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Abstract: Multi physical state modeling (MPSM) is a novel approach being investigated for estimating the 

reliability of components and systems in the context of probabilistic risk assessment (PRA). The approach 

integrates multi-state modeling, which describes the degradation process by transitions among discrete states 

(e.g. initial, micro-crack, rupture, etc) and physical modeling by (physical) equations that govern the 
degradation process. In practice, the degradation process is non-Markovian and its transition rates are time-

dependent and influenced by external factors such as temperature and stress. Under these conditions, it is in 

general difficult to derive the state probabilities analytically. 

On the contrary, Petri nets provide a flexible modeling framework for describing degradation processes with 
arbitrary transition rates. In this paper, we build a Petri net in support of Monte Carlo simulation of the 

stochastic aging behavior of a nuclear component undergoing stress corrosion cracking. The results are 

compared with analytical results derived in a previous work of literature. 
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1.  INTRODUCTION 

Degradation processes have been intensively studied in the reliability engineering community [1-4]. In general, 

the degradation models can be classified into analytical models [2-5] and simulation models [1, 6, 7]. The 
analytical degradation models can be further classified into the following three groups: 

 

- Statistical models of time to failure (e.g. lifetime distribution [2]). 
- Models describing the evolution of a measurable quantity indicating time-dependent degradation, and failure 

upon reaching a threshold value (e.g. Brownian motion [4] and gamma process [3]). 

- Multi-state models of degradation [5]. 

 
Multi-state models (MSM) [8] are frequently applied for component degradation process modeling, since 

they fit practically to component aging processes in real life situations when there is a range of levels from 

perfect functioning to complete failure. To model the dynamics of the degradation process, Markov [9] and 
semi-Markov models [10] have been used. In the Markov models, the transition rates between states are 

constant, which means that the degradation process is memoryless.  

In some recent works [11, 12], the non-homogenous continuous time Markov model (NHCTMM) has been 
introduced to account for the aging effects of un-repairable components or systems. The component degradation 

process is also possibly dependent upon other external factors (e.g. temperature, stress) [13].  

Multi-state modeling requires estimating the transition rates from field data. In practice, it can be difficult or 

even impossible to collect relevant data especially for the highly reliable devices (e.g. nuclear components, 
aerospace devices, etc).  

To overcome some of the problems mentioned above, a novel approach based on multi-state physics 

modeling has been proposed [14], in which the transition rates are described by physics functions rather than 
estimated from service data. The resulting model is non-Markovian since the transition rates are time-dependent 

and uncertain. To solve the problem, in the original work by [14] a state-space enrichment approach has been 

used upon discretization of the component lifetime into equally sized time intervals, during each of which the 
transition rate remains constant. Then, the component degradation process is converted into a discrete time 

Markov chain (DTMC) residing in a largely enriched state space described by a tuple          , where   is 

the vector of original component degradation states and    is the vector of discretized holding times at each state.  
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In this work, we propose an integrated simulation framework for modeling the stochastic aging behavior of 

components. Such framework is supported by a stochastic Petri net (SPN), which provides a flexible model 

representation scheme for describing the state transition process. Uncertain external influencing factors (e.g. 
temperature and stress) are included. A Monte Carlo (MC) simulation algorithm is proposed to realize the 

degradation transition process and compute the state probability distributions.  

The rest of the paper is organized as follows. Section 2 presents the formal definition of the multi-state 
physics model, with consideration of time-dependent transition rates and uncertain external influencing factors. 

Section 3 introduces the stochastic Petri nets. Section 4 presents the integrated framework and the detailed MC 

simulation procedures of the integrated model. In Section 5, the real-world case study from Unwin et al. (2011) 

is used as an application, and a comparison is made with the state-space enrichment technique. Section 6 
concludes the work and points out possible future extensions. 

 

2. MULTI-STATE PHYSICS MODELLING OF COMPONENT DEGRADATION PROCESSES 
Under the framework of multi-state modeling, the dynamics of component degradation is described by 

transitions among a finite number of discrete degradation states                . The solution of the multi-

state model is the state probability vector at any time instant t,                           , given the 

transition rates      from state i to state j. In MSPM, the transition rate           is a function of time t, for given 

values of the physical factors  . This function can be formulated based upon material science knowledge about 

the degradation physics of the component (e.g. the crack development process [13]). With the consideration of 

degradation physics, the following assumptions are made for MSPM: 
 

 The component consists of (M+1) states where states ‘0’ and ‘M’ represent the complete failure state and 

perfect functioning state, respectively. The generic intermediate state i (0<i<M) is a degradation state where 

the component is partially functioning. 

 The initial state (at time t = 0) of the component is M. 

 Repair can be performed on the intermediate states. Once the component is in complete failure (e.g. rupture), 

it is no longer repairable. 

 The transition rates           from state i to state j is a function of time and of the external influencing factors 

 , whose values may not be precisely known. 

 
The transition rate is defined as: 

 

                 
                       

  
                                                  (1) 

 

where                is the vector of the external influencing factors, which can be random variables (the 

probability density function (PDF) of   is denoted as     ), and      is a discrete function representing the 

stochastic degradation process and taking values from the state space  .  

The target of multi-state modeling is to solve the state probability vector                            with:  
 

                                                                                (2) 

 

The integral at the right-hand side of (2) is over all possible values of  . If the transition rates are constant, 

the state probabilities can be obtained by solving the ordinary differential equations corresponding to the state 

space diagram. Solving analytically the Markov model with time-dependent transition rates and possibly 

random   is a difficult task [15]. Then, approximation methods are introduced. One used by several researchers 

[14, 15] amounts to discretizing the component lifetime into intervals and assuming a constant value of 

transition rate in each interval. By doing so, the description of the stochastic process is converted into a discrete 
time Markov chain (DTMC) with a significantly enriched state space which includes discrete time steps, and 

characterized by a sparse transition matrix. For example, given a component with 6 original degradation states 

and a lifetime of 100 years discretized in time steps of 0.5 years, the approximation method would generate a 
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transition matrix of           entries. Alternatively, the simulation modeling framework offers a promising 

way of solution. 

 
 

3. STOCHASTIC PETRI NETS 

Petri nets (PNs), coined by Carl Petri [16], are an adaptive, versatile and yet simple graphical modeling tool for 

representing dynamic systems. PNs have successful applications in the reliability modeling of various systems. 
A PN is a bipartite directed graph with two types of nodes in which abstract objects (tokens), drawn as bold-

faced dots, are moved, created or diminished. The two types of nodes are: places (states)   
           , 

which are circular and usually denote the states of the system being modeled, and transitions   
           , 

which are bars and denote the transitions corresponding to actions or events that result to a state change. Places 

are linked only to transitions using directed arcs    
    

  , and vice versa. It is possible for a place to have 

multiple arcs to or from the transition, which can be condensed down to a single arc with a weight or 

multiplicity denoted by a slash through the arc with a number next to it. If there is no slash, the weight is usually 
assumed to be 1 (it is also the default weight value).  

The tokens, which represent objects in the model, are stored in places. The movements of the tokens passing 

between places represent the transitions in the system. The transition   
   is enabled only if the weight of each 

incoming arc is at most equal to the number of tokens at the corresponding input place. In original PNs, the 

transitions are assumed to be immediate. The stochastic Petri nets (SPNs) introduce delays of a transition which 
can be either immediate (in which case the transition bar is solid), deterministically time-delayed, or randomly 

time-delayed based on a pre-defined probability distribution. Once the time period has passed and the transition 

remains enabled, the switching will take place. The switching will remove the number of tokens in each input 
place corresponding to the weight of the relevant incoming arcs and create the number of tokens in each output 

place corresponding to the weights of the relevant outgoing arcs. 

The SPN is often used as a model representation tool: it can be internally converted to a continuous time 

Markov chain (CTMC) for solution, when the time delay at each transition follows an exponential distribution 
[17]; the Monte Carlo (MC) simulation is used to solve the SPN directly, when time delays are random [18]. For 

the MSPM formulation embraced in this study of a stochastic degradation process, MC simulation is used to 

solve the SPN. 
 

4. THE INTEGRATED SIMULATION MODEL 

A graphical sketch of the integration of SPN and uncertain external influencing factors is given in Fig 1. The 

transition rates are dependent on the values of   which is a vector of n random parameters with joint probability 

distribution     . Given the general form of the transition rate (1), the total rate of departure from state i is: 

                   
   
   

                                                                 (3) 

 

Fig 1. Sketch of the integrated model 
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4.1 Basics of the Monte Carlo simulation model 

To obtain the state probability in (2), the following M differential equations need to be solved given the 

realizations of   (the detailed theoretical analysis for Monte Carlo simulation for ICTMC can be found in [19]): 

 

  
                                 

   
   

                                              (4) 

where         and 

                                                                               (5) 

The quantity           is regarded as the conditional probability that given the transition out of state j at time 

t and the values of  , the transition arrival state will be i. To rewrite equation (4) into integral form, an 

integrating factor                          
 

 
  is used. Multiplying both sides of (4) by the integrating 

factor, we obtain: 

 

  
                                                

   
   

                          (6) 

Taking the integral of both sides, we obtain: 

                                  
         

        
     

   
   

    
 

 
           (7) 

Substituting         with                 
 

 
 , we obtain the following expression of        : 

                       
       

 

 

   

           
         

 

        
         

        
     

   
   

   
 

 
 (8) 

In the MC simulation, the probability distribution function         is not sampled directly. Instead, the 

process holding time at state i is sampled and then the transition from state i to another state j is determined. 

This procedure is repeated until the accumulated holding time reaches the predefined time horizon. The resultant 

time sequence consists of the holding times at different states.  

To sample the holding time, the probability density (or total frequency) of departing state i,        , needs 

first to be obtained by multiplying         both sides of (8): 

                       

                                        
       

 

 

 

                    
         

 

  
       

         
    

 

   
   

   
 

 

 

                      
         

          
       

 

 
 
   
   

                                                               (9) 

where 

       
                      

         
 

                                            (10) 
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is defined as the conditional PDF that the process will depart state i at time t, given that the process is at state i 

at time    and the values of the external influencing factors  . Equation (9) indicates that the PDF         
consists of the sum of contributions from the random walks with transitions passing through all the states 

(including state i) from time 0 to t, given the values of  . To obtain the marginal distribution      , the 

conditional distribution is multiplied with the PDF of    and the results is integrated over all possible values of 

 : 

                                                                                (11) 

Based on equation (11), the MC simulation procedure mentioned above can be derived. The CDF of 

departure time   given that it is at state i at time    is denoted as: 

      
          

                        
         

 

                           (12) 

Given    and (12), the departure time t can be sampled through direct inversion sampling, acceptance-

rejection sampling, and other sampling techniques [20]. 

Following the departure, the marginal transition probabilities to any other state              are 

calculated as: 

         
         

       
                                                                   (13) 

and a uniformly distributed random number U is sampled in the interval [0,1]: if      
    
           

  

   , 

then the transition to state    is activated and occurs at time    units of time. After time          a new token 

will appear at place    and the token at place i is removed.  

 

4.2 The simulation procedures  

The simulation procedures are presented in this Section. Prior to the simulation, incorporation of the external 

influencing factors should be carried out through the following steps: 1) formulate the functions describing the 

physics of the transition rates; 2) identify the external influencing factors    (e.g. temperature, stress); 3) define 

the distribution functions,      representing the uncertainties in the values of these factors. 

The algorithm for the simulation of the process of component degradation on the time horizon          is 
sketched in the following pseudo-code: 

Initialize the system by allocating a token onto place i = M (initial state of perfect performance), setting the 

time t = 0 (initial time) and the total number of replications      

Set      

Set     

While        

While        

Sample a realization of the external influencing factors   from the joint probability function      
Sample a departure time   from the distribution function       

     

Sample a random number   from the uniform distribution in [0, 1] 

For each outgoing transition (j = 0,1,…,M, j i) 

  Calculate the transition probability            

If       
    
           

  

    

Then activate the transition to state     

End If 

End For 

Set       
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Remove the token from place i and add a new token onto place    

End While 

Set       

End While 

 

Subsequent to the execution of the simulation algorithm, an estimate                                of the 
state probability vector is computed by dividing the total number of visits to each state by the total number of 

simulations   :       
 

    
                     , where                        is the total number 

of visits to state i at time t. It is noted that the derived distributions      and       
  , may have complicated 

mathematical expressions; under these circumstances, the Markov Chain Monte Carlo technique can be used to 

sample random values [1]. 

 

 

5. EXPERIMENTS AND RESULTS 

5.1 Case study 

The case study refers to the cracking process in an Alloy 82/182 dissimilar metal weld in a primary coolant 
system of a nuclear power plant [14]. Cracks can grow from the inner to the outer diameter of the dissimilar 

metal welds in one of the three major morphologies: axial, radial, and circumferential. The latter two types can 

lead to the rupture of the component. The crack growth has two steps (1) crack initiation, (2) crack propagation. 

The radial crack mainly grows outward from the initiation site towards the outer diameter; the process can lead 
to a leak and potentially to rupture. The circumferential crack grows relatively evenly around the circumference, 

potentially leading to a rupture. The Petri net representing the multi-state physics model of the crack growth 

process, is given in Fig. 3. The detailed information about the definitions of the transition rates can be found in 

[14]. It is noted that in their formulation, the transition rates   ,       and    are time-dependent. 

 

 
Fig 3. Petri net of the multi-state physics model of the crack growth process in Alloy 82/182 dissimilar metal 

weld 

 
5.2 Results 
The simulation model supported by a Petri net description of the degradation process has been applied to the 

case study presented above, with the same parameter settings as in [14]. It is noted that in the original study, the 

uncertainties of the external influencing factors (e.g. temperature and pressure) have not been modeled in the 
crack initiation process and have been inexplicitly modeled in the crack propagation process by means of a 

uniform distribution of the transition rate    .  

The simulation model has been executed          times over a component lifetime         years, in 

line with the original study. To investigate the convergence of the simulation model, the     realizations have 
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been subdivided into N = 20 subsamples of 50000 each. The sample mean and variance of the estimated state 

probabilities are calculated. At t = 80 years, the variances are            ,           ,            ,  

           ,            , and             for ‘initial’, ‘micro-crack’, ‘circumferential’, ‘radial’, 
‘leak’, and ‘rupture’ states, respectively. Similar results are found at different time moments. The good 

stabilization of state probabilities at      is manifested. Similar convergence curves are obtained at different 

time moments but are not presented here, due to space limitation.  

For comparison with the state-space enrichment technique proposed in the original study of [14], the state 

probabilities resultant from     simulation runs are shown in Figure 4 as functions of time. Comparing to the 

results from the original study, it is observed that the shapes and trends of the probability curves are similar to 

those of state-space enrichment (with different step sizes), in that in all plots there is: 1) an early, rapid transition 
from the initial state to the micro crack state; 2) a monotonic increase in the probability of the rupture state. 

 

 
Fig 4. State probabilities obtained by simulation 

 

The numerical comparisons on the state probability values at year 80 are reported in Table 1. The 
differences between the simulation and state-space enrichment methods increase as the step size in the latter is 

reduced. This confirms that the state-space enrichment method is sensitive to the step size, as expected. 

 
Table 1. Comparison of simulation results with state-space enrichment results (state probability values at year 80) 

 Simulation State-space 
enrichment 
Step size = 
1 year 

State-
space 
enrichment 
Step size = 
0.5 year 

State-
space 
enrichment 
Step size = 
0.1 year 

Initial state 
probability 

0.0036 0.0033 0.0035 0.0042 

Micro crack 
probability 

0.9958 0.9956 0.9938 0.9897 

Circumferential 
crack 
probability 

2.72e-4 1.95e-4 4.72e-4 0.0030 

Radial crack 
probability 

7.78e-5 6.38e-05 1.41e-4 8.47e-4 

Leak 
probability 

1.18e-5 8.93e-06 2.14e-5 0.00014 

Rupture state 
probability 

2.07e-4 1.38e-4 3.47e-4 0.002199 
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5.3 Uncertain external influencing factors 

As explained in Section 4, the SPN-supported simulation framework is able to explicitly accommodate the 

uncertainties in the external influencing factors. To show this, as example we assign a truncated normal 

distribution to the temperature T values of the Weibull scale parameter   which is used in the rate function of the 

first transition. According to [21],    has the following relationship with temperature:               

     
   

            
 , where   is the stress constant. The truncated normal distribution is defined as:      

           

                                 
, where      denotes the PDF of a normal distribution. Without loss of 

generality, the variance is assumed to be equal to one. The simulation results are displayed in Figure 6, in terms 

of mean values of the state probabilities (solid lines) together with their 95% confidence intervals (dashed lines). 

The results show that the confidence intervals are larger at lower probability values, which implies a larger 
variance on rare events. 

 

Fig 5. SPN simulation accommodating uncertainty in temperature 

Numerical comparisons are reported in Table 2 in terms of the state probability mean values at year 80 and 

the relative differences of the results obtained by simulation with and without uncertain factor. It is observed 

that the uncertainty in temperature has significant impacts on the mean value of the initial state probability, as 
expected.  

Table 2. Comparison of simulation results w/o uncertain factors (state probability mean values at year 80) 
 Without 

uncertain 

factors 

Uncertain 
temperature 

Relative 
differences 

Initial state probability 0.0036 0.012 -236.17% 

Micro crack probability 0.9958 0.9873 0.86% 

Circumferential crack 
probability 

2.72e-4 2.96e-4 -8.82% 

Radial crack probability 7.78e-5 9.15e-5 -17.61% 

Leak probability 1.18e-5 1.55e-5 -31.36% 

Rupture state probability 2.07e-4 2.14e-4 -3.38% 

 

 

 

6. CONCLUSIONS AND FUTURE WORKS 
An SPN-supported simulation framework has been proposed to solve the multi-state physics model (MSPM) 

describing a component degradation process with time-dependent transition rates and uncertain external 

influencing factors. SPN provides a flexible tool for representing the dynamics of degradation processes, and the 



9 
 

simulation solution allows handling time-dependent transition rates and uncertain influencing factors, without 

analytical complications. 

The framework has been applied with success on a nuclear component undergoing stress corrosion cracking. 
The comparison with analytical approximated results has been satisfactory and the framework has been shown 

capable of indeed explicitly accommodating the uncertainties in the external influencing factors. Future research 

work is envisaged on the following aspects: 1) how to represent and propagate the uncertainties in the external 
influencing factors when there is insufficient data to estimate probability distributions; 2) other application cases 

may include multiple influencing factors with dependencies; 3) extension of the model for application to 

multiple degradation processes of components and systems. 
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