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Bit Error Probability of Spatial Modulation (SM–)

MIMO over Generalized Fading Channels
Marco Di Renzo, Member, IEEE and Harald Haas, Member, IEEE

Abstract— In this paper, we study the performance of Spatial
Modulation (SM–) Multiple–Input–Multiple–Output (MIMO)
wireless systems over generic fading channels. More precisely,
a comprehensive analytical framework to compute the Average
Bit Error Probability (ABEP) is introduced, which can be used
for any MIMO setups, for arbitrary correlated fading channels,
and for generic modulation schemes. It is shown that, when
compared to state–of–the–art literature, our framework: i) has
more general applicability over generalized fading channels; ii) is,
in general, more accurate as it exploits an improved union–bound
method; and, iii) more importantly, clearly highlights interesting
fundamental trends about the performance of SM, which are
difficult to capture with available frameworks. For example, by
focusing on the canonical reference scenario with independent
and identically distributed (i.i.d.) Rayleigh fading, we introduce
very simple formulas which yield insightful design information
on the optimal modulation scheme to be used for the signal–
constellation diagram, as well as highlight the different role
played by the bit mapping on the signal– and spatial–constellation
diagrams. Numerical results show that, for many MIMO setups,
SM with Phase Shift Keying (PSK) modulation outperforms
SM with Quadrature Amplitude Modulation (QAM), which is
a result never reported in the literature. Also, by exploiting
asymptotic analysis, closed–form formulas of the performance
gain of SM over other single–antenna transmission technologies
are provided. Numerical results show that SM can outperform
many single–antenna systems, and that for any transmission rate
there is an optimal allocation of the information bits onto spatial–
and signal–constellation diagrams. Furthermore, by focusing on
the Nakagami–m fading scenario with generically correlated
fading, we show that the fading severity plays a very important
role in determining the diversity gain of SM. In particular,
the performance gain over single–antenna systems increases for
fading channels less severe than Rayleigh fading, while it gets
smaller for more severe fading channels. Also, it is shown that
the impact of fading correlation at the transmitter is reduced for
less severe fading. Finally, analytical frameworks and claims are
substantiated through extensive Monte Carlo simulations.

Index Terms— Large–scale antenna systems, “massive”
multiple–input–multiple–output (MIMO) systems, performance
analysis, single–RF MIMO design, spatial modulation (SM).
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I. INTRODUCTION

S
PATIAL modulation (SM) is a digital modulation con-

cept for Multiple–Input–Multiple–Output (MIMO) wire-

less systems, which has recently been introduced to increase

the data rate of single–antenna systems by keeping a low–

complexity transceiver design and by requiring no band-

width expansion [1]–[4]. Unlike conventional spatial mul-

tiplexing schemes [2], [5], in SM the multiplexing gain

is realized through mapping a block of information bits

into two information–carrying units: the conventional signal–

constellation diagram (e.g., Phase Shift Keying (PSK) or

Quadrature Amplitude Modulation (QAM)) and the so–called

spatial–constellation diagram, which is the antenna–array at

the transmitter. Like in conventional modulation schemes, the

first sub–block of information bits determines the point of

the signal–constellation diagram that is actually transmitted.

Specific to SM is that the second sub–block identifies the

single active transmit–antenna. As a result, the point of the

signal–constellation diagram is transmitted through a single

active antenna belonging to the spatial–constellation diagram.

This simple modulation concept brings two main advantages:

i) for each channel use, the data rate increases by a factor equal

to the logarithm of the number of antennas at the transmitter

[2], [5]; and ii) the receiver can detect the whole block of bits

through single–stream demodulation, as the second sub–block

of bits is only implicitly transmitted through the activation

of the transmit–antenna [6]. With respect to single–antenna

systems, the net gain is a multiplexing gain for the same

decoding complexity, while the price to pay is the need of more

antennas at the transmitter. Recent results have showcased the

performance gain of SM with respect to other state–of–the–

art transmission technologies for single– and multi–antenna

systems [5]–[19]. Finally, it is worth mentioning that SM

seems to be an appealing transmission technology for high–

rate and low–complexity MIMO implementations that exploit

the recently proposed “massive MIMO” or “large–scale an-

tenna systems” paradigm [20], [21]. In fact, in these systems it

is envisaged that improved performance and energy efficiency

can be achieved by using tens or hundreds antenna elements at

the base station, instead of exploiting base station cooperation.

In this perspective, SM can be regarded as a low–complexity

modulation scheme that exploits the “massive MIMO” idea but

with a single active RF chain. The design of MIMO schemes

that retain the benefits of multiple–antenna transmission while

having a single active RF element is another recent and major

trend in current and future MIMO research [22].

Since its introduction, many researchers have been study-

ing the performance of SM–MIMO over fading channels,
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either through time–consuming Monte Carlo simulations or

through analytical modeling. Despite being more challenging,

analytical modeling is, in general, preferred because: i) it

allows a deeper understanding of the system performance;

ii) it enables a simpler comparison with other competing

transmission technologies; and iii) it provides opportunities

for system optimization. A careful look at current state–of–

the–art reveals the following contributions. The vast majority

of analytical frameworks are useful for a special case of

SM, which is called Space–Shift–Keying (SSK) modulation

[8]. SSK modulation is a low–complexity and low–data–rate

version of SM where only the spatial–constellation diagram is

exploited for data modulation. This transmission technology

is extensively studied in [23]–[29] for various MIMO setups

and channel models. The analytical study conducted in [23]–

[29] has highlighted fundamental properties of the spatial–

constellation diagram with respect to fading severity, channel

correlation, power imbalance, transmit–diversity, as well as

robustness to multiple–access interference and channel estima-

tion errors. However, these frameworks are of limited use to

understand the performance of SM, as the signal–constellation

diagram is neglected. On the other hand, analytical modeling

of SM is limited to a very few papers, which have various

limitations. In [5] and [30], the authors study a sub–optimal

receiver design and the Symbol Error Probability (SEP) is

computed by resorting to numerical integrations, which are not

easy to compute and, in some cases, are numerically unstable.

In [6], the authors study the Average Bit Error Probability

(ABEP) of the Maximum–Likelihood (ML) optimum receiver

over independent and identically distributed (i.i.d.) Rayleigh

fading. The framework is based on the union–bound method.

Due to the absence of a scaling factor in the final formula [31],

this bound is rather weak. Furthermore, and, more importantly,

the framework is valid for real–valued signal–constellation

points, and, thus, it cannot be used, e.g., for PSK and QAM.

In [9], the authors provide a first closed–form framework

to compute the ABEP of SM–MIMO over generically cor-

related Rician fading and for arbitrary modulation schemes.

Also, the framework highlights some fundamental behaviors

of SM, such as its incapability to achieve transmit–diversity

[17]. However, [9] has the following important limitations:

i) the analysis is applicable to Rician fading only; ii) the

framework is based on conventional union–bound methods,

whose accuracy degrades for high modulation orders and small

numbers of receive–antennas; and iii) signal– and spatial–

constellation diagrams are treated as a single entity, which

does not highlight the role played by each of them for various

fading channels and modulation schemes.

In this depicted context, this paper is aimed at proposing

a comprehensive analytical framework to study the ABEP of

SM–MIMO over generalized fading channels. More specifi-

cally, we are interested in studying: i) the interplay of signal–

and spatial–constellation diagrams, and whether an optimal

allocation of the information bits between them exists; ii)

the effect of adding the spatial–constellation diagram on top

of the signal–constellation diagram, and whether conventional

signal modulation schemes (e.g., PSK and QAM) are the best

choice for SM, or whether new optimal modulation schemes

should be designed to fully exploit the benefits of this hybrid

modulation scheme; and iii) advantages and disadvantages of

SM with respect to conventional single–antenna PSK/QAM

and SSK modulations, as a function of the MIMO setup and

fading scenario. To this end, we propose a new analytical

framework that foresees to write the ABEP as the summation

of three contributions: 1) a term that mainly depends on the

signal–constellation diagram; 2) a term that mainly depends

on the spatial–constellation diagram; and 3) a joint term that

depends on both constellation diagrams and highlights their

interactions. This new analytical formulation allows us to

introduce an improved union–bound method, which is more

accurate than conventional union–bound methods, and enables

a deeper understanding of the role played by both information

carrying units for various channel models and MIMO setups.

Some of the most important and general results of this paper

are as follows: i) we show that SM outperforms single–antenna

PSK/QAM schemes only for data rates greater than 2bpcu

(bits per channel use), and that SM with QAM–modulated

points in the signal–constellation diagram is never superior

to single–antenna QAM for single–antenna receivers. On the

other hand, for multi–antenna receivers and higher data rates

SM can significantly outperform single–antenna PSK/QAM.

Closed–form expressions of this performance gain over i.i.d.

Rayleigh fading are given; ii) unlike single–antenna systems,

where QAM always outperforms PSK, we show that SM with

PSK–modulated points in the signal–constellation diagram

can outperform SM with QAM–modulated points. This is

due to the interactions of signal– and spatial–constellation

diagrams, and for i.i.d. Rayleigh fading we show analytically

that the ABEP of SM does not depend only on the Euclidean

distance of the points in the signal–constellation diagram.

This provides important information on how to conceive new

modulation schemes that are specifically optimized for SM;

iii) by considering, as a case study, Nakagami–m fading, we

show that the fading severity, mNak, plays an important role

on the performance of SM. More specifically, like conven-

tional modulation schemes, the ABEP gets worse for wireless

channel with fading more severe (0.5 ≤ mNak < 1) than

Rayleigh. However, with respect to single–antenna PSK/QAM

modulation, the performance gain of SM increases thanks to

the higher diversity gain experienced by the information bits

mapped onto the spatial–constellation diagram. On the con-

trary, the performance gain decreases for less severe (mNak >

1) fading because the diversity–gain of the bits mapped onto

the spatial–constellation diagram is independent of the fading

parameter mNak. Also, it is shown that channel correlation at

the transmitter has a less impact when 0.5 ≤ mNak < 1.

The remainder of this paper is organized as follows. In

Section II, the system model is described. In Section III, the

improved union–bound is introduced, and the specific contri-

bution of spatial– and signal–constellation diagrams is shown.

In Section IV, closed–form expressions of the ABEP for

various fading channels and modulation schemes are provided.

In Section V, the canonical i.i.d. Rayleigh fading channel is

studied in detail, and closed–form expressions of the gain with

respect to single–antenna PSK/QAM and SSK modulations

are given. In Section VI, numerical results are shown to
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substantiate claims and analytical derivations. Finally, Section

VII concludes this paper.

II. SYSTEM MODEL

We consider a generic Nt ×Nr MIMO system, where Nt

and Nr denote the antennas at the transmitter and at the

receiver, respectively. We assume that the transmitter can send

digital information via M complex symbols. In SM literature

[4], the set of Nt antennas (nt = 1, 2, . . . , Nt) is called

spatial–constellation diagram, while the set of M complex

points (χl for l = 1, 2, . . . ,M ) is called signal–constellation

diagram. The basic idea of SM is to map blocks of information

bits into two information carrying units [5]: 1) a symbol, which

is chosen from the complex signal–constellation diagram; and

2) a single active transmit–antenna, which is chosen from the

spatial–constellation diagram.

More specifically, SM works as follows. At the transmitter,

the bitstream is divided into blocks containing log2 (Nt) +
log2 (M) bits each, with log2 (Nt) and log2 (M) being the

number of bits needed to identify a transmit–antenna in the

spatial–constellation diagram and a symbol in the signal–

constellation diagram, respectively. Each block is split into

two sub–blocks of log2 (Nt) and log2 (M) bits each. The

bits in the first sub–block are used to select the transmit–

antenna that is switched on for transmission, while all the

other antennas are kept silent. The bits in the second sub–

block are used to choose a symbol in the signal–constellation

diagram. At the receiver, the detector can recover the whole

block of log2 (Nt) + log2 (M) information bits by solving an

Nt×M–hypothesis detection problem, which jointly estimates

the transmit–antenna that is not idle and the signal waveform

that is transmitted from it.

In this paper, the generic block of log2 (Nt)+log2 (M) bits

is called “message”, and it is denoted by µ (nt, χl), where

nt = 1, 2, . . . , Nt and l = 1, 2, . . . ,M univocally identify

the active transmit–antenna, nt, and the complex symbol, χl,

transmitted from it, respectively. The Nt × M messages are

equiprobable.

A. Notation

Throughout this paper, we use the notation as follows.

i) We adopt a complex–envelope signal representation. ii)

j =
√
−1 is the imaginary unit. iii) (·)∗ is the complex–

conjugate operator. iv) (x⊗ y) (t) =
∫ +∞

−∞
x (ξ) y (t− ξ) dξ

is the convolution of x (·) and y (·). v) |·| is the absolute

value. vi) E {·} is the expectation operator. vii) Re {·} and

Im {·} are real and imaginary part operators. viii) Γ (x) =
∫ +∞

0
ξx−1 exp (−ξ) dξ is the Gamma function. ix) Q (x) =

(

1
/√

2π
) ∫ +∞

x
exp

(

−t2
/

2
)

dt is the Q–function. x) Em is

the average energy per transmission. xi) Tm is the transmission

time–slot of each message. xii) w (·) is the unit–energy, i.e.,
∫ +∞

−∞
|w (t)|2 dt = 1, elementary transmitted pulse waveform

that is non–zero only in [0, Tm]. xiii) The signal related

to µ (nt, χl) and transmitted from antenna nt is denoted

by s ( t|µ (nt, χl)) =
√
Emχlw (t). xiv) The generic point

of the signal–constellation diagram, χl, is defined as χl =
χR
l + jχI

l = κl exp (jφl), where χR
l = Re {χl}, χI

l =

Im {χl}, κl =

√

(

χR
l

)2
+
(

χI
l

)2
, and φl = arctan

(

χI
l

/

χR
l

)

.

xv) Pr {·} denotes probability. xvi) The noise ηnr
at the

input of the nr–th (nr = 1, 2, . . . , Nr) receive–antenna is a

complex Additive White Gaussian Noise (AWGN) process,

with power spectral density N0 per dimension. Across the

receive–antennas, the noises ηnr
are statistically independent.

xvii) We introduce γ̄=Em/(4N0). xviii) δ (·) is the Dirac delta

function. xix) ⌊x⌉ is the function that rounds x to the closest

integer. xx) ⌊·⌋ is the floor function. xxi) Gm,n
p,q

(

.| (ap)
(bq)

)

is the Meijer–G function defined in [32, Ch. 8, pp. 519].

xxii) MX (s) = E {exp (−sX)} is the Moment Generating

Function (MGF) of Random Variable (RV) X . xxiii) X
d
=Y

denotes that the RVs X and Y are equal in distribution or law,

i.e., they have the same Probability Density Function (PDF).

xxiv) (x!) is the factorial of x. xxv) (·)−1
is the inverse of a

square matrix. xxvi) Iv (·) is the modified Bessel function of

first kind and order v [33, Ch. 9]. xxvii)
(

·
·

)

is the binomial

coefficient. xxviii) NH

((

ñt, χl̃

)

→ (nt, χl)
)

is the Hamming

distance of messages µ
(

ñt, χl̃

)

and µ (nt, χl), i.e., the number

of positions where the information bits are different, with

0 ≤ NH

((

ñt, χl̃

)

→ (nt, χl)
)

≤ log2 (NtM).

B. Channel Model

We consider the frequency–flat slowly–varying fading chan-

nel model as follows:

• hnt,nr
(ξ) = αnt,nr

δ (ξ − τnt,nr
) is the channel impulse

response of the wireless link from the nt–th transmit–

antenna to the nr–th receive–antenna. αnt,nr
= αR

nt,nr
+

jαI
nt,nr

= βnt,nr
exp (jϕnt,nr

) is the complex chan-

nel gain, and τnt,nr
is the propagation time–delay. No

specific distribution for the channel envelopes, βnt,nr
=

√

(

αR
nt,nr

)2
+
(

αI
nt,nr

)2
, the channel phases, ϕnt,nr

=

arctan
(

αI
nt,nr

/

αR
nt,nr

)

, and αR
nt,nr

= Re {αnt,nr
},

αI
nt,nr

= Im {αnt,nr
} is assumed a priori.

• The delays τnt,nr
are assumed to be known at the

receiver, i.e., perfect time–synchronization is considered.

Also, we assume τ1,1 ∼= τ1,2 ∼= . . . ∼= τNt,Nr
, which

is a realistic assumption when the distance between

transmitter and receiver is much larger than the spacing

of the antenna elements [24]. Due to these assumptions,

the delays τnt,nr
are neglected in the next sections.

C. ML–Optimum Detector

Let µ
(

ñt, χl̃

)

be the transmitted message1. The signal

received by the nr–th receive–antenna, if µ
(

ñt, χl̃

)

is trans-

mitted, is:

znr
(t) = sch,nr

(

t|µ
(

ñt, χl̃

))

+ ηnr
(t) (1)

where sch,nr

(

t|µ
(

ñt, χl̃

))

=
(

s
(

·|µ
(

ñt, χl̃

))

⊗ hñt,nr

)

(t) =
√
Emαñt,nr

χl̃w (t) for

ñt = 1, 2, . . . , Nt, nr = 1, 2, . . . , Nr, and l̃ = 1, 2, . . . ,M .

1We emphasize that symbols with ·̃ identify the actual message that is
transmitted, while symbols without ·̃ denote the trial message that is tested
by the detector to solve the Nt × M–hypothesis detection problem. Also,
symbols with ·̂ denote the message estimated by the detector. This notation
does not apply to the antenna–index, nr , at the receiver since there is no
hypothesis–testing in this case.
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(

n̂t, χl̂

)

= argmax
for nt=1,2,...,Ntand l=1,2,...,M

{D (nt, χl)}

= argmax
for nt=1,2,...,Ntand l=1,2,...,M

{

Nr
∑

nr=1

[∫

Tm

znr
(t) s∗ch,nr

( t|µ (nt, χl)) dt−
1

2

∫

Tm

|sch,nr
( t|µ (nt, χl))|2 dt

]

}

(2)

ABEP = Eα







1

NtM

1

log2 (NtM)

Nt
∑

nt=1

M
∑

l=1

Nt
∑

ñt=1

M
∑

l̃=1

[

NH

((

ñt, χl̃

)

→ (nt, χl)
)

Pr
{(

n̂t, χl̂

)

= (nt, χl)
∣

∣

(

ñt, χl̃

)}]







(3)

ABEP ≤ 1

NtM

1

log2 (NtM)

Nt
∑

nt=1

M
∑

l=1

Nt
∑

ñt=1

M
∑

l̃=1

[

NH

((

ñt, χl̃

)

→ (nt, χl)
)

APEP
((

ñt, χl̃

)

→ (nt, χl)
)]

(4)

Equation (1) is a general Nt × M–hypothesis detection

problem [34, Sec. 7.1], [35, Sec. 4.2, pp. 257] in AWGN, when

conditioning upon fading channel statistics. Thus, the ML–

optimum detector with full Channel State Information (CSI)

and perfect time–synchronization at the receiver is given in

(2) on top of this page [6], [34, Sec. 7.1]. The outcome of

(2) is the estimated message µ
(

n̂t, χl̂

)

. Thus, the receiver is

successful in decoding the whole block of bits if and only if

µ
(

n̂t, χl̂

)

= µ
(

ñt, χl̃

)

, i.e., n̂t = ñt and χl̂ = χl̃.

III. ABEP OVER GENERALIZED FADING CHANNELS:

IMPROVED UNION–BOUND

The exact ABEP of the detector in (2) can be computed

in closed–form, for arbitrary fading channels and modulation

schemes, as given in (3) on top of this page [36, Eq. (4) and

Eq. (5)], where: i) α is a short–hand to denote the set of Nt×
Nr complex channel gains, i.e., αnt,nr

for nt = 1, 2, . . . , Nt,

nr = 1, 2, . . . , Nr; and ii) Eα {·} is the expectation computed

over all the fading channels.

For arbitrary MIMO systems, the estimation of

Pr
{(

n̂t, χl̂

)

= (nt, χl)
∣

∣

(

ñt, χl̃

)}

is very complicated,

as it requires, in general, the computation of multi–

dimensional integrals. Because of that, it is common

practice to exploit union–bound methods [34] to

compute the ABEP in (3), as shown in (4) on top

of this page, where APEP
((

ñt, χl̃

)

→ (nt, χl)
)

=
Eα(nt,ñt)

{

Pr
{(

ñt, χl̃

)

→ (nt, χl)
}}

is the Average Pairwise

Error Probability (APEP), i.e., the probability of detecting

µ(nt, χl) when, instead, µ
(

ñt, χl̃

)

is transmitted, under the

assumption that µ(nt, χl) and µ
(

ñt, χl̃

)

are the only two

messages possibly being transmitted, and Eα(nt,ñt) {·} is the

expectation computed over the fading channels from the nt–th

and ñt–th transmit–antennas and the Nr receive–antennas.

The APEP is equal to [26, Eq. (10), Eq. (11)]:

APEP
((

ñt, χl̃

)

→ (nt, χl)
)

= Eα(nt,ñt)

{

Pr
{

D
(

ñt, χl̃

)

< D (nt, χl)
}}

= Eα(nt,ñt)







Q





√

√

√

√γ̄

Nr
∑

nr=1

∣

∣αñt,nr
χl̃ − αnt,nr

χl

∣

∣

2











(5)

The union–bound in (4) has been used in [6]2, [9], [24]–

[26]. However, as mentioned in Section I, it has some limita-

tions: i) the roles played by spatial– and signal–constellation

diagrams (and the related bit mapping) are hidden in the

four–fold summation; ii) it is not accurate enough for large

M and small Nr [37], as it is shown in Section VI; and

iii) its computational complexity is the same irrespective of

modulation scheme and fading channel, when, instead, simpler

formulas can be obtained in several cases.

A. Improved Upper–Bound

To avoid the limitations of the conventional union–bound

when used for performance analysis of SM, and, more impor-

tantly, to get more insights about the expected performance of

SM, we propose an improved upper–bound. The new bound

is summarized in Proposition 1.

Proposition 1: The ABEP in (3) can be tightly upper–

bounded as follows:

ABEP ≤ ABEPsignal +ABEPspatial +ABEPjoint (6)

where ABEPsignal, ABEPspatial, and ABEPjoint are defined

in (7) and (8) on top of the next page, and: i) NH (ñt → nt),
NH

(

χl̃ → χl

)

are the Hamming distances of the bits trans-

mitted through spatial– and signal–constellation diagrams,

respectively; ii) Eα(nt) {·} is the expectation computed over

the fading channels from the nt–th transmit–antenna to the Nr

receive–antennas; iii) γ(nt,ñt) =
∑Nr

nr=1 |αñt,nr
− αnt,nr

|2;

iv) γ(nt,χl,ñt,χl̃)
=

∑Nr

nr=1

∣

∣αñt,nr
χl̃ − αnt,nr

χl

∣

∣

2
; v)

Ψl (nt, ñt) = (1/π)
∫ π/2

0
Mγ(nt,ñt)

(

γ̄κ2
l

2 sin2(θ)

)

dθ; and vi)

Υ
(

nt, χl, ñt, χl̃

)

= (1/π)
∫ π/2

0
Mγ

(nt,χl,ñt,χl̃)

(

γ̄
2 sin2(θ)

)

dθ.

Proof : See Appendix I. �

Let us analyze each term in (6). 1) ABEPsignal is the sum-

mation of Nt addends ABEPMOD (·). By direct inspection, we

notice that each addend is the ABEP of a conventional modu-

lation scheme whose points belong to the signal–constellation

diagram of SM, and are transmitted only through the nt–

th transmit–antenna. So, ABEPMOD (·) depends only on the

2In [6], the scaling factor 1/log2 (NtM) is not present, which yields a
weak upper–bound [31].
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

































ABEPsignal =
1
Nt

log2(M)
log2(NtM)

Nt
∑

nt=1
ABEPMOD (nt)

ABEPspatial =
1
M

log2(Nt)
log2(NtM)

M
∑

l=1

ABEPSSK (l)

ABEPjoint =
1

NtM
1

log2(NtM)

Nt
∑

nt=1

M
∑

l=1

Nt
∑

ñt 6=nt=1

M
∑

l̃ 6=l=1

{[

NH (ñt → nt) +NH

(

χl̃ → χl

)]

Υ
(

nt, χl, ñt, χl̃

)}

(7)



















ABEPMOD (nt) =
1
M

1
log2(M)

M
∑

l=1

M
∑

l̃=1

[

NH

(

χl̃ → χl

)

Eα(nt)

{

Pr
{

χl̂ = χl

∣

∣χl̃

}}]

ABEPSSK (l) = 1
Nt

1
log2(Nt)

Nt
∑

nt=1

Nt
∑

ñt=1

[NH (ñt → nt)Ψl (nt, ñt)]

(8)

Euclidean distance of the points in the signal–constellation

diagram, and, thus, ABEPsignal can be regarded as the term

that shows how the signal–constellation diagram affects the

performance of SM. 2) ABEPspatial is the summation of M

addends ABEPSSK (·). From, e.g., [24, Eq. (35)], we observe

that ABEPSSK (·) is the ABEP of an equivalent SSK–MIMO

scheme, where γ̄ is replaced by γ̄κ2
l . Except for this scaling

factor, ABEPSSK (·) only depends on the Euclidean distance

of the points in the spatial–constellation diagram, and, thus,

ABEPspatial can be regarded as the term that shows how

the spatial–constellation diagram affects the performance of

SM. 3) ABEPjoint has a more complicated structure, and

it depends on the Euclidean distance of points belonging to

signal– and spatial–constellation diagrams. Thus, it is called

“joint” because it shows how the interaction of these two non–

orthogonal diagrams affects the ABEP of SM.

Finally, let us emphasize that: i) even though Proposition 1

might seem a simple and less compact rearrangement of (3),

in Section IV and in Section V we show that (6)–(8) allow

us to get very simple, and, often, closed–form expressions

for specific modulation schemes and fading channels; and

ii) unlike ABEPSSK (·) and ABEPjoint, which are obtained

through conventional union–bound methods, ABEPMOD (·) is

the exact error probability related to the signal–constellation

diagram. In other words, no union–bound is used to com-

pute this term. The exact computation of ABEPMOD (·)
avoids the inaccuracies of using the union–bound method for

performance analysis of conventional modulation schemes,

especially for large M and small Nr [34], [37]. For this reason,

we call the framework in (6)–(8) improved union–bound. The

better accuracy of this new bound is substantiated in Section

VI through Monte Carlo simulations. For the convenience

of the reader, in Table I we report the exact expression

of ABEPMOD (·) in (8) for PSK and QAM modulations.

Formulas in Table I are useful for arbitrary fading channels,

and when Gray coding is used to map the information bits

onto the signal–constellation diagram.

IV. SIMPLIFIED EXPRESSIONS OF THE ABEP

Proposition 1 provides a very general framework to com-

pute the ABEP for arbitrary fading channels and modulation

schemes. By direct inspection, we notice that (6)–(8) can

be computed in closed–form if the MGFs of the Signal–to–

Noise–Ratios (SNRs) γ (nt), γ(nt,ñt), and γ(nt,χl,ñt,χl̃)
are

available in closed–form. If so, the ABEP can be obtained

through the computation of simple single–integrals and sum-

mations. More specifically, Mγ(nt) (·) is available in [34] for

many correlated fading channels, which allows us to compute

ABEPMOD (·), and, eventually, ABEPsignal. On the other

hand, the computation of Mγ(nt,ñt)
(·) and Mγ

(nt,χl,ñt,χl̃)
(·)

deserves further attention, as they are not available in the

literature for arbitrary fading channels. Thus, the objective of

this section is threefold: i) to compute closed–form expressions

of Mγ(nt,ñt)
(·) and Mγ

(nt,χl,ñt,χl̃)
(·) for the most common

fading channel models; ii) to provide simplified formulas of

the ABEP in (7) and (8) for specific modulation schemes and

fading channels; and iii) to analyze the obtained formulas to

better understand SM. To our best knowledge, and according

to Section I, such a comprehensive study is not available in

the literature.

A. Identically Distributed Fading at the Transmitter

Let us consider the scenario with identically dis-

tributed fading at the transmitter. We study uncorrelated

and correlated fading, where in the latter case the term

“identically distributed” means that all pairs of wire-

less links are equi–correlated. In formulas, this implies:

Mγ(nt) (s) = MMOD
γ (s), Mγ(nt,ñt)

(s) = MSSK
γ (s), and

Mγ
(nt,χl,ñt,χl̃)

(s) = Mγ
(χl,χl̃)

(s) for nt = 1, 2, . . . , Nt and

ñt = 1, 2, . . . , Nt, which means that the MGFs are the same

for each nt or for each pair (nt, ñt). Accordingly, the ABEP

in Proposition 1 can be simplified as shown in Corollary 1.

Corollary 1: For identically distributed fading, (7) in

Proposition 1 simplifies as shown in (9) on top of the next

page, where ABEPMOD is the error probability in Table

I with Mγ(nt) (s) = MMOD
γ (s). If a constant–modulus

modulation is considered, i.e., κl = κ0 for l = 1, 2, . . . ,M ,

then ABEPspatial in (9) reduces to (10) on top of the next

two pages. Likewise, if a constant–modulus modulation, i.e.,

κl = κ0 for l = 1, 2, . . . ,M , and independent and uniformly

distributed channel phases are considered, then ABEPjoint in

(9) simplifies to (11) on top of the next two pages.

Proof : ABEPsignal in (9) follows immediately from
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

























ABEPsignal =
log2(M)

log2(NtM)ABEPMOD

ABEPspatial =
1
M

log2(Nt)
log2(NtM)

Nt

2

M
∑

l=1

[

1
π

∫ π/2

0
MSSK

γ

(

γ̄κ2
l

2 sin2(θ)

)

dθ
]

ABEPjoint =
1
M

1
log2(NtM)

M
∑

l=1

M
∑

l̃ 6=l=1

{

[

Nt log2(Nt)
2 +NH

(

χl̃ → χl

)

(Nt − 1)
]

[

1
π

∫ π/2

0
Mγ

(χl,χl̃)

(

γ̄
2 sin2(θ)

)

dθ

]}

(9)

TABLE I

ABEPMOD (·) OF PSK AND QAM MODULATIONS WITH MAXIMAL RATIO COMBINING (MRC) AT THE RECEIVER AND GRAY CODING. FOR QAM

MODULATION, WE CONSIDER A GENERIC RECTANGULAR MODULATION SCHEME WITH M = IM × JM . SQUARE–QAM MODULATION IS OBTAINED BY

SETTING IM = JM =
√
M . THE MGF OF γ (nt) =

∑Nr
nr=1 |hnt,nr |2 , Mγ(nt) (·), IS AVAILABLE IN CLOSED–FORM IN [34] FOR MANY CORRELATED

FADING CHANNELS. NOTE THAT FADING CORRELATION AT THE TRANSMITTER DOES NOT AFFECT ABEPMOD (·). BUT FADING CORRELATION AT THE

RECEIVER DOES.

Generic Fading Channels

PSK

[34,Eq.(8.29)]

[38,Eq.(2),Eq.(7)]



























ABEPMOD (nt) =
1

log2(M)

M−1
∑

l=1

[(

2
∣

∣

∣

l
M

−
⌊

l
M

⌉∣

∣

∣
+ 2

log2(M)
∑

k=2

∣

∣

∣

l
2k

−
⌊

l
2k

⌉∣

∣

∣

)

Pl (nt)

]

Pl (nt) =
1
2π

∫ π[1−(2l−1)/M ]
0 T−

l (θ;nt) dθ − 1
2π

∫ π[1−(2l+1)/M ]
0 T+

l (θ;nt) dθ

T−
l (θ;nt) = Mγ(nt)

(

2γ̄
sin2[π(2l−1)/M ]

sin2(θ)

)

; T+
l (θ;nt) = Mγ(nt)

(

2γ̄
sin2[π(2l+1)/M ]

sin2(θ)

)

QAM

[34,Eq.(4.2)]

[39,Eq.(22)]







































ABEPMOD (nt) =
1

log2(M)

[

log2(IM )
∑

l=1
Pl (IM ;nt) +

log2(JM )
∑

l=1
Pl (JM ;nt)

]

Pl (K;nt) =
2
K

(

1−2−l
)

K−1
∑

k=0

{

(−1)

⌊

2l−1k
K

⌋

(

2l−1 −
⌊

2l−1k
K

+ 1
2

⌋)

Tk (nt)

}

Tk (nt) =
1
π

∫ π/2
0 Mγ(nt)

(

γ̄
6(2k+1)2

(I2M+J2
M

−2) sin2(θ)

)

dθ

i.i.d. Rayleigh Fading (ABEPRayleigh
MOD = ABEPMOD (nt) = ABEPMOD)

R (ξ) =
[

1
2

(

1−
√

ξ
2+ξ

)]Nr Nr−1
∑

nr=0

{

(Nr+1−r
r

)

[

1
2

(

1 +
√

ξ
2+ξ

)]nr
}

PSK



















Pl (nt) = Pl = (1/2) INr

(

c−, ϑ−
)

− (1/2) INr

(

c+, ϑ+
)

INr

(

c±, ϑ±
)

is available in [34,Eq.(5A.24)]

c± = 4σ2
0 γ̄ sin2 [π (2l± 1) /M ] ; ϑ± = π − π [(2l± 1) /M ]

PSKapprox.

[34,Eq.(8.119))]
ABEPMOD

∼= 2
max{log2(M),2}

max{M/4,1}
∑

k=1
R
(

4σ2
0 γ̄ sin2

[

(2k−1)π
M

])

QAM

[34,Eq.(5A.4b)]
Tk (nt) = Tk = R

(

24σ2
0 γ̄(2k+1)2

I2
M

+J2
M

−2

)

i.i.d. Rayleigh Fading – High–SNR (ABEPsignal = [log2 (M) / log2 (NtM)] ABEPRayleigh
MOD )

PSK

[34,Eq.(8.119)]

[40,Eq.(14.4.18)]











GPSK
MOD (M) = 2

max{log2(M),2}

max{M/4,1}
∑

k=1

{

sin
[

(2k−1)π
M

]}−2Nr

ABEPRayleigh
MOD

γ̄≫1
= 2−2Nr

(2Nr−1
Nr

)

GPSK
MOD (M)

(

4σ2
0 γ̄
)−Nr

QAM

[40,Eq.(14.4.18)]







































GQAM
MOD (K; k) = 2

K

(

1−2−l
)

K−1
∑

k=0

{

(−1)

⌊

2l−1k
K

⌋

(

2l−1 −
⌊

2l−1k
K

+ 1
2

⌋)

(2k + 1)−2Nr

}

GQAM
MOD (K) =

[

1
log2(M)

(

6
I2
M

+J2
M

−2

)−Nr
]

log2(K)
∑

l=1
GQAM

MOD (K; k)

ABEPRayleigh
MOD

γ̄≫1
= 2−Nr

(2Nr−1
Nr

)

[

GQAM
MOD (IM ) +GQAM

MOD (JM )
]

(

4σ2
0 γ̄
)−Nr
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ABEPspatial =
Nt

2

log2 (Nt)

log2 (NtM)

[

1

π

∫ π/2

0

MSSK
γ

(

γ̄κ2
0

2 sin2 (θ)

)

dθ

]

(10)

ABEPjoint =

[

M (Nt − 1)

2

log2 (M)

log2 (NtM)
+

Nt (M − 1)

2

log2 (Nt)

log2 (NtM)

]

[

1

π

∫ π/2

0

MSSK
γ

(

γ̄κ2
0

2 sin2 (θ)

)

dθ

]

(11)

ρ
(nt,nr,ñt,ñr)
Nak =

E {[βnt,nr
− E {βnt,nr

}] [βñt,ñr
− E {βñt,ñr

}]}
√

E
{

[βnt,nr
− E {βnt,nr

}]2
}

√

E
{

[βñt,ñr
− E {βñt,ñr

}]2
}

(12)

(7) by taking into account that for identically distributed

fading the M addends of the summation are all the same.

ABEPspatial in (9) can be obtained by noticing that: i)

for identically distributed fading, Ψl (nt, ñt) in (8) is the

same for nt = 1, 2, . . . , Nt and ñt = 1, 2, . . . , Nt, and,

thus, it can be moved out of the two–fold summation; and

ii)
∑Nt

nt=1

∑Nt

ñt=1 NH (ñt → nt) =
(

N2
t

/

2
)

log2 (Nt) for

any bit mapping. Finally, some algebraic manipulations lead

to (9). Equation (10) follows from (9) with κl = κ0 for

l = 1, 2, . . . ,M . ABEPjoint in (9) can be obtained as follows:

i) for identically distributed fading, Υ
(

nt, χl, ñt, χl̃

)

in (7)

can be moved out of the two–fold summation with indexes nt

and ñt because it is the same for each pair (nt, ñt); and ii)
∑Nt

nt=1

∑Nt

ñt 6=nt=1

[

NH (ñt → nt) +NH

(

χl̃ → χl

)]

=
(

N2
t

/

2
)

log2 (Nt) + Nt (Nt − 1)NH

(

χl̃ → χl

)

for

any bit mapping. Finally, some simplifications lead

to (9). Equation (11) can be obtained from (9)

and the following considerations: i) if the channel

phases are uniformly distributed, then γ(nt,χl,ñt,χl̃)
=

∑Nr

nr=1

∣

∣αñt,nr
χl̃ − αnt,nr

χl

∣

∣

2 d
=
∑Nr

nr=1

∣

∣αñt,nr
κl̃ − αnt,nr

κl

∣

∣

2
.

In fact, since adding a constant phase term to a

uniformly distributed phase still yields a uniformly

distributed phase, i.e., (ϕnt,nr
+ φl)

d
=ϕnt,nr

, then

αnt,nr
χl = [βnt,nr

exp (jϕnt,nr
)] [κl exp (jφl)] =

βnt,nr
κl exp (j (ϕnt,nr

+ φl))
d
=βnt,nr

κl exp (jϕnt,nr
) =

αnt,nr
κl; ii) if κl = κ0 for l = 1, 2, . . . ,M , then

γ(nt,χl,ñt,χl̃)
= κ2

0

∑Nr

nr=1 |αñt,nr
− αnt,nr

|2 = κ2
0γ(nt,ñt),

which for identically distributed fading implies

Mγ
(χl,χl̃)

(s) = MSSK
γ

(

κ2
0s
)

. Thus, the integral in (9) can

be replaced by the integral in (11); and iii) for a constant–

modulus modulation, the integral in (9) can be moved out of

the two–fold summation, which can be simplified using the

identity
∑M

l=1

∑M
l̃=1 NH

(

χl̃ → χl

)

=
(

M2
/

2
)

log2 (M) for

any bit mapping. Finally, some algebraic manipulations lead

to (11). This concludes the proof. �

Corollary 1 leads to two important considerations about the

performance of SM: i) ABEPsignal and (9) shows that, for

identically distributed fading, the ABEP of SM is independent

of the bit mapping of the spatial–constellation diagram. This

result is reasonable and agrees with intuition: if the channels

are statistically identical, on average the Euclidean distance

of pairs of channel impulse responses is the same. In this

case, the bit mapping has no role in determining the ABEP.

On the other hand, the complex–valued points of the signal–

constellation diagram have different Euclidean distances, and

this bit mapping plays an important role; and ii) under some

realistic assumptions (i.e., constant–modulus modulation and

uniform channel phases), ABEPjoint in (9), which in the most

general case depends on both spatial– and signal–constellation

diagrams, depends only on the signal–constellation diagram.

Thus, since there are no terms in Table I, (10), and (11)

that depend on both constellation diagrams, we conclude that

they can be optimized individually. In particular, the best bit

mapping for the signal–constellation diagram turns out to be

the conventional one based only on the Euclidean distance.

Finally, we notice that, e.g., (10) and (11) are very simple to

be computed, and avoid the computation of fold–summations

on Nt and M . This is an important difference with respect

to other frameworks available in the literature, where four–

fold summations are always required, regardless of modulation

scheme and channel model [6], [9]. Also, Corollary 1 sim-

plifies the frameworks in [24] and [26] for SSK modulation,

as the two–fold summation can be avoided for some fading

channels and modulation schemes. Furthermore, we mention

that Corollary 1 provides closed–form results if the MGFs,

which depend on the specific fading channel model, are

available in closed–form, as well as if the related finite integral

can be computed explicitly. In Section IV-B and in Section

IV-C, we show some fading scenarios (Nakagami–m and Rice

fading with arbitrary fading parameters and correlation) where

the MGFs can be obtained in closed–form. Also, in Section

V we study the i.i.d. Rayleigh fading scenario where fold–

summations can be avoided and integrals can be computed

in closed–form, thus leading to a very simple analytical

framework for system analysis and optimization.

B. Nakagami–m Envelopes with Uniform Phases

In this section, the fading envelopes βnt,nr
are

Nakagami–m RVs with fading severity m
(nt,nr)
Nak =

[

E
{

β2
nt,nr

}]2
/

E
{

[

β2
nt,nr

− E
{

β2
nt,nr

}]2
}

and mean

square value Ω
(nt,nr)
Nak = E

{

β2
nt,nr

}

. We adopt the notation

βnt,nr
∼ N

(

m
(nt,nr)
Nak ,Ω

(nt,nr)
Nak

)

. The amplitude correlation

coefficient, ρ
(nt,nr,ñt,ñr)
Nak , is defined in (12) on top of this

page. Also, the channel phases, ϕnt,nr
, are independent and



TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

Mγ(nt,ñt)
(s) =

∣

∣

∣
Σ

−1
trid

∣

∣

∣

mNak

2(4mNak−4)Γ (mNak)

+∞
∑

k1=0

+∞
∑

k2=0

+∞
∑

k3=0





(

1

4

)k1+k2+k3

(

|p12|2k1 |p23|2k2 |p34|2k3

)

F(p11,p33)
k

(s)F(p22,p44)
k

(s)

(k1!) (k2!) (k3!) Γ (k1 +mNak) Γ (k2 +mNak) Γ (k3 +mNak)



 (13)















F (p11,p33)
k

(s) = (1/4) s
−(mNak+k1)
p11 s

−(mNak+k2+k3)
p33 G

1,2
2,2

(

− s2

sp11sp33

∣

∣

∣

1−mNak − k2 − k3 1−mNak − k1
0 0

)

F (p22,p44)
k

(s) = (1/4) s
−(mNak+k1+k2)
p22 s

−(mNak+k3)
p44 G

1,2
2,2

(

− s2

sp22sp44

∣

∣

∣

1−mNak − k3 1−mNak − k1 − k2
0 0

) (14)

uniformly distributed RVs in [0, 2π). We adopt the notation

ϕnt,nr
∼ U (0, 2π). Finally, channel phases and fading

envelopes are assumed to be independent.

Given this fading model, let us analyze and explicitly

compute each term in (6).

1) ABEPsignal: Mγ(nt) (·) has been widely studied in the

literature, and closed–form expressions for non–identically

distributed and arbitrary correlated Nakagami–m fading can

be found in [34, Sec. 9.6.4].

2) ABEPspatial: For Nakagami–m fading, Mγ(nt,ñt)
(·)

is not well–known in the literature, and, only recently, it

has been analyzed in [24] for single–antenna receivers, i.e.,

Nr = 1. Thus, we need to generalize [24] for our system

model. Two case studies are considered: i) correlated fading

at the transmitter and independent fading at the receiver;

and ii) correlated fading at both ends of the MIMO chan-

nel. In the first case study, by exploiting the independence

of the fading at the receiver, we have Mγ(nt,ñt)
(s) =

∏Nr

nr=1 Mγ(nt,ñt;nr)
(s), where Mγ(nt,ñt;nr)

(·) is the MGF of

γ(nt,ñt;nr) = |αñt,nr
− αnt,nr

|2. This latter MGF is available

in closed–form in [24, Sec. III] for generic correlated fading

at the transmitter. The second case study is analytically more

complicated, as Mγ(nt,ñt)
(·) requires the computation of the

expectation of 2Nr correlated RVs. Proposition 2 provides the

final expression of Mγ(nt,ñt)
(·) for Nr = 2.

Proposition 2: Given 2Nr arbitrary distributed and corre-

lated Nakagami–m RVs with fading envelopes (βnt,nr
and

βñt,nr
) distributed according to the multi–variate Nakagami–m

PDF in [41, Eq. (2)] and channel phases uniformly and i.i.d. in

[0, 2π), then Mγ(nt,ñt)
(·) for Nr = 2 is given in (13) on top

of this page, where: i) Σ is the 2Nr × 2Nr correlation matrix

of the Gaussian RVs associated to βnt,nr
and βñt,nr

, which

can be computed from the amplitude correlation coefficients

ρ
(nt,nr,ñt,ñr)
Nak by using the method in [42]; ii) Σtrid is the tri–

diagonal approximation of Σ, which can be obtained as de-

scribed in [41, Sec. IV] and Appendix II; iii) pab = Σ
−1
trid(a, b)

are the entries of Σ
−1
trid; iv) mNak = m

(nt,nr)
Nak = m

(ñt,nr)
Nak is

the fading parameter common to all links; and v) F (p11,p33)
k

(·),
F (p22,p44)

k
(·) are defined in (14) on top of this page, where

sp = s+ (p/2).

Proof : See Appendix II. Formulas for Nr > 2 can be

obtained as described in Appendix II. For arbitrary Nr, the

final formula is given by the (2Nr − 1)–fold series of the

product of Nr terms F (·,·)
k

(·). �

It is worth mentioning that (14) gives an exact result when

Σ is tridiagonal, i.e., Σ = Σtrid. On the contrary, for arbitrary

correlation, and by using the Green method [41, Sec. IV], it

provides a very tight approximation (see Section VI). Finally,

we mention that the series in (14) converge very quickly thanks

to the factorial and the Gamma functions in the denominator.

3) ABEPjoint: To compute Mγ
(nt,χl,ñt,χl̃)

(·) we need

Proposition 3.

Proposition 3: For Nakagami–m fading envelopes and

uniform phases, γ(nt,χl,ñt,χl̃)
reduces to γ(nt,χl,ñt,χl̃)

=

γ(nt,κl,ñt,κl̃)
=

∑Nr

nr=1

∣

∣

∣

∣

α
(l̃)
ñt,nr

− α
(l)
nt,nr

∣

∣

∣

∣

2

, where

α
(l)
nt,nr

d
=β

(l)
nt,nr exp (jϕnt,nr

), β
(l)
nt,nr = κlβnt,nr

, and

β
(l)
nt,nr ∼ N

(

m
(nt,nr)
Nak ,Ω

(nt,nr;l)
Nak

)

with Ω
(nt,nr;l)
Nak =

κ2
lΩ

(nt,nr)
Nak .

Proof : The equality in law α
(l)
nt,nr

d
=β

(l)
nt,nr exp (jϕnt,nr

)
can be obtained by using the same analytical development used

for (11) in Corollary 1, and, more specifically, the identity in

law (ϕnt,nr
+ φl)

d
=ϕnt,nr

. This concludes the proof. �

Proposition 3 points out that γ(nt,ñt) and γ(nt,χl,ñt,χl̃)
are related by a scaling factor in the mean power of each

channel envelope, i.e., Ω
(nt,nr;l)
Nak

/

Ω
(nt,nr)
Nak = κ2

l . Accord-

ingly, Mγ
(nt,χl,ñt,χl̃)

(·) can be computed by using the same

frameworks used to compute Mγ(nt,ñt)
(·). In other words, for

arbitrary correlation, Mγ
(nt,χl,ñt,χl̃)

(·) is still given by (13)

but with a different correlation matrix Σ.

4) Diversity Analysis: The accurate analysis of

ABEPsignal, ABEPspatial, and ABEPjoint through closed–

form expressions of the MGFs allows us to provide

important considerations about the diversity gain [43] of

SM in Nakagami–m fading, as well as to understand the

constellation diagram that dominates the performance of SM

for high–SNR. The main result is given in Proposition 4.

Proposition 4: Let us assume, for the sake of simplic-

ity, mNak = m
(nt,nr)
Nak = m

(ñt,nr)
Nak for each wireless link.

The diversity gain, DivSM, of SM is equal to DivSM =
min {Nr,mNakNr}.

Proof : From (6), we have DivSM =
min {Divsignal,Divspatial,Divjoint}, where Divsignal,
Divspatial, and Divjoint are the diversity gains of ABEPsignal,

ABEPspatial, and ABEPjoint, respectively. In fact, for

high–SNR the worst term dominates the slope of the ABEP,

and, thus, the diversity gain [43]. From Section IV-B.1 and
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

















ABEPspatial =
1

Nt log2(NtM)

Nt
∑

nt=1

Nt
∑

ñt=1

[

1
π

∫ π/2

0
MSSK

γ

(

γ̄κ2
0

2 sin2(θ)

)

dθ
]

ABEPjoint =
1

Nt log2(NtM)

Nt
∑

nt=1

Nt
∑

ñt 6=nt=1

{[

M log2(M)
2 +NH (ñt → nt) (M − 1)

] [

1
π

∫ π/2

0
MSSK

γ

(

γ̄κ2
0

2 sin2(θ)

)

dθ
]}

(15)

[34, Sec. 9.6.4], it follows that Divsignal = mNakNr. From

Section IV-B.2, Section IV-B.3, [24], and [44], it follows that

Divspatial = Divjoint = Nr. In fact, as analytically shown

in [44], Mγ(nt,ñt;nr)
(·) and F (·,·)

k
(·) have unit diversity

gain regardless of the fading severity mNak, and, thus, the

diversity is determined only by the number Nr of antennas at

the receiver. This concludes the proof. �

Proposition 4 unveils important properties of SM and pro-

vides information about the best scenarios where SM should

be used. More specifically: i) in scenarios with less severe

fading than Rayleigh, i.e., mNak > 1, we have DivSM =
Divspatial = Divjoint = Nr. We conclude that the ABEP is

mainly determined by the spatial–constellation diagram (i.e.,

ABEPspatial ≫ ABEPsignal and ABEPjoint ≫ ABEPsignal),

and that the diversity gain is independent of fading sever-

ity; ii) in scenarios with more severe fading than Rayleigh,

i.e., 0.5 ≤ mNak < 1, we have DivSM = Divsignal =
mNakNr. We conclude that the ABEP is mainly determined

by the signal–constellation diagram (i.e., ABEPsignal ≫
ABEPspatial and ABEPsignal ≫ ABEPjoint), and that the

diversity gain strongly depends on fading severity; iii) due to

the increasing diversity gain of ABEPsignal with mNak [34], it

is expected that ABEPsignal provides a negligible contribution

for increasing mNak, and that the ABEP gets better with

mNak. This behavior is similar to conventional modulations

[34], but different from SSK [24], [26]; iv) from [34], it

is known that conventional single–antenna systems have the

same diversity gain as ABEPsignal, i.e., Divconventional =
Divsignal = mNakNr. Thus, with respect to conventional

modulations, the performance gain of SM is expected to

increase for 0.5 ≤ mNak < 1, while it is expected to decrease

for mNak > 1. This conclusion agrees with intuition, since

SM encodes part of the information bits onto the spatial–

constellation diagram, whose points are more closely–spaced

if mNak > 1; and v) from [24], [44], it is known that the

diversity gain of SSK modulation is the same as ABEPspatial,

i.e., DivSSK = Divspatial = Nr, which is independent of

mNak. Thus, unlike conventional modulation schemes and SM,

SSK modulation does not experience any diversity reduction

when 0.5 ≤ mNak < 1, and it can be concluded that, thanks

to the higher diversity gain, it turns out to be, among SM

and conventional modulations, the best transmission scheme

in scenarios with fading less severe than Rayleigh. The price

to be paid is the need of many antennas at the transmitter

to achieve the same rate. On the contrary, in more severe

fading channels, SSK modulation turns out to be worse than

conventional modulation. In conclusion, the performance of

SM in Nakagami–m fading strongly depends on mNak, and

there is no clear transmission technology better than others

for any mNak. This important result suggests the adoption of a

multi–mode adaptive transmission scheme, which can switch

among the best modulation according to the fading severity

and the desired rate.

Finally, we close this section with the following corollary.

Corollary 2: For Nakagami–m fading envelopes, uniform

channel phases, and a constant–modulus modulation, i.e., κl =
κ0 for l = 1, 2, . . . ,M , ABEPspatial and ABEPjoint in (7) can

be simplified as shown in (15) on top of this page.

Proof : Equation (15) can be obtained through analytical

steps similar to (10) and (11), but without the assumption of

identically distributed fading. �

Corollary 2 shows that, for a constant–modulus modu-

lation, ABEPspatial and ABEPjoint can be computed only

through Mγ(nt,ñt)
(·) = MSSK

γ (·). This makes even more

evident the connection established between Mγ(nt,ñt)
(·) and

Mγ
(nt,χl,ñt,χl̃)

(·) in Proposition 3. We note that in (15) nei-

ther ABEPspatial nor ABEPjoint depend on the bit mapping

used for the signal–constellation diagram. Thus, the optimality

of usual bit mappings adopted for ABEPsignal seems to be

preserved.

C. Rician Fading

Let us consider a generic Rician fading [26], [45]. In

this case, αnt,nr
are generically correlated complex Gaussian

RVs, and αR
nt,nr

and αI
nt,nr

are independent by definition.

We adopt the notation µR
nt,nr

= E
{

αR
nt,nr

}

, µI
nt,nr

=

E
{

αI
nt,nr

}

, and σ2
nt,nr

= E
{

(

αR
nt,nr

− µR
nt,nr

)2
}

=

E
{

(

αI
nt,nr

− µI
nt,nr

)2
}

. Also, we use the short–hands

αR
nt,nr

∼ G
(

µR
nt,nr

, σ2
nt,nr

)

and αI
nt,nr

∼ G
(

µI
nt,nr

, σ2
nt,nr

)

.

The analysis of Rician fading is simpler than Nakagami–m

fading, and a unified framework can be used to compute (6).

The main enabling result is summarized in Proposition 5.

Proposition 5: Given a complex Gaussian RV αnt,nr
, then

α
(l)
nt,nr = χlαnt,nr

is still a complex Gaussian RV such

that Re
{

α
(l)
nt,nr

}

∼ G
(

µR
nt,nr,l

, κ2
l σ

2
nt,nr

)

, Im
{

α
(l)
nt,nr

}

∼
G
(

µI
nt,nr,l

, κ2
l σ

2
nt,nr

)

, with µR
nt,nr,l

= µR
nt,nr

κl cos (φl) −
µI
nt,nr

κl sin (φl) and µI
nt,nr,l

= µI
nt,nr

κl cos (φl) +

µR
nt,nr

κl sin (φl). Also, Re
{

α
(l)
nt,nr

}

and Im
{

α
(l)
nt,nr

}

are

independent RVs.

Proof : By definition, α
(l)
nt,nr =

κl exp (jφl)
(

αR
nt,nr

+ jαI
nt,nr

)

= Re
{

α
(l)
nt,nr

}

+

jIm
{

α
(l)
nt,nr

}

with Re
{

α
(l)
nt,nr

}

= κlα
R
nt,nr

cos (φl) −
κlα

I
nt,nr

sin (φl) and Im
{

α
(l)
nt,nr

}

= κlα
I
nt,nr

cos (φl) +

κlα
R
nt,nr

sin (φl). Then, by taking into account that αR
nt,nr

and αI
nt,nr

are Gaussian distributed, independent, and have
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





















ABEPsignal =
log2(M)

log2(NtM)ABEP
Rayleigh
MOD

ABEPspatial =
1
M

log2(Nt)
log2(NtM)

Nt

2

M
∑

l=1

R
(

4σ2
0 γ̄κ

2
l

)

ABEPjoint =
1
M

1
log2(NtM)

M
∑

l=1

M
∑

l̃ 6=l=1

[(

Nt log2(Nt)
2 + (Nt − 1)NH

(

χl̃ → χl

)

)

R
(

2σ2
0 γ̄
(

κ2
l + κ2

l̃

))]

(16)







ABEPspatial =
[

Nt

2
log2(Nt)

log2(NtM)

]

R
(

4σ2
0 γ̄κ

2
0

)

ABEPjoint =
[

Nt(M−1)
2

log2(Nt)
log2(NtM) +

M(Nt−1)
2

log2(M)
log2(NtM)

]

R
(

4σ2
0 γ̄κ

2
0

)
(17)

the same variance, simple algebraic manipulations conclude

the proof. �

From Proposition 5, we conclude that γ(nt), γ(nt,ñt), and

γ(nt,χl,ñt,χl̃)
in Table I and (6)–(8) are all given by the

summation of Nr square envelopes of arbitrary distributed

and correlated Gaussian RVs. Thus, the related MGF can be

computed by using the so–called Moschopoulos method [45].

More specifically: i) Mγ(nt)
(·) can be obtained from [45,

Eq. (25)]; ii) Mγ(nt,ñt)
(·) can be found in [26, Eq. (15)];

and iii) Mγ
(nt,χl,ñt,χl̃)

(·) can still be obtained from [26, Eq.

(15)] thanks to Proposition 5. The only difference between

Mγ(nt,ñt)
(·) and Mγ

(nt,χl,ñt,χl̃)
(·) are the parameters of

each Gaussian RV, which, however, can be related to one

another as shown in Proposition 5. The same applies to the

covariance matrices.

1) Diversity Analysis: Diversity can be studied by using the

Moschopoulos method. In fact, [45, Sec. 4.2] and [26, Sec. III–

C] show that each ABEP term in (6) has diversity gain equal

to Nr, i.e., DivSM = Nr. Thus, unlike Nakagami–m fading, in

Rician fading the ABEPs in (6) have the same slope. However,

[26, Sec. V] has pointed out that ABEPspatial and ABEPsignal

have opposite behavior with the Rician factor: ABEPspatial

increases and ABEPsignal decreases when the Rician factor

increases, respectively. So, the ABEPs in (6) have different

coding gains depending on the fading severity.

The Moschopoulos framework can be simplified for some

fading channels, as shown in Corollary 3.

Corollary 3: For Rician fading, a constant–modulus modu-

lation, and zero–mean fading, i.e., µR
nt,nr

= µI
nt,nr

= 0, then

ABEPspatial and ABEPjoint in (7) can be simplified as shown

in (15).

Proof : For zero–mean fading and a constant–modulus

modulation, γ(nt,χl,ñt,χl̃)
d
=κ2

0γ(nt,ñt) because µR
nt,nr,l

and

µI
nt,nr,l

are independent of φl. Then, considerations similar

to Corollary 2 lead to (15). �

We emphasize that, even though Corollary 2 and Corollary

3 provide the same result, the assumptions are different. In

Nakagami–m fading, the channel phases need to be uniformly

distributed. On the other hand, in Rician fading the complex

channel gains need to have zero–mean (i.e., zero Rician fac-

tor). Furthermore, it should be noted that even though Rayleigh

fading is a special case of either Rician or Nakagami–m fading,

for correlated channels exploiting the framework for Rician

fading leads to a more straightforward analytical derivation.

V. ABEP OVER I.I.D RAYLEIGH FADING

In this section, we study the canonical i.i.d. Rayleigh fading

scenario. Our contribution is threefold: i) i.i.d. Rayleigh fading

has already been studied in [6]. However, [6] is useful only for

real–valued signal–constellation points, while our framework

is simple and applicable to generic signal–constellation dia-

grams. Also, we provide asymptotically–tight bounds, which

highlight fundamental properties of SM; ii) i.i.d. Rayleigh

fading is a special case of either Rician or Nakagami–m fading

[34]. We show how the integrals in (6) can be computed in

closed–form; and iii) closed–form expressions of the SNR

difference between SM and other similar transmission tech-

nologies are provided. This allows us to understand the best

transmission technology to use for every MIMO setup and

data rate. To our best knowledge, these contributions make

this section novel and important to understand the achievable

performance of SM.

Let us consider the channel model in Section IV-C, which

for i.i.d. Rayleigh fading reduces to µR
nt,nr

= µI
nt,nr

= 0 and

σ2
nt,nr

= σ2
0 . Corollary 4 summarizes the ABEP of SM over

i.i.d. Rayleigh fading.

Corollary 4: For i.i.d. Rayleigh fading, the ABEP in (6) re-

duces to (16) shown on top of this page, where ABEPRayleigh
MOD

and R (·) are defined in Table I. Furthermore, for a constant–

modulus modulation ABEPspatial and ABEPjoint simplify as

shown in (17) on top of this page.

Proof : ABEPsignal follows from Corollary 1 by using

the known results summarized in Table I. ABEPspatial in

(16) can be obtained from Corollary 1 with MSSK
γ (s) =

(

1 + 4σ2
0s
)−Nr

[34, Eq. (2.8)], and by computing the

related integral with [34, Eq. (5A.4b)]. ABEPjoint in (16)

can be computed from Corollary 1, i.e., γ(nt,χl,ñt,χl̃)
=

∑Nr

nr=1

∣

∣αñt,nr
χl̃ − αnt,nr

χl

∣

∣

2 d
=
∑Nr

nr=1

∣

∣αñt,nr
κl̃ − αnt,nr

κl

∣

∣

2
,

which for i.i.d. Rayleigh fading leads to Mγ(χl,χl̃)
(s) =

(

1 + 2σ2
0

(

κ2
l + κ2

l̃

)

s
)−Nr

. The final integral can

be computed using [34, Eq. (5A.4b)]. Finally, (17)

follows from (16) with κl = κ0 for l = 1, 2, . . . ,M ,
∑M

l=1

∑M
l̃=1 NH

(

χl̃ → χl

)

=
(

M2
/

2
)

log2 (M), and simple

algebraic manipulations. This concludes the proof. �

Formulas in (16) and (17) provide important considerations

about the performance of SM. For example, (16) shows that,

regardless of the signal–constellation diagram, the bit mapping

on the spatial–constellation diagram has no influence on the
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

ABEPspatial
γ̄≫1
=
[

Nt

2
1
M

log2(Nt)
log2(NtM)2

−Nr
(

2Nr−1
Nr

)

Θ
(M,Nr)
spatial

]

(

4σ2
0 γ̄
)−Nr

ABEPjoint
γ̄≫1
=
[

Nt

2
1
M

log2(Nt)
log2(NtM)

(

2Nr−1
Nr

)

Θ
(M,Nr)
joint + Nt−1

M
1

log2(NtM)

(

2Nr−1
Nr

)

Θ
(M,Nr,H)
joint

]

(

4σ2
0 γ̄
)−Nr

(18)

TABLE II

SNR DIFFERENCE (IN dB) BETWEEN TRANSMISSION TECHNOLOGY X AND Y . PSK AND QAM DENOTE SINGLE–ANTENNA SCHEMES WITH GRAY

CODING. SM–PSK AND SM–QAM DENOTE SM WITH PSK AND QAM MODULATION WITH GRAY CODING IN THE SIGNAL–CONSTELLATION DIAGRAM.

(M,Nt) IS REFERRED TO SM, WITH M = IM × JM FOR SM–QAM. MPSK AND MQAM = IQAM
M × JQAM

M ARE REFERRED TO PSK AND QAM,

RESPECTIVELY. NSSK
t IS REFERRED TO SSK. THE COMPARISON IS MADE BY CONSIDERING THE SAME DATA RATE R FOR EACH TRANSMISSION

TECHNOLOGY, WHICH IMPLIES log2 (NtM) = log2
(

MQAM
)

= log2
(

MPSK
)

= log2
(

NSSK
t

)

. OTHER SYMBOLS ARE DEFINED IN TABLE I.

∆
(X/Y )
SNR = 10 log10 (SNRX/SNRY ) = − (10/Nr) log10

(

Π
(X/Y )
SNR

)

Π(PSK/SM−PSK)
SNR

=

[

NtM

2
log2(Nt)

log2(NtM)
+2−Nr log2(M)

log2(NtM)
GPSK

MOD(M
PSK)+ (Nt−1)M

2
log2(M)

log2(NtM)

]

2−NrGPSK
MOD(MPSK)

Π(QAM/SM−QAM)
SNR

=
1
M

[

Nt
2 log2(Nt)Θ

(M,Nr)
spatial +

Nt
2 2Nr log2(Nt)Θ

(M,Nr)
joint +(Nt−1)2NrΘ

(M,Nr,H)
joint

]

+log2(M)[GQAM
MOD(IM )+GQAM

MOD(JM )]
log2(M

QAM)[GQAM
MOD(I

QAM
M )+GQAM

MOD(J
QAM
M )]

Π(SSK/SM−QAM)
SNR

=
1
M

[

Nt
2 log2(Nt)Θ

(M,Nr)
spatial +

Nt
2 2Nr log2(Nt)Θ

(M,Nr)
joint +(Nt−1)2NrΘ

(M,Nr,H)
joint

]

+log2(M)[GQAM
MOD(IM )+GQAM

MOD(JM )]
NSSK

t
2 log2(NSSK

t )

Π(SSK/QAM)
SNR

=
GQAM

MOD(I
QAM
M )+GQAM

MOD(J
QAM
M )

NSSK
t
2 log2(NSSK

t )

Π(SSK/PSK)
SNR

=
2−NrGPSK

MOD(M
PSK)

NSSK
t
2

performance of SM. On the other hand, the bit mapping on

the signal–constellation diagram plays an important role in

ABEPjoint. In particular, while conventional bit mappings

(e.g., Gray coding) based on the Euclidean distance of the

signal–constellation points turn out to be optimal to minimize

ABEPsignal, additional constraints might be introduced on

the optimal choice of the signal–constellation diagram and

on the related bit mapping to minimize ABEPjoint (see

Corollary 5 below as well). On the other hand, for a constant–

modulus modulation we notice that ABEPjoint is independent

of the properties of the the signal–constellation diagram, and

only depends on its cardinality M . Thus, the optimization

criterion based on the Euclidean distance, which is optimal

for ABEPsignal, turns out to be optimal for the overall ABEP.

Finally, we remark that ABEPspatial and ABEPjoint are

independent of the phases of the complex points of the signal–

constellation diagram. Only the moduli of these points play a

role. This result suggests that, to minimize ABEPspatial and

ABEPjoint, we can focus our attention only on the moduli

and can neglect the phases.

To enable a deeper understanding of the achievable per-

formance and a simpler comparison with other transmission

technologies, in Corollary 5 we provide a tight high–SNR

approximation of (16) and (17).

Corollary 5: For high–SNR, ABEPspatial and

ABEPjoint in (16) can be simplified as shown in

(18) on top of this page, where Θ
(M,Nr,H)
joint =

∑M
l=1

∑M
l̃=1

[

NH

(

χl̃ → χl

)

(

κ2
l + κ2

l̃

)−Nr

]

, Θ
(M,Nr)
joint =

∑M
l=1

∑M
l̃ 6=l=1

(

κ2
l + κ2

l̃

)−Nr

, and Θ
(M,Nr)
spatial =

∑M
l=1 κ

−2Nr

l .

For a constant–modulus modulation, they simplify as

follows: Θ
(M,Nr,H)
joint =

(

2κ2
0

)−Nr
(

M2
/

2
)

log2 (M),

Θ
(M,Nr)
joint = M (M − 1)

(

2κ2
0

)−Nr
, and Θ

(M,Nr)
spatial = Mκ−2Nr

0 .

Formulas for ABEPsignal can be found in Table I.

Proof : Equation (18) follows from

R (ξ)
γ̄≫1
= 2−Nr

(

2Nr−1
Nr

)

ξ−Nr [40, Eq. (14.4.18)] and

some algebra. �

The high–SNR framework in (18) is simple, accurate, and

shed lights on the performance of SM. i) By using [43], it

enables us to compute coding and diversity gains. In particular,

the diversity gain is Nr, while the coding gain depends on the

MIMO setup, i.e., Nt, M , and the spatial–constellation dia-

gram. ii) The impact of the signal–constellation diagram comes

into play only through Θ
(M,Nr)
spatial , Θ

(M,Nr)
joint , and Θ

(M,Nr,H)
joint .

More specifically, (18) provides the criterion to choose the

points of the signal–constellation diagram, i.e., the moduli κ2
l

that minimize the ABEP: Θ
(M,Nr)
spatial , Θ

(M,Nr)
joint , and Θ

(M,Nr,H)
joint

should be kept as small as possible for a given average energy

constraint. Thus, the Euclidean distance criterion used for

ABEPsignal along with the minimization of the coefficients

above give the cost functions that need to be jointly considered

to optimize the performance of SM. In Section VI, we show

the very interesting, and apparently unexpected, result that, for
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TABLE III

SNR (γ̄ IN dB) DIFFERENCE (SEE TABLE II FOR DEFINITION) BETWEEN SM–PSK/QAM AND SINGLE–ANTENNA PSK/QAM MODULATION, AS WELL AS

SM–QAM AND SSK MODULATION. SM OUTPERFORMS (i.e., IT REQUIRES LESS TRANSMIT–ENERGY PER SINGLE TRANSMISSION) THE COMPETING

TRANSMISSION TECHNOLOGY IF ∆
(X/Y )
SNR > 0. FOR A GIVEN RATE R IN bpcu, THE CONSTELLATION SIZE IS: I) M(PSK,QAM) = 2R FOR

SINGLE–ANTENNA PSK/QAM MODULATION; II) NSSK
t = 2R FOR SSK MODULATION; AND III) MNt = 2R FOR SM, WHERE Nt = 2, 4, 8 IN THE

FIRST/SECOND/THIRD LINE OF EACH ROW, RESPECTIVELY. N.A. MEANS “NOT AVAILABLE”.

Nr = 1

Rate (R) / ∆(X/Y )
SNR

2 bpcu 3 bpcu 4 bpcu 5 bpcu 6 bpcu

(PSK, SM–PSK)

−2.4304

N.A.

N.A.

−0.9691

−1.5761

N.A.

0.5799

0.2803

0.0684

2.0412

2.2640

2.1512

3.2906

4.2597

4.3511

(QAM, SM–QAM)

−2.4304

N.A.

N.A.

−1.0939

−1.7009

N.A.

−3.3199

−2.7542

−2.9661

−2.2055

−3.3406

−2.3416

−4.1422

−4.3064

−4.9156

(SSK, SM–QAM)

0.5799

N.A.

N.A.

0.7918

0.1848

N.A.

−0.2854

0.2803

0.0684

0.2460

−0.8890

0.1100

−0.3481

−0.5123

−1.1215

Nr = 2

Rate / ∆(X/Y )
SNR

2 bpcu 3 bpcu 4 bpcu 5 bpcu 6 bpcu

(PSK, SM–PSK)

−1.0543

N.A.

N.A.

1.9011

1.6453

N.A.

4.5154

5.3471

5.2585

5.6931

8.8845

9.2429

5.9642

11.1650

13.1632

(QAM, SM–QAM)

−1.0543

N.A.

N.A.

1.7709

1.5152

N.A.

0.1040

2.0064

1.9177

2.3751

2.2836

4.2581

0.9242

2.6976

2.5484

(SSK, SM–QAM)

0.4509

N.A.

N.A.

0.3959

0.1401

N.A.

−1.7622

0.1401

0.0515

−1.8280

−1.9196

0.0550

−3.6242

−1.8508

−2.0000

Nr = 3

Rate / ∆(X/Y )
SNR

2 bpcu 3 bpcu 4 bpcu 5 bpcu 6 bpcu

(PSK, SM–PSK)

−0.6461

N.A.

N.A.

3.0103

2.8560

N.A.

5.5248

7.2677

7.2144

5.9627

10.9352

11.8624

6.0094

11.9378

16.1295

(QAM, SM–QAM)

−0.6461

N.A.

N.A.

2.7651

2.6108

N.A.

0.9978

3.6577

3.6044

3.3520

3.8842

6.5402

1.6807

4.4339

4.7666

(SSK, SM–QAM)

0.3574

N.A.

N.A.

0.2639

0.1096

N.A.

−2.5664

0.0934

0.0401

−3.1516

−2.6194

0.0367

−5.7457

−2.9926

−2.6598

some MIMO setups and data rates, SM with PSK–modulated

points (SM–PSK) outperforms SM with QAM–modulated

points (SM–QAM) for the same average energy constraint.

On the other hand, it is well–known that ABEPsignal with

QAM modulation is never worse than ABEPsignal with PSK

modulation. This result can be well understood with the help

of (18): unlike PSK, QAM has points with moduli that can

be either smaller or larger than one, which has an impact

on Θ
(M,Nr)
spatial , Θ

(M,Nr)
joint , and Θ

(M,Nr,H)
joint . Since the ABEP of

SM is a weighted summation of all these terms, it turns

out that SM–PSK might outperform SM–QAM. This leads

to two important conclusions: 1) the best modulation scheme

(between PSK and QAM) to use depends on M and Nt

for a given data rate; and 2) neither PSK nor QAM seem

to be optimal signal–modulation schemes for SM. However,

(18) provides the criterion to compute the optimal modulation

scheme that minimizes the ABEP.
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A. Comparison with Single–Antenna PSK/QAM and SSK

Modulations

By exploiting Corollary 5, in this section we aim at

computing in closed–form the SNR difference between SM

and other transmission technologies with similar complex-

ity, such as single–antenna PSK/QAM and SSK modula-

tions. The high–SNR framework for PSK/QAM can be

found in Table I, while for SSK we get ABEPSSK =

(Nt/2)R
(

4σ2
0 γ̄
) γ̄≫1

= 2−Nr (Nt/2)
(

2Nr−1
Nr

) (

4σ2
0 γ̄
)−Nr

from

ABEPspatial in (18).

Due to space constraints, we cannot report all the details

of the analytical derivation, but we can only summarize

the main procedure used to compute the formulas in Ta-

ble II. From (18) and Table I, for any transmission tech-

nology, X , the ABEP is ABEPX = KX

(

σ2
0 γ̄X

)−Nr
=

KX (SNRX)
−Nr . Then, for any pair ABEPX and ABEPY ,

we have ABEPX = ABEPY ⇒ KX (SNRX)
−Nr =

KY (SNRY )
−Nr . If we define the SNR difference (in dB) as

∆(X/Y )
SNR

= 10 log10 (SNRX/SNRY ), then we get ∆(X/Y )
SNR

=
− (10/Nr) log10 (KY /KX) = − (10/Nr) log10

(

Π(X/Y )
SNR

)

. If

∆(X/Y )
SNR

> 0, then, for the same ABEP, Y needs ∆(X/Y )
SNR

dB

less transmit–energy than X , i.e., ∆(X/Y )
SNR

is the energy gain

of Y with respect to X .

Using Table II, in Table III we show some examples

about the SNR advantage/disadvantage of SM with respect

to SSK and single–antenna PSK/QAM. Further comments are

postponed to Section VI.

VI. NUMERICAL AND SIMULATION RESULTS

The aim of this Section is to substantiate frameworks and

claims through Monte Carlo simulations. Two case studies

are considered: 1) i.i.d. Rayleigh fading (Section V); and

2) identically distributed Nakagami–m fading (Section IV-B).

In the first case study, we focus our attention on the better

accuracy provided by our upper–bound, on the comparison

of SM with other modulations, and on understanding the

role played by the signal– and spatial–constellation diagrams.

In the second case study, we turn our attention to analyze

the effect of fading correlation and fading severity on the

achievable diversity. Without loss of generality, we consider

the identically distributed setup to keep the chosen parameters

and variables reasonably low in order to maintain a sensible

set of simulation results. This allows us to focus our attention

on fundamental behaviors and to show the main trends. In

particular, in the presence of channel correlation, we consider

the constant correlation model [41]. The reason of this choice

is twofold: i) to reduce the number of parameters needed

to identify the correlation profile; and ii) to study a worst–

case scenario, which arises when assuming that the constant

correlation coefficient corresponds to the pair of antennas that

are most closely–spaced.

A. Better Accuracy of the Improved Upper–Bound

In Fig. 1 and Fig. 2, we study the accuracy of the improved

upper–bound in Section III-A against Monte Carlo simula-

tions and the conventional union–bound. The frameworks for

Fig. 1. ABEP of PSK (MPSK = 64) and SM–PSK (M = 32, Nt =
2) against Em/N0. Accuracy of proposed analytical framework (denoted
by “improved union–bound” in the legend) and conventional union–bound
(denoted by “union–bound” in the legend) for unit–power (σ2

0 = 1) i.i.d.
Rayleigh fading (the rate is R = 6bpcu).

Fig. 2. ABEP of QAM (MQAM = 64) and SM–QAM (M = 32,
Nt = 2) against Em/N0. Accuracy of proposed analytical framework
(denoted by “improved union–bound” in the legend) and conventional union–
bound (denoted by “union–bound” in the legend) for unit–power (σ2

0 = 1)
i.i.d. Rayleigh fading (the rate is R = 6bpcu).

single–antenna PSK/QAM are obtained from Table I. It can

be noticed that our framework is, in general, more accurate

than the conventional union–bound, and that it well overlaps

with Monte Carlo simulations. In particular, our bound is

more accurate than the conventional union–bound for large

M and small Nr. Also, the figures compare the ABEP of SM

and single–antenna PSK/QAM. In particular, the worst–case

scenario with only Nt = 2 is considered. We observe two

different trends: i) in Fig. 1, SM–PSK always outperforms

PSK, regardless of Nr, and the gain increases with Nr; on

the other hand, ii) in Fig. 2, SM–QAM is worse than QAM

if Nr = 1 and it outperforms QAM if Nr = 3. This result

is substantiated by the high–SNR framework in Table II. The

general outcome of our study for i.i.d. Rayleigh fading is the
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Fig. 3. ABEP of SM–PSK against Em/N0. Performance comparison
for various sizes of signal– and spatial–constellation diagrams. Accuracy of
proposed analytical frameworks for unit–power (σ2

0 = 1) i.i.d. Rayleigh
fading (the rate is R = 4bpcu). The setup (M = 2, Nt = 8) is not shown,
as it overlaps with the setup (M = 4, Nt = 4).

Fig. 4. ABEP of SM–QAM against Em/N0. Performance comparison
for various sizes of signal– and spatial–constellation diagrams. Accuracy of
proposed analytical frameworks for unit–power (σ2

0 = 1) i.i.d. Rayleigh
fading (the rate is R = 4bpcu). The setup (M = 2, Nt = 8) is not shown,
as it overlaps with the setup (M = 4, Nt = 4).

following: i) SM–QAM never outperforms QAM for Nr = 1;

and ii) SM–QAM never outperforms QAM for data rates (R)

less than R = 2bpcu. Further comments about this outcome

are given in Section VI-B.

B. Comparison with PSK, QAM, and SSK Modulations

Motivated by Fig. 2, we exploit the framework in Table II

to deeper understand the possible performance advantage of

SM with respect to SSK and single–antenna PSK/QAM. The

accuracy of the frameworks in Table II has been validated

through Monte Carlo simulations, and a perfect match has

been found. In particular, the interested reader might verify

the accuracy of Table II by looking at the SNR difference

estimated through Monte Carlo simulations in Figs. 3–8. Table

Fig. 5. ABEP of SM–PSK against Em/N0. Performance comparison
for various sizes of signal– and spatial–constellation diagrams. Accuracy of
proposed analytical frameworks for unit–power (σ2

0 = 1) i.i.d. Rayleigh
fading (the rate is R = 5bpcu). The setup (M = 2, Nt = 16) is not
shown, as it overlaps with the setup (M = 4, Nt = 8).

Fig. 6. ABEP of SM–QAM against Em/N0. Performance comparison
for various sizes of signal– and spatial–constellation diagrams. Accuracy of
proposed analytical frameworks for unit–power (σ2

0 = 1) i.i.d. Rayleigh
fading (the rate is R = 5bpcu). The setup (M = 2, Nt = 16) is not
shown, as it overlaps with the setup (M = 4, Nt = 8).

III provides the following outcomes: i) if Nr = 1, SM–QAM

never outperforms QAM, and the gap increases with the data

rate; ii) whatever Nr is and if R < 3bpcu, SM–PSK and

SM–QAM never outperform PSK and QAM, respectively; iii)

except the former setups, SM always outperforms PSK and

QAM, and the gain increases with R and if more antennas

are available at the transmitter, i.e., more information bits

can be sent through the spatial–constellation diagram; and

iv) the SNR gain increases with Nr, which means that SM

is inherently able to exploit receiver diversity much better

than PSK/QAM. It is important to emphasize here that in

Section V-A we have pointed out that QAM might not be the

best modulation scheme for SM. This means that the optimal

signal–constellation diagram for SM is still unknown and,
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Fig. 7. ABEP of SM–PSK against Em/N0. Performance comparison
for various sizes of signal– and spatial–constellation diagrams. Accuracy of
proposed analytical frameworks for unit–power (σ2

0 = 1) i.i.d. Rayleigh
fading (the rate is R = 6bpcu). The setup (M = 2, Nt = 32) is not
shown, as it overlaps with the setup (M = 4, Nt = 16).

thus, the ABEP of SM might be reduced further by looking

for the signal–constellation diagram that optimizes the coef-

ficients Θ
(M,Nr)
spatial , Θ

(M,Nr)
joint , and Θ

(M,Nr,H)
joint . In other words,

the noticeable gain offered by SM might be increased further,

and possibilities of improvement for those setups where SM

is worse than state–of–the–art might be found as well. Further

comments about the impact of the signal modulation scheme

on the performance of SM is available in Section VI-C. This

study corroborates our analytical findings, and confirms that an

adaptive multi–mode modulation scheme might be a very good

choice. Finally, in Table III we compare SM–QAM with SSK

as well. It can be noticed that, especially for high data rates,

SSK outperforms SM–QAM. This result shows that, when R

increases, it is convenient to transmit the information bits only

through the spatial–constellation diagram, as this minimizes

the ABEP over i.i.d. fading channels. However, the price to

pay for this additional improvement is the need of larger

antenna arrays at the transmitter. So, there is a clear trade–

off between the achievable performance and the number of

antennas that can be put on a transmitter, and still being able

to keep the i.i.d. assumption. In any case, these numerical

examples corroborate the potential performance and energy

gain benefits of exploiting SSK for low–complexity “massive”

MIMO implementations [20].

C. Interplay of Signal– and Spatial–Constellation Diagrams

In this section, we wish to give a deeper look at the

performance of SM for various configurations of signal– and

spatial–constellation diagrams, as well as at the effect of the

adopted modulation scheme. More specifically, we seek to

answer two fundamental questions: 1) is there, for a given data

rate R, an optimal pair (Nt,M) that minimizes the ABEP?

and ii) is the optimal modulation scheme for single–antenna

systems still optimal for SM? The results shown in Figs. 3–

8 provide a sound answer to both questions. In particular, if

Fig. 8. ABEP of SM–QAM against Em/N0. Performance comparison
for various sizes of signal– and spatial–constellation diagrams. Accuracy of
proposed analytical frameworks for unit–power (σ2

0 = 1) i.i.d. Rayleigh
fading (the rate is R = 6bpcu). The setup (M = 2, Nt = 32) is not
shown, as it overlaps with the setup (M = 4, Nt = 16).

R = 4bpcu: i) the ABEP decreases by increasing Nt, but the

improvement is negligible for Nt > 4. Thus, Nt = 4 can be

seen as the optimal choice in this scenario; ii) the SNR gain

with Nt is higher in SM–QAM than in SM–PSK; and iii) for

Nt = 2, SM–PSK outperforms SM–QAM, which substantiates

the claims in Section V, while there is no difference between

them for Nt ≥ 4. In fact, in this latter case PSK and QAM lead

to the same signal–constellation diagram. Thus, since PSK

modulation is, in general, simpler to be implemented as the

power amplifiers at the transmitter have less stringent linearity

requirements [46], then SM–PSK seems to be preferred to

SM–QAM in all cases. If R = 5bpcu: i) Nt = 8 is the

best choice to minimize both the ABEP and the size of the

antenna–array at the transmitter; ii) for SM–PSK, the setup

Nt = 4 is a very appealing configuration as the ABEP is close

to the optimal value but the complexity of the transmitter is

very low; iii) for Nt = 2, SM–QAM is definitely superior

to SM–PSK, as the spatial–constellation diagram has a low

impact on the overall performance; iv) for Nt = 4, SM–PSK

is much better than SM–QAM, and, in particular, for SM–

QAM the net improvement when moving from Nt = 2 to

Nt = 4 is negligible; and v) for Nt ≥ 8, there is no difference

between SM–PSK and SM–QAM since they have the same

signal–constellation diagram, and, thus, SM–PSK is the best

choice because simpler to implement. Also, if R = 6bpcu,

we have a behavior similar to R = 4bpcu and R = 5bpcu.

Thus, we focus only on two main aspects: i) the best ABEP

is obtained when Nt = 16. By comparing the best MIMO

setup for different rates, we conclude that the best Nt increases

with the rate, and the rule of thumb seems to be: “double the

number of transmit–antennas for each 1bpcu increase of the

data rate”. Even though this increase of the rate might appear

to be small for every doubling of the number of antennas

at the transmitter, this multiplexing gain is obtained with a

single active RF chain and with low (single–stream) decoding
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Fig. 9. ABEP against Em/N0 over i.i.d. Nakagami–m fading (mNak = 1.0,
i.e., Rayleigh, Nr = 2, and rate R = 6bpcu). Performance comparison and
accuracy of the analytical framework for SM–QAM, QAM, and SSK.

complexity. These two features agree with current trends in

MIMO research [20], [22], as mentioned in Section I; and ii)

if Nt = 8, SM–PSK is a very appealing choice to achieve very

good performance with low–complexity. Also, we emphasize

the good accuracy of our framework in all analyzed scenarios.

Finally, we close this section by mentioning that the good

performance offered by SM–PSK against SM–QAM for some

MIMO setups and rates brings to our attention that SM–PSK

might be a good candidate for energy efficient applications. As

a matter of fact, in [46] it is mentioned that a non–negligible

percentage of the energy consumption at the base stations of

current cellular networks is due to the linearity requirements

of the power amplifiers, which are needed to use high–order

modulation schemes (such as QAM), and which result in

the low power efficiency of the amplifiers. Furthermore, in

[47, Pg. 12] it is clearly stated that this power inefficiency

significantly contributes to the so–called quiescent energy,

which is independent of the amount of transmitted data, and,

thus, should be reduced as much as possible.

D. Impact of Fading Severity

In Fig. 9 and Fig. 10, we study the impact of fading severity

on the performance of QAM, SM, and SSK modulations.

Figure 9 shows the basic scenario with i.i.d. Rayleigh fading

(mNak = 1.0), where from Section IV-B.4 we know that all

modulations have the same diversity. Figure 10 highlights the

effect of more (mNak = 0.5) and less (mNak = 1.5) severe

fading. The figures provide three important outcomes, which

are well captured by the framework in Section IV-B.4: i)

overall, the ABEP gets better for increasing values of mNak;

ii) the SNR gain of SM with respect to QAM increases if

mNak = 0.5, as a consequence of the steeper slope of some

components of the ABEP of SM. Furthermore, we notice that

SSK is the only modulation scheme with no reduction of

the diversity gain. If Nt = 32, SM has performance very

close to SSK, but the different slope is noticeable even for

moderate SNRs; and iii) if mNak = 1.5, QAM provides the
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Fig. 10. ABEP against Em/N0 over i.i.d. Nakagami–m fading (mNak = 0.5
and mNak = 1.5, Nr = 2, and rate R = 6bpcu). Performance comparison
and accuracy of the analytical framework for SM–QAM, QAM, and SSK.

best diversity gain, but at low–SNR the high coding gain

introduced by SM and SSK is still advantageous. However,

a crossing point can be observed for high–SNR, which shows

that QAM should be preferred in this case. In conclusion, these

results substantiate the diversity analysis conducted in Section

IV-B.4, and show, once again, that the characteristics of the

fading are of paramount importance to assess the superiority of

a modulation scheme with respect to another one. An adaptive

multi–mode modulation scheme might be an appealing choice

in order to use always the best modulation scheme for any

fading scenario.

E. Impact of Fading Correlation

Finally, in Figs. 11–14 we study the impact of fading corre-

lation at the transmitter and at the receiver over Nakagami–m

fading. The analytical framework is available in Section IV-

B.4, and, in particular, in the analyzed scenario Mγ(nt) (s) =
Mγ (s) can be found in [34, Eq. (9.173)]. We use a constant

correlation model, and ρNak denotes the correlation coefficient

of pairs of Nakagami–m envelopes. We consider two case

studies: i) channel correlation only at the transmitter (Fig. 11,

Fig. 12); and ii) channel correlation only at the receiver (Fig.

13, Fig. 14). The rationale of this choice is to investigate the

different effect that correlation might have at either ends of

the communication link. In fact, according to (5), correlation

might have a different impact at the transmitter and at the

receiver: correlation at the transmitter affects the distance of

points in the spatial–constellation diagram, while correlation

at the receiver reduces the diversity gain of Maximal Ratio

Combining (MRC) at the destination.

In Fig. 11 and Fig. 12, we study the impact of correlation at

the transmitter. It can be noticed, as expected, that performance

degrades with channel correlation. Also, the impact of corre-

lation increases with Nt, which is a reasonable outcome in

our scenario. However, the SNR degradation with increasing

values of ρNak is tolerable if ρNak < 0.6, while for higher

values a few dB loss can be observed. Very interestingly,
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Fig. 11. ABEP of SM–QAM against Em/N0 over correlated (at the
transmitter) and identically distributed Nakagami–m fading (mNak = 0.5
and mNak = 1.5, Nr = 2, and rate R = 6bpcu). Performance comparison
and accuracy of the analytical framework for M = 2 and Nt = 32.
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Fig. 12. ABEP of SM–QAM against Em/N0 over correlated (at the
transmitter) and identically distributed Nakagami–m fading (mNak = 0.5
and mNak = 1.5, Nr = 2, and rate R = 6bpcu). Performance comparison
and accuracy of the analytical framework for M = 32 and Nt = 2.

Fig. 12 shows that channel correlation has a negligible effect

if mNak = 0.5. This result is very interesting, especially if

compared to the same curves in Fig. 11 and with the ABEP

of QAM in Fig. 10 (QAM uses just one transmit–antenna and,

thus, it is not affected by fading correlation at the transmitter).

In particular, we note that: i) if Nt = 2, SM is always

superior to QAM, regardless of fading correlation; and ii) if

Nt = 32, SM is much better that QAM, even for a high fading

correlation (ρNak = 0.9). The net outcome is the following:

for severe fading channels, correlation degrades the ABEP

but it does not offset the SNR gain that, for independent

fading, SM has with respect to QAM. On the other hand,

if mNak = 1.5 the superiority of QAM becomes even more

pronounced if compared to the independent fading scenario.

In conclusion, fading correlation at the transmitter poses no
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Fig. 13. ABEP of SM–QAM against Em/N0 over correlated (at the receiver)
and identically distributed Nakagami–m fading (mNak = 0.5 and mNak =
1.5, Nr = 2, and rate R = 6bpcu). Performance comparison and accuracy
of the analytical framework for M = 2 and Nt = 32.
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Fig. 14. ABEP of SM–QAM against Em/N0 over correlated (at the receiver)
and identically distributed Nakagami–m fading (mNak = 0.5 and mNak =
1.5, Nr = 2, and rate R = 6bpcu). Performance comparison and accuracy
of the analytical framework for M = 32 and Nt = 2.

problems to SM in severe fading channels, while it should be

carefully managed in other fading scenarios, especially if we

want to keep the performance advantage over single–antenna

QAM (whose ABEP is not affected by this correlation). For

SM, solutions to counteract fading correlation have recently

been proposed in [9] and [14]. Once again, we emphasize that,

because of the constant correlation model, Fig. 11 and Fig. 12

show the worst case effect of fading correlation, especially for

large Nt.

In Fig. 13 and Fig. 14, we study the impact of correlation

at the receiver. Overall, the ABEP degrades for increasing

ρNak. A higher robustness to fading correlation can be noticed

for mNak = 1.5. If mNak = 0.5, the diversity advantage of

SM with respect to QAM if kept in the presence of channel

correlation too. For large antenna–arrays at the transmitter
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





ABEPbound
signal = 1

Nt

log2(M)
log2(NtM)

Nt
∑
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ABEPbound

MOD (nt)

ABEPbound
MOD (nt) =

1
M

1
log2(M)

M
∑

l=1

M
∑

l̃=1

[

NH

(

χl̃ → χl

)

Eα(nt)

{

Q

(√

γ̄
∣

∣χl̃ − χl

∣

∣

2
Nr
∑

nr=1
|αnt,nr

|2
)}] (19)

(e.g., Nt = 32), the diversity loss in ABEPsignal has a

negligible impact even for high correlated channels. If mNak =
1.5, we observe that the SNR degradation gets smaller for

larger antenna–arrays at the transmitter. In other words, trans-

mitting more information bits through the spatial–constellation

diagram (e.g., increasing Nt) can mitigate the effect of channel

correlation at the receiver. However, Fig. 11 and Fig. 12 point

out a clear trade–off: increasing Nt degrades the ABEP if we

have channel correlation at the transmitter. We believe that the

exploitation of the proposed frameworks for an end–to–end

system optimization by taking into account all these trade–

offs might be a very important research issue: how to find the

optimal SM setup providing the best performance/complexity

trade–off, as a function of fading correlation, fading severity,

etc.

Finally, we wish to emphasize the good accuracy of our

framework for the very complicated fading scenario under

analysis. Our framework agrees with Monte Carlo simulations

in all scenarios. Only in some figures there are negligible

errors, which are mainly due to the Green approximation

described in Section IV-B. Thus, our frameworks can be

exploited for accurate system optimization.

VII. CONCLUSION

In this paper, we have proposed a comprehensive frame-

work for the analysis of SM–MIMO over generalized fading

channels. The framework is applicable to a large variety of

correlated fading models and MIMO setups. Furthermore,

and, more importantly, by carefully analyzing the obtained

formulas, we have derived important information about the

performance of SM over fading channels, including the effect

of fading severity, the achievable diversity gain, along with the

impact of the signal–constellation diagram. It has been shown

that the modulation scheme used in the signal–constellation

diagram significantly affects the performance, and, for i.i.d.

Rayleigh fading, closed–form expressions for its optimization

have been proposed. Finally, we have conducted an extensive

simulation campaign to validate the analytical derivation, and

have showcased important trends about the performance of SM

for a large variety of fading scenarios and MIMO setups. We

believe that our frameworks can be very useful to understand

fundamental behaviors and trade–offs of SM, as well as can

be efficiently used for system optimization.
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APPENDIX I

PROOF OF Proposition 1

Before going into the details of the proof, let us

analyze the Hamming distance, NH

((

ñt, χl̃

)

→ (nt, χl)
)

,

of messages µ
(

ñt, χl̃

)

and µ (nt, χl). In particular,

NH

((

ñt, χl̃

)

→ (nt, χl)
)

is equal to the number

of different bits between the messages. Since a bit

error might occur when: i) only the antenna–index is

wrongly detected; ii) only the signal–modulated point

is wrongly detected; or iii) both antenna–index and

signal–modulated point are wrongly detected, then we

conclude that total number of bits in error is given by

NH

((

ñt, χl̃

)

→ (nt, χl)
)

= NH (ñt → nt)+NH

(

χl̃ → χl

)

,

where NH (ñt → nt) and NH

(

χl̃ → χl

)

are defined in

Proposition 1. This remark is used to compute (6)–(8), and it

is important to highlight the role played by the bit–mapping

in each constellation diagram. Proposition 1 can be obtained

as follows:

• ABEPsignal is obtained from (4) by grouping together

all the terms for which ñt = nt and l̃ 6= l, and

by noticing that: i) NH (ñt → nt) = 0 if ñt =
nt; ii) (5) reduces to APEP

((

ñt, χl̃

)

→ (nt, χl)
)

=

Eα(nt)

{

Q

(

√

γ̄
∣

∣χl̃ − χl

∣

∣

2∑Nr

nr=1 |αnt,nr
|2
)}

. Then,

ABEPsignal = ABEPbound
signal in (4) reduces to (19)

on top of this page. It can readily be noticed that

ABEPbound
MOD (nt) is the union–bound of a conventional

modulation scheme [34], where: i) only the nt–th

transmit–antenna is active; and ii) we have the same

constellation diagram as the signal–constellation diagram

of SM. More specifically, ABEPbound
MOD (nt) is the ABEP

of a single–input–multiple–output system with maximal

ratio combining. This ABEP is known in closed–form for

many modulation schemes and bit mappings, without the

need to using union–bound methods. Thus, to get more

accurate estimates of the ABEP, ABEPbound
MOD (·) can be

replaced by ABEPMOD (·), as shown in (8), which is

the exact ABEP of a single–input–multiple–output system

with maximal ratio combining.

• Likewise, ABEPspatial is obtained from (4) by group-

ing together all the terms for which ñt 6= nt and

l̃ = l, and by noticing that: i) NH

(

χl̃ → χl

)

= 0 if

l̃ = l; ii) (5) reduces to APEP
((

ñt, χl̃

)

→ (nt, χl)
)

=

Eα(nt,ñt)

{

Q

(

√

γ̄κ2
l

∑Nr

nr=1 |αñt,nr
− αnt,nr

|2
)}

. Fi-

nally, from [34, Eq. (4.2)] we have Ψl (nt, ñt) =
APEP

((

ñt, χl̃

)

→ (nt, χl)
)

, where Ψl (·, ·) is defined in

Section III-A.

• ABEPjoint in (7) collects all the terms that are

neither in ABEPsignal nor in ABEPspatial. More
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Mγ(nt,ñt)
(s) = E

{

exp

[

−s

Nr
∑

nr=1

|αñt,nr
− αnt,nr

|2
]}

= E

{

Nr
∏

nr=1

exp
(

−s |αñt,nr
− αnt,nr

|2
)

}

= Eβ

{

Nr
∏

nr=1

exp
(

−sβ2
ñt,nr

)

×
Nr
∏

nr=1

exp
(

−sβ2
nt,nr

)

× Eϕ

{

Nr
∏

nr=1

exp [2sβñt,nr
βnt,nr

cos (ϕñt,nr
− ϕnt,nr

)]

}}

(20)

J (s;βñt,nr
, βnt,nr

) =

Nr
∏

nr=1

Eϕ {exp [2sβñt,nr
βnt,nr

cos (ϕñt,nr
− ϕnt,nr

)]} =

Nr
∏

nr=1

I0 (2sβñt,nr
βnt,nr

) (21)

Mγ(nt,ñt)
(s) = Eβ

{

Nr
∏

nr=1

[

exp
(

−sβ2
ñt,nr

)

exp
(

−sβ2
nt,nr

)

I0 (2sβñt,nr
βnt,nr

)
]

}

=

∫

β

{

Nr
∏

nr=1

[

exp
(

−sβ2
ñt,nr

)

exp
(

−sβ2
nt,nr

)

I0 (2sβñt,nr
βnt,nr

)
]

}

fβ (β) dβ

(22)























Mγ(nt,ñt)
(s) =

∫

β

{[

exp
(

−sβ2
1,1

)

exp
(

−sβ2
2,1

)

I0 (2sβ1,1β2,1)
] [

exp
(

−sβ2
1,2

)

exp
(

−sβ2
2,2

)

I0 (2sβ1,2β2,2)
]}

fβ (β) dβ

fβ (β) =

[
∣

∣

∣
Σ

−1
trid

∣

∣

∣

mNak

2(mNak−1)Γ(mNak)
β2
1,1β

2
2,2 exp

(

− p44
2

β2
2,2

)

]

×
[

|p12|−(mNak−1) β1,1 exp
(

− p11
2

β2
1,1

)

ImNak−1 (|p12|β1,1β1,2)
]

×
[

|p23|−(mNak−1) β1,2 exp
(

− p22
2

β2
1,2

)

ImNak−1 (|p23|β1,2β2,1)
]

×
[

|p34|−(mNak−1) β2,1 exp
(

− p33
2

β2
2,1

)

ImNak−1 (|p34|β2,1β2,2)
]

(23)















F(p11,p33)
k

(s) =

∫ +∞

0

∫ +∞

0
β
2mNak+2k1−1
1,1 β

2mNak+2k2+2k3−1
2,1 exp

[

−
(

s+
p11

2

)

β2
1,1

]

exp
[

−
(

s+
p33

2

)

β2
2,1

]

I0 (2sβ1,1β2,1) dβ1,1dβ2,1

F(p22,p44)
k

(s) =

∫ +∞

0

∫ +∞

0
β
2mNak+2k1+2k2−1
1,2 β

2mNak+2k3−1
2,2 exp

[

−
(

s+
p22

2

)

β2
1,2

]

exp
[

−
(

s+
p44

2

)

β2
2,2

]

I0 (2sβ1,2β2,2) dβ1,2dβ2,2

(24)

specifically, (7) can be obtained from [34, Eq. (4.2)]:

Υ
(

nt, l, ñt, l̃
)

= APEP
((

ñt, χl̃

)

→ (nt, χl)
)

=

Eα(nt,ñt)

{

Q

(

√

γ̄
∑Nr

nr=1

∣

∣αñt,nr
χl̃ − αnt,nr

χl

∣

∣

2
)}

,

where Υ(·, ·, ·, ·) is defined in Section III-A.

APPENDIX II

PROOF OF Proposition 2

By definition, Mγ(nt,ñt)
(·) is given by (20) on top of this

page, where the last equality explicitly shows the conditioning

over fading envelopes and channel phases, and β, ϕ are short–

hands to denote the set of all fading envelopes and channel

phases, respectively. Let us compute J (s;βñt,nr
, βnt,nr

) =

Eϕ

{

∏Nr

nr=1 exp [2sβñt,nr
βnt,nr

cos (ϕñt,nr
− ϕnt,nr

)]
}

in

(20). It can be obtained as shown in (21) on top of this

page, where the first equality is due to the independence

of the channel phases, and the second equality is obtained

from [35, pp. 339, Eq. (366), Eq. (367)] and [24, Eq. (14)].

Accordingly, Mγ(nt,ñt)
(·) simplifies as shown in (22) on top

of this page, where fβ (·) is the multivariate Nakagami–m

PDF in [41, Eq. (2)].

As an example, and without loss of generality, let us

consider Nr = 2. For ease of notation, we set nt = 1 and

ñt = 2. Accordingly, (22) reduces to (23) shown on top of

this page. Finally, by using the infinite series representation

of Iv (·) in [33, Eq. (9.6.10)], and after lengthy algebraic

manipulations, Mγ(nt,ñt)
(·) can be re–written as shown in

(13) where the integrals shown in (24) on top of this page

have been introduced. These latter integrals can be computed

in closed–form from [24, Sec. III–B], thus obtaining the final

result in (14). More specifically, the analytical procedure we

have used to compute (14) is as follows: i) first, the integral on

variable β2,1 is solved in closed–form by using the identities

in [32, Eq. (8.4.3.1)] and [32, Eq. (8.4.22)], as well as by

applying the Mellin–Barnes theorem in [32, Eq. (2.24.1.1)] on

the obtained integral; ii) second, the obtained single–integral

on variable β1,1 is solved in closed–form by using again the

identity in [32, Eq. (8.4.3.1)] and by applying the Mellin–

Barnes theorem in [32, Eq. (2.24.1.1)].

The analytical development can be generalized to arbitrary

Nr by simply inserting in (22) the general PDF in [41, Eq.

(2)] and solving the integrals as in (21)–(24).

Finally, a few comments about the Green approximation
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Σ ∼= Σtrid in (23). i) The PDF in (23) requires the correlation

matrix Σ of the Gaussian RVs associated to the fading

envelopes. This matrix can be computed from the amplitude

correlation coefficient ρ
(nt,nr,ñt,ñr)
Nak by using the procedure in

[42, Sec. III]. ii) For arbitrary and unequal values of Ω
(nt,nr)
Nak ,

the Green method in [41], which is given under the assumption

that Ω
(nt,nr)
Nak = 1 for nt = 1, 2, . . . , Nt and nr = 1, 2, . . . , Nr,

must be generalized. More specifically, the coefficients ui in

[41, Eq. (9)], which are needed to compute Σtrid, take the form

ui = Σ (i, i)/vi, where Σ (i, i) is the entry of Σ located in

the i–th row and in the i–th column, and vi are the coefficients

to be computed by solving the non–linear system of equations

in [41, Eq. (10)].
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