM-QAM for some MIMO setups and rates brings to our attention that SM-PSK might be a good candidate for energy efficient applications. As a matter of fact, in [START_REF] Hasan | Green cellular networks: A survey, some research issues and challenges[END_REF] it is mentioned that a non-negligible percentage of the energy consumption at the base stations of current cellular networks is due to the linearity requirements of the power amplifiers, which are needed to use high-order modulation schemes (such as QAM), and which result in the low power efficiency of the amplifiers. Furthermore, in [START_REF] Gray | Theoretical and practical considerations for the design of green radio networks[END_REF]Pg. 12] it is clearly stated that this power inefficiency significantly contributes to the so-called quiescent energy, which is independent of the amount of transmitted data, and, thus, should be reduced as much as possible.

D. Impact of Fading Severity

In Fig. 9 and Fig. 10, we study the impact of fading severity on the performance of QAM, SM, and SSK modulations. Figure 9 shows the basic scenario with i.i.d. Rayleigh fading (m Nak = 1.0), where from Section IV-B.4 we know that all modulations have the same diversity. Figure 10 highlights the effect of more (m Nak = 0.5) and less (m Nak = 1.5) severe fading. The figures provide three important outcomes, which are well captured by the framework in Section IV-B.4: i) overall, the ABEP gets better for increasing values of m Nak ; ii) the SNR gain of SM with respect to QAM increases if m Nak = 0.5, as a consequence of the steeper slope of some components of the ABEP of SM. Furthermore, we notice that SSK is the only modulation scheme with no reduction of the diversity gain. If N t = 32, SM has performance very close to SSK, but the different slope is noticeable even for moderate SNRs; and iii) if m Nak = 1.5, QAM provides the best diversity gain, but at low-SNR the high coding gain introduced by SM and SSK is still advantageous. However, a crossing point can be observed for high-SNR, which shows that QAM should be preferred in this case. In conclusion, these results substantiate the diversity analysis conducted in Section IV-B.4, and show, once again, that the characteristics of the fading are of paramount importance to assess the superiority of a modulation scheme with respect to another one. An adaptive multi-mode modulation scheme might be an appealing choice in order to use always the best modulation scheme for any fading scenario.

E. Impact of Fading Correlation

Finally, in Figs. 11-14 we study the impact of fading correlation at the transmitter and at the receiver over Nakagami-m fading. The analytical framework is available in Section IV-B.4, and, in particular, in the analyzed scenario M γ(nt) (s) = M γ (s) can be found in [START_REF] Simon | Digital Communication over Fading Channels[END_REF]Eq. (9.173)]. We use a constant correlation model, and ρ Nak denotes the correlation coefficient of pairs of Nakagami-m envelopes. We consider two case studies: i) channel correlation only at the transmitter (Fig. 11, Fig. 12); and ii) channel correlation only at the receiver (Fig. 13, Fig. 14). The rationale of this choice is to investigate the different effect that correlation might have at either ends of the communication link. In fact, according to (5), correlation might have a different impact at the transmitter and at the receiver: correlation at the transmitter affects the distance of points in the spatial-constellation diagram, while correlation at the receiver reduces the diversity gain of Maximal Ratio Combining (MRC) at the destination.

In Fig. 11 and Fig. 12, we study the impact of correlation at the transmitter. It can be noticed, as expected, that performance degrades with channel correlation. Also, the impact of correlation increases with N t , which is a reasonable outcome in our scenario. However, the SNR degradation with increasing values of ρ Nak is tolerable if ρ Nak < 0.6, while for higher values a few dB loss can be observed. Very interestingly, Fig. 12 shows that channel correlation has a negligible effect if m Nak = 0.5. This result is very interesting, especially if compared to the same curves in Fig. 11 and with the ABEP of QAM in Fig. 10 (QAM uses just one transmit-antenna and, thus, it is not affected by fading correlation at the transmitter). In particular, we note that: i) if N t = 2, SM is always superior to QAM, regardless of fading correlation; and ii) if N t = 32, SM is much better that QAM, even for a high fading correlation (ρ Nak = 0.9). The net outcome is the following: for severe fading channels, correlation degrades the ABEP but it does not offset the SNR gain that, for independent fading, SM has with respect to QAM. On the other hand, if m Nak = 1.5 the superiority of QAM becomes even more pronounced if compared to the independent fading scenario. In conclusion, fading correlation at the transmitter poses no problems to SM in severe fading channels, while it should be carefully managed in other fading scenarios, especially if we want to keep the performance advantage over single-antenna QAM (whose ABEP is not affected by this correlation). For SM, solutions to counteract fading correlation have recently been proposed in [START_REF] Handte | BER analysis and optimization of generalized spatial modulation in correlated fading channels[END_REF] and [START_REF] Mesleh | Trellis coded spatial modulation[END_REF]. Once again, we emphasize that, because of the constant correlation model, Fig. 11 and Fig. 12 show the worst case effect of fading correlation, especially for large N t .

In Fig. 13 and Fig. 14, we study the impact of correlation at the receiver. Overall, the ABEP degrades for increasing ρ Nak . A higher robustness to fading correlation can be noticed for m Nak = 1.5. If m Nak = 0.5, the diversity advantage of SM with respect to QAM if kept in the presence of channel correlation too. For large antenna-arrays at the transmitter

         ABEP bound signal = 1 Nt log 2 (M ) log 2 (NtM ) Nt nt=1 ABEP bound MOD (n t ) ABEP bound MOD (n t ) = 1 M 1 log 2 (M ) M l=1 M l=1 N H χ l → χ l E α(nt) Q γ χ l -χ l 2 Nr nr=1 |α nt,nr | 2 (19) 
(e.g., N t = 32), the diversity loss in ABEP signal has a negligible impact even for high correlated channels. If m Nak = 1.5, we observe that the SNR degradation gets smaller for larger antenna-arrays at the transmitter. In other words, transmitting more information bits through the spatial-constellation diagram (e.g., increasing N t ) can mitigate the effect of channel correlation at the receiver. However, Fig. 11 and Fig. 12 point out a clear trade-off: increasing N t degrades the ABEP if we have channel correlation at the transmitter. We believe that the exploitation of the proposed frameworks for an end-to-end system optimization by taking into account all these tradeoffs might be a very important research issue: how to find the optimal SM setup providing the best performance/complexity trade-off, as a function of fading correlation, fading severity, etc.

Finally, we wish to emphasize the good accuracy of our framework for the very complicated fading scenario under analysis. Our framework agrees with Monte Carlo simulations in all scenarios. Only in some figures there are negligible errors, which are mainly due to the Green approximation described in Section IV-B. Thus, our frameworks can be exploited for accurate system optimization.

VII. CONCLUSION

In this paper, we have proposed a comprehensive framework for the analysis of SM-MIMO over generalized fading channels. The framework is applicable to a large variety of correlated fading models and MIMO setups. Furthermore, and, more importantly, by carefully analyzing the obtained formulas, we have derived important information about the performance of SM over fading channels, including the effect of fading severity, the achievable diversity gain, along with the impact of the signal-constellation diagram. It has been shown that the modulation scheme used in the signal-constellation diagram significantly affects the performance, and, for i.i.d. Rayleigh fading, closed-form expressions for its optimization have been proposed. Finally, we have conducted an extensive simulation campaign to validate the analytical derivation, and have showcased important trends about the performance of SM for a large variety of fading scenarios and MIMO setups. We believe that our frameworks can be very useful to understand fundamental behaviors and trade-offs of SM, as well as can be efficiently used for system optimization.
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APPENDIX I PROOF OF Proposition 1

Before going into the details of the proof, let us analyze the Hamming distance, N H ñt , χ l → (n t , χ l ) , of messages µ ñt , χ l and µ (n t , χ l ). In particular, N H ñt , χ l → (n t , χ l ) is equal to the number of different bits between the messages. Since a bit error might occur when: i) only the antenna-index is wrongly detected; ii) only the signal-modulated point is wrongly detected; or iii) both antenna-index and signal-modulated point are wrongly detected, then we conclude that total number of bits in error is given by N H ñt , χ l → (n t , χ l ) = N H (ñ t → n t ) + N H χ l → χ l , where N H (ñ t → n t ) and N H χ l → χ l are defined in Proposition 1. This remark is used to compute ( 6)-( 8), and it is important to highlight the role played by the bit-mapping in each constellation diagram. Proposition 1 can be obtained as follows:

• ABEP signal is obtained from (4) by grouping together all the terms for which ñt = n t and l = l, and by noticing that: i) N H (ñ t → n t ) = 0 if ñt = n t ; ii) [START_REF] Mesleh | Spatial modulation[END_REF] MOD (n t ) is the union-bound of a conventional modulation scheme [START_REF] Simon | Digital Communication over Fading Channels[END_REF], where: i) only the n t -th transmit-antenna is active; and ii) we have the same constellation diagram as the signal-constellation diagram of SM. More specifically, ABEP bound MOD (n t ) is the ABEP of a single-input-multiple-output system with maximal ratio combining. This ABEP is known in closed-form for many modulation schemes and bit mappings, without the need to using union-bound methods. Thus, to get more accurate estimates of the ABEP, ABEP bound MOD (•) can be replaced by ABEP MOD (•), as shown in [START_REF] Jeganathan | Space shift keying modulation for MIMO channels[END_REF], which is the exact ABEP of a single-input-multiple-output system with maximal ratio combining.

• Likewise, ABEP spatial is obtained from (4) by grouping together all the terms for which ñt = n t and l = l, and by noticing that: i) N H χ l → χ l = 0 if l = l; ii) [START_REF] Mesleh | Spatial modulation[END_REF] 

specifically, [START_REF] Yang | Information-guided channel-hopping for high data rate wireless communication[END_REF] , where Υ (•, •, •, •) is defined in Section III-A.

APPENDIX II PROOF OF Proposition 2

By definition, M γ (n t , ñt ) (•) is given by ( 20) on top of this page, where the last equality explicitly shows the conditioning over fading envelopes and channel phases, and β, ϕ are shorthands to denote the set of all fading envelopes and channel phases, respectively. Let us compute J (s; β ñt,nr , β nt,nr ) = E ϕ Nr nr=1 exp [2sβ ñt,nr β nt,nr cos (ϕ ñt,nrϕ nt,nr )] in [START_REF] Marzetta | Noncooperative cellular wireless with unlimited numbers of base station antennas[END_REF]. It can be obtained as shown in [START_REF] Wright | GreenTouch initiative: Large scale antenna systems demonstration[END_REF] on top of this page, where the first equality is due to the independence of the channel phases, and the second equality is obtained from [35, pp. 339, Eq. (366), Eq. (367)] and [24, Eq. ( 14)]. Accordingly, M γ (n t , ñt ) (•) simplifies as shown in [START_REF] Mohammadi | Single RF front-end MIMO transceivers[END_REF] on top of this page, where f β (•) is the multivariate Nakagami-m PDF in [41, Eq. ( 2)].

As an example, and without loss of generality, let us consider N r = 2. For ease of notation, we set n t = 1 and ñt = 2. Accordingly, [START_REF] Mohammadi | Single RF front-end MIMO transceivers[END_REF] reduces to [START_REF] Di Renzo | Improving the performance of space shift keying (SSK) modulation via opportunistic power allocation[END_REF] shown on top of this page. Finally, by using the infinite series representation of I v (•) in [33, Eq. (9.6.10)], and after lengthy algebraic manipulations, M γ (n t , ñt ) (•) can be re-written as shown in [START_REF] Serafimovski | Fractional bit encoded spatial modulation (FBE-SM)[END_REF] where the integrals shown in [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF] on top of this page have been introduced. These latter integrals can be computed in closed-form from [24, Sec. III-B], thus obtaining the final result in [START_REF] Mesleh | Trellis coded spatial modulation[END_REF]. More specifically, the analytical procedure we have used to compute [START_REF] Mesleh | Trellis coded spatial modulation[END_REF] is as follows: i) first, the integral on variable β 2,1 is solved in closed-form by using the identities in [32,Eq. (8.4.3.1)] and [32,Eq. (8.4.22)], as well as by applying the Mellin-Barnes theorem in [32, Eq. (2.24.1.1)] on the obtained integral; ii) second, the obtained single-integral on variable β 1,1 is solved in closed-form by using again the identity in [32,Eq. (8.4.3.1)] and by applying the Mellin-Barnes theorem in [32,Eq. (2.24.1.1)].

The analytical development can be generalized to arbitrary N r by simply inserting in [START_REF] Mohammadi | Single RF front-end MIMO transceivers[END_REF] the general PDF in [41, Eq. ( 2)] and solving the integrals as in ( 21)- [START_REF] Di Renzo | A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels[END_REF].

Finally, a few comments about the Green approximation Σ ∼ = Σ trid in [START_REF] Di Renzo | Improving the performance of space shift keying (SSK) modulation via opportunistic power allocation[END_REF]. i) The PDF in [START_REF] Di Renzo | Improving the performance of space shift keying (SSK) modulation via opportunistic power allocation[END_REF] requires the correlation matrix Σ of the Gaussian RVs associated to the fading envelopes. This matrix can be computed from the amplitude correlation coefficient ρ (nt,nr,ñt,ñr) Nak by using the procedure in [START_REF] Zhang | A decomposition technique for efficient generation of correlated Nakagami fading channels[END_REF]Sec. III]. ii) For arbitrary and unequal values of Ω (nt,nr) Nak , the Green method in [START_REF] Karagiannidis | An efficient approach to multivariate Nakagami-m distribution using Green's matrix approximation[END_REF], which is given under the assumption that Ω (nt,nr) Nak = 1 for n t = 1, 2, . . . , N t and n r = 1, 2, . . . , N r , must be generalized. More specifically, the coefficients u i in [41, Eq. ( 9)], which are needed to compute Σ trid , take the form u i = Σ (i, i)/v i , where Σ (i, i) is the entry of Σ located in the i-th row and in the i-th column, and v i are the coefficients to be computed by solving the non-linear system of equations in [41, Eq. ( 10)].

  FOR MANY CORRELATED FADING CHANNELS. NOTE THAT FADING CORRELATION AT THE TRANSMITTER DOES NOT AFFECT ABEP MOD (•). BUT FADING CORRELATION AT THE RECEIVER DOES. Generic Fading Channels PSK [34, Eq.(8.29)]

Proposition 4 :

 4 Let us assume, for the sake of simplicity, m Nak = m (nt,nr) Nak = m (ñt,nr) Nak

  on top of this page, where Θ (M,Nr,H) joint = M l=1 M l=1 N H χ l → χ l κ 2 l

  [START_REF] Basar | Space-time block coded spatial modulation[END_REF] provides the criterion to choose the points of the signal-constellation diagram, i.e., the moduli κ 2 l that minimize the ABEP: Θ (M,Nr) spatial , Θ (M,Nr) joint , and Θ (M,Nr,H) joint

  we define the SNR difference (in dB) as ∆ (X/Y ) SNR = 10 log 10 (SNR X /SNR Y ), then we get ∆ (X/Y ) SNR = -(10/N r ) log 10 (K Y /K X ) = -(10/N r ) log 10 Π (X/Y ) SNR . If ∆ (X/Y ) SNR > 0, then, for the same ABEP, Y needs ∆ (X/Y ) SNR dB less transmit-energy than X, i.e., ∆ (X/Y ) SNR is the energy gain of Y with respect to X.

Fig. 1 .

 1 Fig. 1. ABEP of PSK (M PSK = 64) and SM-PSK (M = 32, Nt = 2) against Em/N 0 . Accuracy of proposed analytical framework (denoted by "improved union-bound" in the legend) and conventional union-bound (denoted by "union-bound" in the legend) for unit-power (σ 2 0 = 1) i.i.d. Rayleigh fading (the rate is R = 6bpcu).

Fig. 2 .

 2 Fig. 2.ABEP of QAM (M QAM = 64) and SM-QAM (M = 32, Nt = 2) against Em/N 0 . Accuracy of proposed analytical framework (denoted by "improved union-bound" in the legend) and conventional unionbound (denoted by "union-bound" in the legend) for unit-power (σ 2 0 = 1) i.i.d. Rayleigh fading (the rate is R = 6bpcu).

Fig. 3 .

 3 Fig. 3. ABEP of SM-PSK against Em/N 0 . Performance comparison for various sizes of signal-and spatial-constellation diagrams. Accuracy of proposed analytical frameworks for unit-power (σ 2 0 = 1) i.i.d. Rayleigh fading (the rate is R = 4bpcu). The setup (M = 2, Nt = 8) is not shown, as it overlaps with the setup (M = 4, Nt = 4).

Fig. 4 .

 4 Fig. 4. ABEP of SM-QAM against Em/N 0 . Performance comparison for various sizes of signal-and spatial-constellation diagrams. Accuracy of proposed analytical frameworks for unit-power (σ 2 0 = 1) i.i.d. Rayleigh fading (the rate is R = 4bpcu). The setup (M = 2, Nt = 8) is not shown, as it overlaps with the setup (M = 4, Nt = 4).

Fig. 5 .

 5 Fig. 5. ABEP of SM-PSK against Em/N 0 . Performance comparison for various sizes of signal-and spatial-constellation diagrams. Accuracy of proposed analytical frameworks for unit-power (σ 2 0 = 1) i.i.d. Rayleigh fading (the rate is R = 5bpcu). The setup (M = 2, Nt = 16) is not shown, as it overlaps with the setup (M = 4, Nt = 8).

Fig. 6 .

 6 Fig. 6. ABEP of SM-QAM against Em/N 0 . Performance comparison for various sizes of signal-and spatial-constellation diagrams. Accuracy of proposed analytical frameworks for unit-power (σ 2 0 = 1) i.i.d. Rayleigh fading (the rate is R = 5bpcu). The setup (M = 2, Nt = 16) is not shown, as it overlaps with the setup (M = 4, Nt = 8).

Fig. 7 .

 7 Fig. 7. ABEP of SM-PSK against Em/N 0 . Performance comparison for various sizes of signal-and spatial-constellation diagrams. Accuracy of proposed analytical frameworks for unit-power (σ 2 0 = 1) i.i.d. Rayleigh fading (the rate is R = 6bpcu). The setup (M = 2, Nt = 32) is not shown, as it overlaps with the setup (M = 4, Nt = 16).

Fig. 8 .

 8 Fig. 8. ABEP of SM-QAM against Em/N 0 . Performance comparison for various sizes of signal-and spatial-constellation diagrams. Accuracy of proposed analytical frameworks for unit-power (σ 2 0 = 1) i.i.d. Rayleigh fading (the rate is R = 6bpcu). The setup (M = 2, Nt = 32) is not shown, as it overlaps with the setup (M = 4, Nt = 16).

Fig. 9 .

 9 Fig. 9. ABEP against Em/N 0 over i.i.d. Nakagami-m fading (m Nak = 1.0, i.e., Rayleigh, Nr = 2, and rate R = 6bpcu). Performance comparison and accuracy of the analytical framework for SM-QAM, QAM, and SSK.

Fig. 10 .

 10 Fig. 10. ABEP against Em/N 0 over i.i.d. Nakagami-m fading (m Nak = 0.5 and m Nak = 1.5, Nr = 2, and rate R = 6bpcu). Performance comparison and accuracy of the analytical framework for SM-QAM, QAM, and SSK.

Fig. 11 .Fig. 12 .

 1112 Fig. 11. ABEP of SM-QAM against Em/N 0 over correlated (at the transmitter) and identically distributed Nakagami-m fading (m Nak = 0.5 and m Nak = 1.5, Nr = 2, and rate R = 6bpcu). Performance comparison and accuracy of the analytical framework for M = 2 and Nt = 32.

Fig. 13 .Fig. 14 .

 1314 Fig. 13. ABEP of SM-QAM against Em/N 0 over correlated (at the receiver) and identically distributed Nakagami-m fading (m Nak = 0.5 and m Nak = 1.5, Nr = 2, and rate R = 6bpcu). Performance comparison and accuracy of the analytical framework for M = 2 and Nt = 32.

  xvii) We introduce γ=E m /(4N 0 ). xviii) δ (•) is the Dirac delta function. xix) ⌊x⌉ is the function that rounds x to the closest integer. xx) ⌊•⌋ is the floor function. xxi) G m,n denotes that the RVs X and Y are equal in distribution or law, i.e., they have the same Probability Density Function (PDF). xxiv) (x!) is the factorial of x. xxv) (•) -1 is the inverse of a square matrix. xxvi) I v (•) is the modified Bessel function of first kind and order v [33, Ch. 9]. xxvii)

	p,q	.|	(ap) (bq)
	is the Meijer-G function defined in [32, Ch. 8, pp. 519].
	xxii) M X (s) = E {exp (-sX)} is the Moment Generating Function (MGF) of Random Variable (RV) X. xxiii) X

d = Y

  nr χ lw (t) for ñt = 1, 2, . . . , N t , n r = 1, 2, . . . , N r , and l = 1, 2, . . . , M .

	nt , χ l =	arg max for nt=1,2,...,Ntand l=1,2,...,M	{D (n t , χ l )}					
	=	arg max for nt=1,2,...,Ntand l=1,2,...,M	Nr nr=1	Tm	z nr (t) s * ch,nr ( t| µ (n t , χ l )) dt -	1 2 Tm	|s ch,nr ( t| µ (n t , χ l ))|	2 dt	(2)

TABLE I ABEP

 I MOD (•) OF PSK AND QAM MODULATIONS WITH MAXIMAL RATIO COMBINING (MRC) AT THE RECEIVER AND GRAY CODING. FOR QAM MODULATION, WE CONSIDER A GENERIC RECTANGULAR MODULATION SCHEME WITH

  nr κ l sin (φ l ) and µ I

				nt,nr,l	= µ I nt,nr κ l cos (φ l ) +
	µ R nt,nr κ l sin (φ l ). Also, Re α	(l) nt,nr	and Im α	(l) nt,nr	are
	independent RVs.			
	Proof :	By	definition,	α	(l) nt,nr	=
	κ l exp (jφ l ) α R nt,nr + jα I nt,nr		=	Re α	(l) nt,nr	+
	jIm α	(l) nt,nr	with Re α	(l) nt,nr

= κ l α R nt,nr cos (φ l )κ l α I nt,nr sin (φ l ) and Im α

(l) nt,nr = κ l α I nt,nr cos (φ l ) + κ l α R

nt,nr sin (φ l ). Then, by taking into account that α R nt,nr and α I nt,nr are Gaussian distributed, independent, and have

  on top of this page.Proof : ABEP signal follows from Corollary 1 by using the known results summarized in TableI. ABEP spatial in (16) can be obtained from Corollary 1 with M SSK

	1 + 4σ 2 0 s	(s) = -Nr [34, Eq. (2.8)], and by computing the γ
	related integral with [34, Eq. (5A.4b)]. ABEP joint in (16)
	can be computed from Corollary 1, i.e., γ (nt,χl,ñt,χl) =
	Nr nr=1 α ñt,nr χ l -α nt,nr χ l which for i.i.d. Rayleigh fading leads to M γ(χ l ,χl) 2 d = Nr nr=1 α ñt,nr κ l -α nt,nr κ l	2 ,

TABLE II SNR

 II DIFFERENCE (IN dB) BETWEEN TRANSMISSION TECHNOLOGY X AND Y . PSK AND QAM DENOTE SINGLE-ANTENNA SCHEMES WITH GRAY CODING. SM-PSK AND SM-QAM DENOTE SM WITH PSK AND QAM MODULATION WITH GRAY CODING IN THE SIGNAL-CONSTELLATION DIAGRAM. (M, Nt) IS REFERRED TO SM, WITH M = I M × J M FOR SM-QAM. M PSK AND M QAM = I QAM

	RESPECTIVELY. N SSK t	M IS REFERRED TO SSK. THE COMPARISON IS MADE BY CONSIDERING THE SAME DATA RATE R FOR EACH TRANSMISSION M ARE REFERRED TO PSK AND QAM, × J QAM
	TECHNOLOGY, WHICH IMPLIES log 2

TABLE III SNR

 III (γ IN dB) DIFFERENCE (SEE TABLE II FOR DEFINITION) BETWEEN SM-PSK/QAM AND SINGLE-ANTENNA PSK/QAM MODULATION, AS WELL AS SM-QAM AND SSK MODULATION. SM OUTPERFORMS (i.e., IT REQUIRES LESS TRANSMIT-ENERGY PER SINGLE TRANSMISSION) THE COMPETING TRANSMISSION TECHNOLOGY IF ∆ FOR A GIVEN RATE R IN bpcu, THE CONSTELLATION SIZE IS: I) M (PSK,QAM) = 2 R FOR SINGLE-ANTENNA PSK/QAM MODULATION; II) N SSK t = 2 R FOR SSK MODULATION; AND III) M Nt = 2 R FOR SM, WHERE Nt = 2, 4, 8 IN THE FIRST/SECOND/THIRD LINE OF EACH ROW, RESPECTIVELY. N.A. MEANS "NOT AVAILABLE".

	(X/Y )					
			N r = 1			
	Rate (R) / ∆ (X/Y ) SNR	2 bpcu	3 bpcu	4 bpcu	5 bpcu	6 bpcu
	(PSK, SM-PSK)	-2.4304 N.A. N.A.	-0.9691 -1.5761 N.A.	0.5799 0.2803 0.0684	2.0412 2.2640 2.1512	3.2906 4.2597 4.3511
	(QAM, SM-QAM) (SSK, SM-QAM)	-2.4304 N.A. N.A. 0.5799 N.A. N.A.	-1.0939 -1.7009 N.A. 0.7918 0.1848 N.A. N r = 2	-3.3199 -2.7542 -2.9661 -0.2854 0.2803 0.0684	-2.2055 -3.3406 -2.3416 0.2460 -0.8890 0.1100	-4.1422 -4.3064 -4.9156 -0.3481 -0.5123 -1.1215
	Rate / ∆ (X/Y ) SNR	2 bpcu	3 bpcu	4 bpcu	5 bpcu	6 bpcu
	(PSK, SM-PSK)	-1.0543 N.A.	1.9011 1.6453	4.5154 5.3471	5.6931 8.8845	5.9642 11.1650
		N.A.	N.A.	5.2585	9.2429	13.1632
	(QAM, SM-QAM)	-1.0543 N.A.	1.7709 1.5152	0.1040 2.0064	2.3751 2.2836	0.9242 2.6976
		N.A.	N.A.	1.9177	4.2581	2.5484
	(SSK, SM-QAM)	0.4509 N.A. N.A.	0.3959 0.1401 N.A. N r = 3	-1.7622 0.1401 0.0515	-1.8280 -1.9196 0.0550	-3.6242 -1.8508 -2.0000
	Rate / ∆ (X/Y ) SNR	2 bpcu	3 bpcu	4 bpcu	5 bpcu	6 bpcu
	(PSK, SM-PSK)	-0.6461 N.A.	3.0103 2.8560	5.5248 7.2677	5.9627 10.9352	6.0094 11.9378
		N.A.	N.A.	7.2144	11.8624	16.1295
	(QAM, SM-QAM)	-0.6461 N.A.	2.7651 2.6108	0.9978 3.6577	3.3520 3.8842	1.6807 4.4339
		N.A.	N.A.	3.6044	6.5402	4.7666
	(SSK, SM-QAM)	0.3574 N.A. N.A.	0.2639 0.1096 N.A.	-2.5664 0.0934 0.0401	-3.1516 -2.6194 0.0367	-5.7457 -2.9926 -2.6598
	some MIMO setups and data rates, SM with PSK-modulated			
	points (SM-PSK) outperforms SM with QAM-modulated			
	points (SM-QAM) for the same average energy constraint.			

SNR

> 0. On the other hand, it is well-known that ABEP signal with QAM modulation is never worse than ABEP signal with PSK modulation. This result can be well understood with the help of (18): unlike PSK, QAM has points with moduli that can be either smaller or larger than one, which has an impact on Θ (M,Nr) spatial , Θ (M,Nr) joint , and Θ (M,Nr,H) joint

  reduces to APEP ñt , χ l → (n t , χ l ) = ABEP signal = ABEP bound signal in (4) reduces to (19) on top of this page. It can readily be noticed that ABEP bound

	E α(nt) Q	γ χ l -χ l	2	Nr nr=1 |α nt,nr |	2	. Then,

  reduces to APEP ñt , χ l → (n t , χ ABEP joint in[START_REF] Yang | Information-guided channel-hopping for high data rate wireless communication[END_REF] collects all the terms that are neither in ABEP signal nor in ABEP spatial . More M γ (n t , ñt ) (s) = E exp -s Nr nr=1 exp -s |α ñt,nrα nt,nr | Nr nr=1 exp [2sβ ñt,nr β nt,nr cos (ϕ ñt,nrϕ nt,nr )] J (s; β ñt,nr , β nt,nr ) = {exp [2sβ ñt,nr β nt,nr cos (ϕ ñt,nrϕ nt,nr )]} = exp -sβ 2 nt,nr I 0 (2sβ ñt,nr β nt,nr ) f β (β) dβMγ (n t , ñt ) (s) = β exp -sβ 2 1,1 exp -sβ 2 2,1 I 0 (2sβ 1,1 β 2,1 ) exp -sβ 2 1,2 exp -sβ 2 2,2 I 0 (2sβ 1,2 β 2,2 ) f β (β) dβ f β (β) = Nak -1) Γ(m Nak ) × |p 12 | -(m Nak -1) β 1,1 exp -p 11 2 β 2 1,1 I m Nak -1 (|p 12 | β 1,1 β 1,2 ) × |p 23 | -(m Nak -1) β 1,2 exp -p 22 2 β 2 1,2 I m Nak -1 (|p 23 | β 1,2 β 2,1 ) × |p 34 | -(m Nak -1) β 2,1 exp -p 33 2 β 2 2,1 I m Nak -1 (|p 34 | β 2,1 β 2,2 ) I 0 (2sβ1,1 β 2,1 ) dβ 1,1 dβ 2,1 I 0 (2sβ 1,2 β 2,2 ) dβ 1,2 dβ 2,2

					Nr
					nr=1	|α ñt,nr -α nt,nr |	2	= E	2
				Nr		Nr
			= E β	nr=1	exp -sβ 2 ñt,nr ×	nr=1	exp -sβ 2 nt,nr × E ϕ
						(20)
						Nr	E Nr	I 0 (2sβ ñt,nr β nt,nr )	(21)
					nr=1	nr=1
						Nr
			M γ (n t , ñt ) (s) = E β = β	nr=1 Nr nr=1	exp -sβ 2 ñt,nr exp -sβ 2 nt,nr I 0 (2sβ ñt,nr β nt,nr ) exp -sβ 2 ñt,nr (22)
				
				
				
	    	Σ -1 trid 2 (m β 2 m Nak 1,1 β 2 2,2 exp -p 44 2 β 2 2,2
				
				
				
						(23)
	      	F k (p 11 ,p 33 ) 2,1 F (s) = +∞ 0 +∞ 0 β 2m Nak +2k 1 -1 1,1 β 2m Nak +2k 2 +2k 3 -1 2,1 exp -s + p 11 2 β 2 1,1 exp -s + p 33 2 β 2 (p 22 ,p 44 ) k (s) = +∞ 0 +∞ 0 β 2m Nak +2k 1 +2k 2 -1 1,2 β 2m Nak +2k 3 -1 2,2 exp -s + p 22 2 β 2 1,2 exp -s + p 44 2 β 2 2,2

l ) = E α(nt,ñt) Q γκ 2 l Nr nr=1 |α ñt,nrα nt,nr | 2 . Finally, from [34, Eq. (4.2)] we have Ψ l (n t , ñt ) = APEP ñt , χ l → (n t , χ l ) , where Ψ l (•, •) is defined in Section III-A. • ϕ

  can be obtained from [34, Eq. (4.2)]:Υ n t , l, ñt , l = APEP ñt , χ l → (n t , χ l ) = E α(nt,ñt) Q γ

Nr nr=1 α ñt,nr χ lα nt,nr χ l 2

We emphasize that symbols with • identify the actual message that is transmitted, while symbols without • denote the trial message that is tested by the detector to solve the Nt × M -hypothesis detection problem. Also, symbols with • denote the message estimated by the detector. This notation does not apply to the antenna-index, nr, at the receiver since there is no hypothesis-testing in this case.

In[START_REF] Jeganathan | Spatial modulation: Optimal detection and performance analysis[END_REF], the scaling factor 1/log 2 (NtM ) is not present, which yields a weak upper-bound[START_REF] Di Renzo | Upper bounds for the analysis of trellis coded spatial modulation over correlated fading channels[END_REF].