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Abstract 

Scale deposition can damage equipment in the oil & gas production industry. Hence, the reliable and accurate 

prediction of the scale deposition rate is critical for production availability. In this study, we consider the 

problem of predicting the scale deposition rate, providing an indication of the associated prediction uncertainty. 

We tackle the problem using an empirical modeling approach, based on experimental data. Specifically, we 

implement a multi-objective genetic algorithm (namely, non-dominated sorting genetic algorithm–II (NSGA-II)) 

to train a neural network (NN) (i.e. to find its parameters, that is its weights and biases) to provide the prediction 

intervals (PIs) of the scale deposition rate. The PIs are optimized both in terms of accuracy (coverage 

probability) and dimension (width). We perform k-fold cross-validation to guide the choice of the NN structure 

(i.e. the number of hidden neurons). We use hypervolume indicator metric to evaluate the Pareto fronts in the 

validation step. A case study is considered, with regards to a set of experimental observations: the NSGA-II-

trained neural network is shown capable of providing PIs with both high coverage and small width. 

Key words: Prediction intervals, Neural networks, Multi-objective genetic algorithms, Cross-validation, 

Hypervolume, Scale deposition rate. 

 

1. Introduction 

Degradation to failure of components may cause unplanned costs and production losses through downtime 

(Lins et. al., 2011). Then, prediction of component degradation to failure is important for production availability. 

In the context of oil & gas industry, scale deposition and corrosion continue to be serious and costly problems, 

because affecting the operation of the components (Moura et. al., 2011). Formation of scale on downhole 

equipment due to produced mineral salts is a common occurrence which is mitigated with chemical treatments or 

surface modifications. However, when chemical treatments are ineffective or undesirable, the scale buildup 
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should be accounted for and predicted a priori for a given application. Accurate prediction of scale deposition 

and corrosion can give way to preventive maintenance. In this paper, we focus on the former process. 

In oil & gas plant components, scale deposition is influenced by different factors, such as reservoir 

conditions (temperature, pressure), changes in pH, variation of flow rates, water cut, material structure, etc. 

(Nyborg, 2002). A predictive model is needed to explain the linear or nonlinear mapping between these input 

(explanatory) variables and the output (the scale deposition rate, hereafter called scale rate). In the literature 

some analytical models based on thermodynamics (Yuan, Todd, & Heriot-Waft 1991), kinetics (Larsen et. al., 

2008) and hydrodynamics, or a combination of these (Stamatakis, Stubos, & Muller, 2011) have been proposed 

for the prediction of scale deposition in components of production wells. The output of these models is typically 

deterministic, with no consideration given to the variability/uncertainty caused in the output by the uncertain 

characteristics of the input variables. To account for this, statistical prediction methods based on learning 

algorithms (neural networks, NNs, support vector machines, SVMs, etc.) have been proposed (Lins et. al., 2011; 

Moura et. al., 2011; Cottis, Owen, & Turega, 2000). 

Due to their capability of learning complex nonlinear relationships among variables from observed data, 

learning algorithms (e.g. NNs, SVMs, nonlinear regression models, etc.) have been successfully used in many 

fields of science and engineering. Lins et al. (2011) and Moura et al. (2011) proposed a SVM approach 

combined with particle swarm optimization (PSO) for reliability prediction in the context of oil production 

industry. The former work aimed at predicting scale deposition over time; the latter work aimed at predicting 

time between failures (TBFs) with simultaneous input variable selection and SVM parameters’ tuning by PSO. 

Cottis, Owen, and Turega (2000) used a conventional multi-layer perceptron NN for the prediction of the 

corrosion rate of steel in seawater. 

In practice, the predictions provided by a learning algorithm like NNs or SVMs are affected by uncertainties 

(Khosravi et al., 2011a; Khosravi et al., 2011b; Khosravi, Nahavandi, & Creighton, 2010). For this reason, it is 

important to provide prediction intervals (PIs) of the output. A prediction interval (PI) is an interval estimate for 

an (unknown) future value of the target. PIs are comprised of lower and upper bounds within which the actual 

target is expected to lie with a predetermined probability (Khosravi et al., 2011a; Khosravi et al., 2011b; 

Khosravi, Nahavandi, & Creighton, 2010). There are two conflicting criteria for assessing the quality of the 

estimated PIs: coverage probability (CP) and prediction interval width (PIW) (Moura et. al., 2011). The 

prediction interval coverage probability (PICP) represents the probability that the set of estimated PI values will 

contain a certain percentage of the true output values. The prediction interval width (PIW) simply measures the 

extension of the interval as the difference of the estimated upper bound and lower bound values. To obtain 

representative PIs, one should aim at maximizing the CP and minimizing the PIW, simultaneously. 

In this paper, we propose the adoption of a multi-objective optimization approach to the construction of PIs 

for NN predictions of scale rate in oil & gas components.  A multi-objective genetic algorithm (namely, non-

dominated sorting genetic algorithm–II (NSGA-II)) (Sirinivas & Deb, 1994) is used to train a NN, i.e. optimize 

its parameters (weights and biases) with respect to accuracy (max) and width (min). A demonstration of the 

approach and a comparison with the Lower and Upper Bound Estimation (LUBE) method of (Khosravi et al., 

2011b) on a synthetic case study of literature is given in (Ak, Li, & Zio, 2012) and testing of the method on a 

real case study of wind speed prediction is given in (Ak et al., 2012). 
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Genetic Algorithms (GAs) have been successfully applied in a number of applications of engineering and 

related fields (Coello, Lamont, & Van Veldhuizen, 2007; Chatterjee & Bandopadhyay, 2012). The major 

motivation for using the GA search paradigm is due to the following three recognized advantages (Gosselin, 

Tye-Gingras, & Mathieu-Potvin, 2009): (i) ease of use; (ii) robustness and (iii) capability of exploring large 

portions of the search space without falling into a local optimum. Further, GAs are capable of searching 

solutions from disjoint feasible domains and of operating on irregular functions (i.e. non-continuous and even 

non-differentiable); for proceeding in the search, GAs do not require the computation of gradients (Ozkol & 

Komurgoz, 2005).  

In order to choose the NN structure (number of hidden neurons) with good generalization performance, a k- 

fold cross-validation is performed. A hypervolume indicator metric is used to compare the Pareto fronts of each 

cross-validation fold. 

The paper is organized as follows: Section 2 briefly introduces the basic concepts of NN and PIs, and the 

use of NSGA-II for training a NN to estimate PIs. The complete methodology set up for scale rate PIs estimation 

is illustrated in Section 3.  Experimental results on the real case study of scale rate prediction are given in 

Section 4. Finally, Section 5 concludes the paper with a critical analysis of the results obtained and some ideas of 

future studies. 

 

2. Modeling Framework 

In this Section we describe NN-based PIs estimation in the theoretical framework of multi-objective 

optimization, and we give the details of our implementation of NSGA-II for tackling the problem at hand. 

2.1. PIs 

We consider the following mathematical problem of nonlinear regression (Zio, 2006; Yang et al., 2002): 

 

𝑦 = 𝑓 𝑥; 𝑤∗ + 𝜀(𝑥),     𝜀(𝑥)~𝑁(0, 𝜎𝜀
2 𝑥 )                 (1) 

 

where 𝑥, 𝑦 are the input and output vectors of the regression, respectively, and  𝑤∗ represents the vector of 

values of the parameters of the model function 𝑓, in general nonlinear. The term 𝜀(𝑥) is a random error with zero 

mean and variance 𝜎𝜀
2 𝑥 > 0. For simplicity of illustration, in the following we assume 𝑦 mono-dimensional. 

An estimate 𝑤  of 𝑤∗ is sought by minimizing the quadratic error function on a training set of input/output values 

𝐷 = { 𝑥𝑛 , 𝑦𝑛 , 𝑛 = 1,2, … , 𝑛𝑝},       

 

𝐸 𝑤 =  (𝑦 𝑖 − 𝑦𝑖)
2𝑛𝑝

𝑖=1
                            (2) 

 

where 𝑦 𝑖 = 𝑓 𝑥𝑖 ; 𝑤   represents the output provided by the model in correspondence of the input 𝑥𝑖 , and 𝑛𝑝  is the 

total number of training samples.  

We want to quantify the uncertainty associated to the model output estimates, in terms of PIs. A PI is 

comprised of upper and lower bounds in which a future unknown value of the target is expected to lie with a 

predetermined confidence level (1−∝).The formal definition of a PI is thus (Geisser, 1993): 

 

𝑃𝑟 𝐿(𝑥) < 𝑦(𝑥) < 𝑈(𝑥) = 1 − 𝛼                   (3) 
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where 𝐿(𝑥) and 𝑈(𝑥) are respectively the lower and upper bounds of the PI of the output 𝑦(𝑥) corresponding to 

input 𝑥;  the confidence level (1−∝) refers to the expected probability that the true value of 𝑦(𝑥) lies within the 

PI,  𝐿 𝑥 , 𝑈 𝑥  . 

The proposed approach is to train a NN to provide in output the two bounds of the PI corresponding to a 

given input 𝑥. The goodness of the PI estimate attained with the NN-based model is described by two measures 

of quality: the PI Coverage Probability (PICP) and the Normalized Mean PI Width (NMPIW) (Khosravi et al., 

2011b). Their mathematical definitions are:  

 

𝑃𝐼𝐶𝑃 =
1

𝑛𝑝
 𝑐𝑖

𝑛𝑝

𝑖=1
                                  (4) 

 

where 𝑐𝑖 = 1, if 𝑦𝑖 ∈ [𝐿 𝑥𝑖 , 𝑈 𝑥𝑖 ] and otherwise 𝑐𝑖 = 0;  

 

𝑁𝑀𝑃𝐼𝑊 =
1

𝑛𝑝
  

(𝑈 𝑥𝑖 −𝐿 𝑥𝑖 )

𝑡𝑚𝑎𝑥 −𝑡𝑚𝑖𝑛

𝑛𝑝

𝑖=1
              (5) 

 

where 𝑡𝑚𝑖𝑛  and 𝑡𝑚𝑎𝑥   represent the true minimum and maximum values of the outputs (i.e., the bounds of the 

interval in which the true values fall), respectively.  

 

2.2. Multi-objective optimization 

The development of the NN-based model for PIs estimation implies the optimization of PICP 

(maximization) and NMPIW (minimization). In other words, the NN structure (number of hidden neurons) and 

parameters (weights and biases) must be determined so as to have the desired PICP with minimum PIW. 

In all generality, a multi-objective optimization problem considers a number of objectives, equality and 

inequality constraints, and bounds on the decision variables. Mathematically the problem can be expressed as 

follows (Sawaragi, Nakayama, & Tanino, 1985): 

 

Minimise/Maximise  𝑓𝑚  𝑥 ,        𝑚 = 1,2, … , 𝑀;                           (6) 

subject to                𝑔𝑗  𝑥 ≥ 0,    𝑗 = 1,2, … , 𝐽;                           (7) 

𝑕𝑘 𝑥 = 0,    𝑘 = 1,2, … , 𝐾;                           (8) 

𝑥𝑖
(𝑙)

 ≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑢)

    𝑖 = 1,2, … , 𝐼.                            (9) 

 

A solution, 𝑥 =  𝑥1 , 𝑥2 , … 𝑥𝐼  is an I dimensional decision variable vector in the solution space 𝑅𝐼 . The 

solution space is restricted by the constraints in (7) and (8), and bounds on the decision variables in (9). 

The final goal is to identify a set of optimal decision variable vectors 𝑥𝑖
∗, 𝑖 = 1,2, … , 𝑛 such that each 

solution included in the set cannot be regarded as better than any other with respect to all the objective functions 

𝑓𝑚  ∙ , 𝑚 = 1,2, … , 𝑀. The concepts of Pareto optimality and dominance drive the comparison among solutions: 

in case of a minimization problem, solution 𝑥𝑎  dominates solution 𝑥𝑏  (𝑥𝑎 ≻ 𝑥𝑏 ) if both following conditions are 

satisfied (Sawaragi, Nakayama, & Tanino, 1985): 

 

∀𝑖 ∈  1,2, … , 𝑀 , 𝑓𝑖 𝑥𝑎 ≤ 𝑓𝑖 𝑥𝑏                             (10) 

∃𝑗 ∈  1,2, … , 𝑀 , 𝑓𝑗  𝑥𝑎 < 𝑓𝑗  𝑥𝑏                          (11) 
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If any of the above two conditions is violated, the solution 𝑥𝑎  does not dominate the solution 𝑥𝑏 , and 𝑥𝑏  is 

said to be non-dominated by 𝑥𝑎 . A solution is said to be Pareto optimal if it is not dominated by any other 

solution in the solution space. The set of all feasible non-dominated solutions in 𝑅𝐼  is referred to as the Pareto 

optimal set, and for a given Pareto optimal set, the corresponding values of the objective functions form the so 

called Pareto optimal front in the objective functions space. 

 

2.3. NSGA-II optimization of a NN for PIs estimation 

NSGA-II is one of the most efficient multi-objective evolutionary algorithms (Deb et al., 2002). It generates 

a Pareto optimal solution set, rather than a single solution, via comparison of the qualities of different solutions 

by using an elitist approach (i.e., a fast non-dominated sorting and crowding-distance estimation procedure 

(Konak, Coit, & Smith, 2006)). The practical implementation of NSGA-II on our specific problem involves two 

phases: initialization and evolution. These can be summarized as follows (Ak et al. 2012): 

 

Initialization phase: 

Step 1: Split the input data set into training (Dtrain) and testing (Dtest) subsets. 

Step 2: Fix the maximum number of generations and the number of chromosomes (individuals) 𝑁𝑐  in each 

population. Each chromosome codes a solution by 𝐺  real-valued genes, where 𝐺  is the total number of 

parameters (weights and biases) in the NN: thus, each chromosome represents a NN. Set the generation number 

𝑛 = 1. Initialize the first population 𝑃𝑛  of size 𝑁𝑐, by randomly generating 𝑁𝑐 chromosomes (corresponding to 

NNs). 

Step 3: For each input vector 𝑥 in the training set, compute the lower and upper bound outputs of the 𝑁𝑐 NNs. 

Step 4: Evaluate the two objectives PICP and NMPIW for the 𝑁𝑐 NNs; then, one pair of values 1-PICP (for 

minimization) and NMPIW is associated to each of the 𝑁𝑐 chromosomes in the population 𝑃𝑛 . 

Step 5: Rank the chromosomes (vectors of 𝐺 values) in the population 𝑃𝑛  by running the fast non-dominated 

sorting algorithm (Konak, Coit, & Smith, 2006) with respect to the pairs of objective values, and identify the 

ranked non-dominated fronts 𝐹1, 𝐹2, … , 𝐹𝑘  where 𝐹1  is the best front, 𝐹2  is the second best front and 𝐹𝑘  is the 

least good front. 

Step 6: Apply to 𝑃𝑛  a binary tournament selection based on the crowding distance (Konak, Coit, & Smith, 2006), 

for generating an intermediate population 𝑆𝑛  of size 𝑁𝑐. 

Step 7: Apply the crossover and mutation operators to 𝑆𝑛 , to create the offspring population 𝑄𝑛  of size 𝑁𝑐. 

Step 8: Apply Step 3 onto 𝑄𝑛  and obtain the lower and upper bound outputs. 

Step 9: Evaluate the two objectives in correspondence of the solutions in 𝑄𝑛 , as in Step 4. 

Evolution phase: 

Step 10: If the maximum number of generations is reached, stop and return 𝑃𝑛 . Select the first Pareto front 𝐹1 as 

the optimal solution set. Otherwise, go to Step 11. 

Step 11: Combine 𝑃𝑛  and 𝑄𝑛  to obtain a union population 𝑅𝑛 = 𝑃𝑛 ∪ 𝑄𝑛 . 

Step 12: Apply Steps 3-5 onto 𝑅𝑛  and obtain a sorted union population.  

Step 13: Select the 𝑁𝑐 best solutions from the sorted union to create the next parent population 𝑃𝑛+1. 

Step 14: Apply Steps 6-9 onto 𝑃𝑛+1 to obtain 𝑄𝑛+1. Set  𝑛 = 𝑛 + 1; and go to Step 10.  
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Finally, the best front in terms of ranking of non-dominance and diversity of the individual solutions is 

chosen. Once the best front is chosen, testing of the trained NN with optimal weight values is performed using 

the data of the testing set. 

 

3. Model Identification 

In this study a systematic process is followed in order to identify the optimal NN structure (i.e., the number 

of hidden neurons) via cross-validation, taking into account both measures of PIs quality (i.e. coverage 

probability and width) and comparing the set of solutions obtained in each fold in terms of the hypervolume 

indicator introduced in (Bringmann & Friedrich, 2009). Fig. 1 shows a general scheme of this process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of the methodology.  
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Step B: Perform validation with the data in the selected fold by using optimal parameters of the corresponding trained 

network 

 

Set the number of hidden neurons=h 
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Split training + validation data into k-folds  

Step C: Perform fast non-dominated sorting of the validation solutions set and identify the non-dominated fronts 

 

Select one fold 

Step A: Train the NN (optimize the parameters of the network by NSGA-II) using all data associated to the selected fold 

Repeat Steps A-C for each fold 

Change number of hidden 

neurons 

Have all choices for 

the number of hidden 

neurons been tested? 

Calculate the hypervolume values of each Pareto front produced by each validated NN 

Compare Pareto fronts in terms of the hypervolume values by a statistical test 

Select the optimal number of hidden neurons, giving evidence of highest hypervolume 

 
Retrain the NN with the chosen number of hidden neurons 

Perform testing  
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3.1. k-fold cross-validation (CV) 

Assessing the prediction accuracy, i.e. the generalization power, of a learning algorithm is essential for 

reliable prediction. In the case of NN, the structure of the model influences the learning capability. In practice, 

the choice of the number of network layers and neurons per layer often comes down to a compromise between 

the generalization error and the learning time (Khosravi, Nahavandi, & Creighton, 2010; Ileană, Rotar, & Incze, 

2004). Cross-validation (CV) is an approach to evaluate the generalization performance of the NN, and it can be 

used for determining the optimal network architecture (i.e., the number of hidden neurons) (Setiono, 2001). CV 

is a statistical re-sampling method which uses multiple training and test subsamples (Zhang, et al. 1999). 

Different CV techniques such as k-fold CV, leave-one-out CV, bootstrap CV, etc, have been proposed in the 

statistical literature (Hastie, Tibshirani, & Friedman, 2008). In the basic k-fold cross-validation technique, the 

input data set is split into a partition of k equally (or nearly equally) sized segments or folds. At each round of 

cross-validation, one among the different folds is excluded from the dataset, and only the remaining k-1 folds are 

used for training; the excluded subset is then used for validation. The procedure is repeated until all the k folds 

have been used once for validation and k-1 times for training. Hence, the advantage of this technique is that, at 

least in successive rounds, all samples in the input data set are used for validation, while the dimension of the 

training set is kept high (Setiono, 2001). Fig. 2 demonstrates an example with k = 3. The entire data set is 

divided into 3 folds and in each CV iteration, for training we use a combination of two folds out of three that can 

be drawn from the whole data set: {2, 3}, {1, 3} and {1, 2}. Then, subsets {1}, {2}, and {3} are used for 

validation, respectively.  

The prediction error obtained by using a CV strategy is sensitive to the specific way in which data have been 

split (Kwok, 1995). For small k values, the bias of k-fold cross-validation may become a problem in real-data 

analysis. If k = N, the so called leave-one-out CV, the cross-validation estimator is approximately unbiased for 

the true prediction error, but it has high variance and it is very computationally intensive for use in NN (Hastie, 

Tibshirani, & Friedman, 2008). For this reason, as we shall see, in our case study we use 20-fold cross-validation 

in order to minimize the bias-variance trade-off while also attaining the required accuracy in feasible 

computation times (Refaeilzadeh, Tang, & Liu, 2008; Wada & Kawato, 1992; Fushiki, 2011). 

 

3.2. Comparison of Pareto fronts by the hypervolume indicator 

The hypervolume indicator has been widely used as a measure to compare Pareto solution sets (fronts) 

returned by multi-objective optimizers (Bringmann & Friedrich, 2009). Given a Pareto front, it measures the 

volume of the portion of the objective space dominated by the front. Therefore, different multi-objective 

algorithms’ performances can be compared in terms of the quality of the outcomes, by detecting the dominance 

between their different Pareto solution sets (Bringmann & Friedrich, 2009; While, Bradstreet, & Barone, 2012; 

While et al., 2006). 

In our study, we calculate the hypervolume indicator by Monte Carlo simulation (Everson, Fieldsend, & 

Singh, 2002). A reference point, R, is selected as the “worst possible” point in the objective functions space. An 

estimate of the hypervolume (in percentage) is then obtained by sampling N uniformly distributed random points 

within the hyper-cuboids bounded by the reference point R in 𝑅𝑀 . Then, the hypervolume indicator estimate is 

obtained as the percentage of the points dominated by the approximated Pareto front set P (composed by 𝑛 
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points in 𝑅𝑀), i.e. in a rejection sampling fashion (Cao, 2008). If a solution set A has a greater hypervolume than 

a solution set B, then A is taken to be a better set of solutions than B (While et al., 2006). 

For the minimization problem of our two (positive) objectives, 1-PICP and NMPIW (M = 2), we split the 

hypervolume computation by partitioning the objective functions space into three regions with three different 

reference points of same NMPIW value but different CP. A schematic representation of the objective functions 

space splitting into three regions and of the position of the three reference points is given in Fig. 3. We fix 

NMPIW and not CP, because the latter is more important than PIW for our scopes. The overall hypervolume 

measure is obtained as the weighted sum of the partial hypervolumes in the three regions. By the splitting into 

three regions, we have given the flexibility to weigh differently the hypervolume measure obtained on different 

ranges of CP, coherently with the relevance of the corresponding region of the objective functions space.  

 

 

 

 

 

 

 

Fig. 2. Scheme of the CV procedure (Refaeilzadeh, Tang, & Liu, 2008). 

 

 

Fig. 3. A schematic representation of the splitting of the objective functions space into three regions for hypervolume computation. The 

overall hypervolume measure is obtained as the weighted sum of the partial hypervolumes (V1, V2 and V3) computed in the three 

regions identified by the red lines. The three different reference points (R1, R2 and R3) used in each region for partial hypervolumes 

computations are also indicated in the figure. 
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4. Case study 

The case study concerns the scale (deposition) rate on the metal surfaces of equipment used in offshore oil 

wells. The output variable y is the scale rate; the influencing input variables are: temperature (T) and pressure (P), 

water composition (W) and fluid velocity (V) near the metal surfaces. 

Data were obtained from experiments aimed at observing the process of deposition of the scale layer (Lins 

et al., 2011): if the scale layer achieves a predefined thickness, the equipment fails to properly perform its 

function. The total data set includes 131 observations; among these, the first 90% of the data (118 observations) 

are used for training and cross-validation purposes, and the rest is used for testing. All data have been 

normalized within the range [0.1, 0.9]. In order to perform k-fold cross-validation, the 118 training data are 

randomly partitioned into 20 subsamples, two of which include 5 samples while the others 6 samples. 

The architecture of the NN consists of one input, one hidden and one output layers. The number of input 

neurons is 4, one for each input variable; the number of hidden neurons is chosen via the cross-validation process 

described in Section 3.1; the number of output neurons is 2, one for the lower and one for the upper bound values 

of the PIs. As activation functions, the hyperbolic tangent function is used in the hidden layer and the 

logarithmic sigmoid function is used at the output layer (these choices have been found to give the best results by 

trial and error, although the results have not shown a strong sensitivity to them). 

In order to obtain an optimal NN architecture, 11 different choices for the number of hidden neurons, (5, 7-

11, 13, 15, 17, 18, 20) have been explored. Hence, 220 NNs have been trained individually to obtain the results 

shown in Table 1.  

After performing 20-fold cross-validation, we obtain 220 Pareto fronts, one for each fold and choice of the 

number of hidden neurons. The fronts are obtained after NSGA-II training of a NN with the training data 

associated to the relevant fold. In order to evaluate different neural network structures and select the optimal one, 

the Pareto fronts are compared in terms of their hypervolume indicators, V1, V2, V3, on the partitioned objective 

functions space with reference points (1-PICP, NMPIW): R1 = (0.1, 0.9), R2 = (0.3, 0.9), R3 = (1, 0.9) (see Fig. 

3). The hypervolume value V1 indicates the dominated space between (0, 0.9) and (0.1, 0.9), which represents 

the region of interest in terms of coverage probability; the hypervolume value V2 indicates the dominated space 

between (0.1, 0.9) and (0.3, 0.9); the hypervolume value V3 indicates the dominated space between (0.3, 0.9) and 

(1, 0.9). The reference value for NMPIW has been fixed to 0.9, because there is no NMPIW value greater than 

0.9.  

To compare the Pareto fronts, a total hypervolume score, Vscore, for each Pareto front is computed as 

weighted sum of the V1, V2 and V3 values. To give higher importance to the regions of higher PICP values, in 

our application we have arbitrarily chosen the weight vector [w1 w2 w3] to be [4/7 2/7 1/7]. Table 1 reports the 

total hypervolume scores computed on the validation data set, for each choice of the number of hidden neurons 

(different rows of the Table), and for each fold (different columns of the Table). For each fold and number of 

hidden neurons, the NN has been trained on the training data corresponding to the fold, and then used for 

prediction on the validation data included in the fold. Since the so obtained set of solutions does not necessarily 

form a Pareto front in the objective functions space, one step of non-dominated sorting of the solutions has been 

performed, before computing the corresponding total hypervolume score. The computation of Vscore has also 

been done using the Pareto front resulting from the training of each NN: for the sake of brevity, we do not report 
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the Table of total hypervolume scores obtained from training data, but the results are synthetized in the boxplots 

in Fig. 4. 

To fix the number of hidden neurons, it is natural to choose that number for which the trained NN leads to 

the highest total hypervolume score. However, for a given number of hidden neurons there are 20 different NNs 

trained on the 20 folds, and hence 20 total hypervolume scores. Due to the variability of the data included in the 

folds, there is no number of hidden neurons leading to total hypervolume scores consistently superior across all 

folds. Figures 4 and 5 show the boxplots of the total hypervolume scores for the different numbers of hidden 

neurons considered, with reference to the training and validation dataset, respectively. From Fig. 4 it is evident 

that the choice of 10 hidden neurons is optimal, with reference to the training dataset. For confirmation, a 

pairwise comparison of the median of the 20 total hypevolume scores obtained by the NNs with 10 hidden 

neurons, with the medians obtained by the NNs with other number of hidden neurons has been performed. The 

pairwise comparison is conducted by a statistical test, whose aim is rejecting the null hypothesis (H0) of equality 

of the medians being compared; the test is based on asymptotic normality of the median and roughly equal 

sample sizes for the two medians being compared, and it is rather insensitive to the underlying distributions of 

the samples (Chambers et al., 1983; McGill, Tukey, & Larsen, 1978). By fixing the level of each test, i.e. the 

probability of rejecting a true H0, to 10%, nearly all comparisons allow concluding for the superiority of the total 

hypervolume score obtained with a choice of 10 hidden neurons.  

In Fig. 5, the boxplots of the total hypervolume scores with respect to the validation dataset are shown for 

all numbers of hidden neurons. The choice of 10 hidden neurons confirms to be one among the best, in terms of 

higher values of the median and of the lower whisker. Given also the superior performance on the training 

dataset, the choice of 10 hidden neurons is retained. 

 

Table 1. The hypervolume scores of the Pareto fronts produced after validation of the NN with cross-validation procedure. 

nh 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

5 0,34 0,24 0,24 0,32 0,35 0,20 0,39 0,33 0,25 0,25 0,35 0,33 0,24 0,12 0,35 0,22 0,11 0,28 0,24 0,36 

7 0,34 0,30 0,13 0,30 0,28 0,24 0,34 0,32 0,14 0,26 0,39 0,15 0,28 0,20 0,29 0,20 0,09 0,18 0,38 0,40 

8 0,32 0,25 0,13 0,29 0,29 0,25 0,34 0,33 0,07 0,22 0,34 0,35 0,24 0,22 0,27 0,21 0,07 0,28 0,39 0,38 

9 0,29 0,26 0,12 0,33 0,31 0,18 0,33 0,34 0,16 0,21 0,37 0,14 0,22 0,13 0,27 0,23 0,08 0,23 0,31 0,35 

10 0,29 0,29 0,23 0,31 0,31 0,25 0,35 0,31 0,12 0,26 0,37 0,32 0,27 0,13 0,34 0,19 0,07 0,24 0,32 0,37 

11 0,33 0,28 0,12 0,31 0,30 0,22 0,32 0,35 0,10 0,21 0,29 0,33 0,25 0,11 0,33 0,21 0,06 0,28 0,32 0,36 

13 0,30 0,27 0,12 0,37 0,27 0,17 0,34 0,33 0,13 0,23 0,33 0,35 0,26 0,12 0,30 0,22 0,24 0,30 0,35 0,35 

15 0,37 0,30 0,12 0,35 0,29 0,19 0,33 0,30 0,21 0,21 0,33 0,14 0,22 0,13 0,34 0,21 0,07 0,22 0,27 0,36 

17 0,33 0,26 0,13 0,33 0,39 0,21 0,32 0,34 0,28 0,24 0,31 0,29 0,24 0,12 0,25 0,18 0,11 0,24 0,31 0,37 

18 0,32 0,25 0,12 0,34 0,27 0,24 0,32 0,33 0,27 0,25 0,33 0,35 0,25 0,23 0,13 0,20 0,16 0,20 0,13 0,34 

20 0,32 0,31 0,24 0,34 0,27 0,32 0,32 0,31 0,16 0,17 0,39 0,38 0,31 0,12 0,29 0,18 0,11 0,24 0,29 0,34 
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Fig. 4. Boxplots of the total hypervolume scores for different numbers of hidden neurons with respect to the training dataset. Each box 

extends from Q1 to Q3, where Q1 and Q3 are the first and third quartile of the dataset, respectively; the position of the median is evidenced in 

each box by a solid horizontal line. The upper (lower) whisker of each boxplot extends to the highest (lowest) value in the dataset smaller 

(greater) than Q3 + 1.5*IQR (Q1 - 1.5*IQR), where IQR = Q3 – Q1. The boxplot corresponding to 10 hidden neurons is highlighted in dark 

grey. The horizontal dotted lines are the limits of the 90% confidence interval for the median total hypervolume score obtained with 10 

hidden neurons: the medians falling outside these limits are statistically different from the one obtained with 10 hidden neurons. 

 

Fig. 5. Boxplots of the total hypervolume scores for different numbers of hidden neurons with respect to the validation dataset. Each box 

extends from Q1 to Q3, where Q1 and Q3 are the first and third quartile of the dataset, respectively; the position of the median is evidenced in 

each box by a solid horizontal line. The upper (lower) whisker of each boxplot extends to the highest (lowest) value in the dataset smaller 

(greater) than Q3 + 1.5*IQR (Q1 - 1.5*IQR), where IQR = Q3 – Q1. The boxplot corresponding to 10 hidden neurons is highlighted in dark 

grey. The horizontal dotted lines are the limits of the 90% confidence interval for the median total hypervolume score obtained with 10 

hidden neurons: the medians falling outside these limits are statistically different from the one obtained with 10 hidden neurons. 
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After choosing the number of hidden neurons, the NN has been retrained using all data in the training and 

validation sets, for a total of 118 samples. The first (best) Pareto front found after training includes 50 non-

dominated solutions and it is shown in Fig. 6. 

To verify a posteriori the selection of 10 hidden neurons, retraining has also been performed for other 

numbers of hidden neurons: the resulting V1, V2, V3 and Vscore hypervolume values are reported in Table 2. Fig. 

7 shows the trend of V1 (top) and Vscore (bottom) values with the number of hidden neurons. From inspection of 

Fig. 7, one can conclude that the choice of 10 hidden neurons corresponds to the highest hypervolume values V1 

(referred to the region of interest) and Vscore.  

 

Table 2. The hypervolume values of the Pareto fronts produced after retraining of the NN with different number of hidden 

neurons. 

  5 7 8 9 10 11 13 15 

V1 0,28 0,26 0,27 0,33 0,33 0,32 0,32 0,28 

V2 0,17 0,15 0,14 0,12 0,14 0,13 0,12 0,14 

V3 0,28 0,31 0,30 0,28 0,27 0,28 0,28 0,29 

Vscore 0,25 0,24 0,24 0,26 0,27 0,26 0,26 0,24 

 

   

Fig. 6.  The best Pareto front obtained by retraining of the NN with the optimal choice of 10 hidden neurons. 
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Fig. 7. Hypervolumes values V1 and Vscore of the fronts obtained after retraining versus the number of hidden neurons. 

Finally, Fig. 8 shows the prediction intervals for the scale rate values in the test dataset obtained by the 

trained NN with 10 hidden neurons and corresponding to a Pareto solution chosen subjectively. The solution has 

been chosen as the one with smallest NMPIW among those with PICP ≥ 0.9 in Fig. 6. The results on the test 

dataset give a coverage probability of 100 % and an interval width of 0.494. 

 

Fig. 8. The prediction intervals for scale rate on the test dataset. 

 

5. Conclusion and Future Work 

A method for the estimation of PIs by NN has been proposed for scale rate prediction. The originality of the 

approach is the multi-objective formulation of the problem, to achieve high coverage with intervals of small 

width. The multi-objective framework allows considering a set of optimal solutions to select from, according to 

preferences and to the application purposes. Moreover, a systematic process for selecting the optimal NN 
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structure (number of hidden neurons) for the problem at hand has been proposed, based on cross-validation 

analysis and on the comparison of hypervolume indicators. The approach is based on the quantitative evaluation 

of the superiority of performance attained with the chosen number of hidden neurons with respect to other 

possible choices, proved via statistical testing. 

As future research, we aim at using ensemble methods to further increase the accuracy of the NN-based 

predictions. Moreover, we aim at exploring different measures for comparing Pareto solutions set.  
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