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Abstract: Reliable and safe power grid operation requires the anticipation of cascading failures and the 

establishment of appropriate protection plans for their management. In this paper, we address this latter 

problem by line switching and propose a multi-objective memetic algorithm (MOMA), which combines the 

binary differential evolution algorithm with the non-dominated sorting mechanism and the Lamarckian local 

search. The 380 kV Italian power transmission network is used as a realistic test case. 
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1.  INTRODUCTION 

 
In today’s deregulated markets, critical infrastructures (CIs) (e.g. electric power grids, telecommunication 

networks, transportation networks, etc) are often run in stressful conditions which render their components 

more sensitive and vulnerable to natural and/or man-made disturbances [1]. In such systems, failure of one 

component may lead to a cascade of failures of other components and this can result in serious economical 
and social damages, as shown, for example, by recent large-scale blackouts of power grids [2-3].  

We focus on power grids, for which a number of analytical/simulation models have been built to 

anticipate the impact of cascading failures [4]. These models encompass network protection (NP) techniques 
that aim at hampering the propagation of cascading failures. Such NP techniques are broadly divided in: 1) 

network interdiction [5-6], which enhances the network protection by designing components and allocating 

redundancies to avoid failures, and 2) line switching [7-9], which hinders the failure propagation by cutting 
off the possible ‘directions’ along which the failures can spread within the network. Line switching has been 

shown to be more capable of dealing with cascading failures since it requires proactive and economical 

actions that can be implemented immediately after the cascading initiation [8, 10]. The success of this 

technique relies on the search for the optimal set of lines to be switched-off, with the objective of minimizing 
the extent of cascading failures [10-12]. The related optimization problem is, in general, large-scale, 

nonlinear and combinatorial, for which heuristic algorithms (e.g. evolutionary algorithms (EAs)) can be 

effectively applied [13]. 
As recent extensions of EAs, memetic algorithms (MAs) are population-based meta-heuristic search 

methods combining global search strategies (e.g. EAs) with local search techniques (e.g. Lamarckian search) 

[14]. The rationale behind MAs is that the deficiency of EAs in local exploitation can be compensated by the 

inclusion of local search techniques which, on their account, are often inadequate in global exploration. MAs 
have been reported not only to converge to high quality solutions but also to be more efficient than 

conventional EAs [15]. 

In this paper, we formulate the optimal transmission line switching problem as a bi-objective 
optimization problem aiming at minimizing connectivity losses in the system at both global and local levels. 

We then propose a memetic solution approach composed of a multi-objective binary differential evolution 

algorithm (MOBDE) combining binary differential evolution (DE) [16] with fast non-dominated sorting [17] 
(as global search algorithm), and a Lamarckian local search (LLS) algorithm [15] (local search technique). 

The rest of this paper is organized as follows: Section 2 presents the cascading failure simulation model, the 

measure of cascading failure consequences, and the protection strategy, i.e. transmission line switching; 

Section 3 presents the general formulation of multi-objective optimization problems; Section 4 describes the 
detailed procedures of the proposed multi-objective memetic algorithm (MOMA); Section 5 presents the 

experiment results of MOMA and the comparison to MOBDE; Section 6 concludes this study and points out 

future research directions. 
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2. CASCADING FAILURE MODEL AND PROTECTION STRATEGIES 

 

2.1 Cascading failure model 
 

In general, the simulation of cascading failures in large-scale networks is computationally expensive. In 

order to focus on analyzing the failure propagation process and devising the prevention and/or mitigation 
measures, an abstract model has been developed by some of the authors [10]. A topological representation is 

used to abstract the electrical properties of the network, while retaining its structural properties. The 

representation is given in the form of a graph G consisting of N nodes (substations or buses) and K links 

(transmission lines). The N nodes are divided into two types:    generation nodes, i.e. sources of power, and 

   distribution nodes, i.e. loads or substations. The network structure is described by an     adjacency 

matrix      : if there is a link between node i and node j, the entry      , otherwise      . The power is 

assumed to flow along the generator-distributor shortest paths [11-12, 18-20].  

The load (or stress) on a network component, e.g. a node or transmission line, is modeled as dependent 

on the number of shortest paths transiting through it, when the power flow is sent from the available 

generation nodes to the distribution nodes. More precisely, the load,    of node j is measured by the node 

betweenness [21-22], calculated as the fraction of the generator-distributor shortest paths passing through 

that node. Likewise, the load,     of a link   , is measured by the edge betweenness, calculated as the fraction 

of the generator-distributor shortest paths through that link [23].  

Each component in the network has a definite capacity, i.e. a maximum load it can sustain. The capacity 

of node j (or link   ) is proportional to its nominal load    (or    ) at which it is designed to operate,    

        (or             ), where     is the tolerance parameter assumed the same for all elements 

of the entire network. Despite the simplicity of the concept of  , it can be regarded as an operating margin 

allowing safe operations of the components under possible load increments. When    , the system is 

working at its limit capacity: any further load added to a component would result in its failure and, possibly, 
in cascading failures affecting a large portion of the network. 

In the case that a component’s load    (or    ) exceeds its capacity    (or    ), it is considered as failed, 

and thus, removed from the network. This leads to a redistribution of the shortest paths in the network and, 
consequently, to a change in the loads of some working components. If the loads on some components 

exceed their capacities upon the redistribution of the shortest paths, the components fail and, consequently, a 

new redistribution follows. The process continues until there are no further failures or all the components are 
failed. 

 

2.2 Measuring cascading failure consequences 
 

To measure the effects of cascading failures, the connectivity loss    is used [10-12]. It quantifies the 

decrease of the ability of distribution substations to receive power from generators: 

                                   
 

  
 

  
 

  

  
                                                                        (1) 

where    and    represent the numbers of generators and substations in the initial state of the network 

respectively, and   
  represents the number of generators able to supply power to distribution node i after the 

cascade of failures takes place.    is an indicator that measures the effects of cascading failures at the global 
system level. On the other hand, it fails to identify the critical locations to which power supply has to be 

guaranteed under any contingency. Therefore, a second, local indicator    
 is proposed to measure the 

effects of cascading failures on an identified critical region A. It quantifies the decrease of the ability of the 
distribution substations within the area A to receive power supply from any generator in the whole network: 

   
   

 

   

 
  

 

  

   

   
                                                                (2) 

where    represents the number of the generation nodes at the initial state of the network,    
 represents the 

number of distribution nodes within the area A at the initial state of the network, and   
  represents the 

number of generation units able to supply power flow to distribution node i in area A, after the cascade of 

failures takes place.  
 

2.3 Cascading failure protection strategy 
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In this study, the NP is modeled as an operator intervention targeting at minimizing the effects of the cascade 

failure propagation at both system and local levels by switching off a set of transmission lines immediately 

after a cascading failure is triggered. Due to the rapid unfolding of a cascading failure, it is assumed that the 
protection intervention takes place only once after the cascade is triggered: no further actions to correct the 

effects of this only protective action are taken [10]. Then, the problem arises of what is the best set of lines 

whose disconnection hinders the cascade propagation at the maximum. This issue is crucial because the 
intentional disconnection of lines may worsen the effects of the cascade in the same way as failure 

propagation does [10].  

As previously explained, the two indicators,    and    
, can be used to quantify the effects of cascading 

failures. The global protection optimization seeks interventions that minimize the objective function 

               , i.e. the connectivity loss of the network configuration                        , 

where      if link j is operating, or 0 otherwise. On the other hand, the local optimization searches for the 

optimal intervention in terms of the line switching set   that minimizes the connectivity loss    
 of a specific 

area A,              
   . 

In order to fully take advantage of both perspectives on network protection, we look into a “hybrid” 

protection strategy that finds the set of lines to be switched-off,  , that minimize both the connectivity loss of 

a pre-identified area A,    
   , and the connectivity loss of the whole network,      . This originates a 

multi-objective (MO) optimization problem, which is here tackled by a MOMA as is detailed in Section 4. 
The algorithm for simulating the combined effects of cascading failures and protection strategies proceeds in 

successive stages as follows [10]. 

step 1. Initially, all components, N nodes and K links, are characterized by initial loads Li and Lij, 
respectively, and maximum capacities, Ci and Cij, respectively. 

step 2. The initiating event occurs, i.e. the failure of the most critical component in terms of load, which is 

removed from the network. This triggers the cascading failure. Each component that is operating is 

tested for failure: for        , if node i is working and       then node i fails; if link ij is 

working and         then link ij fails. 

step 3. The operator intervenes by switching off a set of lines, in order to limit the cascade failure effects, 

expressed by the objective functions relative to the hybrid optimization strategy. The MOMA 
optimization algorithm returns the most appropriate network configuration that minimizes the 

objective functions at the end of the current step    .  

step 4. The components loads are re-distributed taking into account the new, protected network topology. 

Each component that is operating is tested for failure: for i =1,..., N, if node i is working and       

then node i fails; if link ij is working and         then link ij fails. 

step 5. The stage counter   is incremented by 1 and the algorithm is returned to step 4. The algorithm stops 

when no more working nodes fail. 

 

3.  GENERAL FORMULATION OF MULTI-OBJECTIVE OPTIMIZATION 

 
Real world applications involve the simultaneous optimization of several objective functions, which are 
often competing or/and conflicting with one another, and subject to a number of equality and inequality 

constraints. In general, these multi-objective problems can be formulated as follows (in terms of 

minimization): 

 

                                                                                         (3) 

Subject to          
                                    

                               
                                  (4) 

 

where    is the o-th objective function, x is a decision vector that represents a solution, O is the number of 

objectives,    is the l-th of the L equality constraints and    is the m-th of the M inequality constraints. The 

objective functions       must be evaluated in correspondence of each decision variable vector   in the 

search space. The final goal is to identify a set of optimal decision variable vectors   
           , 

instead of a single optimal solution. In this set of optimal solutions, no one can be regarded to be better than 
any other with respect to all the objective functions. The comparison of solutions may be achieved in terms 
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of the concepts of Pareto optimality and dominance [24]: in case of a minimization problem, solution    is 

regarded to dominate solution    (     ) if both following conditions are satisfied: 

 

                                                                               (5) 

                                                                               (6) 

 

If any of the above two conditions is violated, the solution    does not dominate the solution   , and 

   is said to be nondominated by   . The solutions that are nondominated within the entire search space are 

denoted as Pareto-optimal and constitute the Pareto-optimal set, and the corresponding values of the 
objective functions form the so called Pareto-optimal front in the objective functions space. The goal of a 

multi-objective optimization algorithm is to guide the search for solutions in the Pareto-optimal set, while 

maintaining diversity so as to cover well the Pareto-optimal front and thus allow flexibility in the final 

decision on the solutions to be actually implemented. 
 

 

4.  MULTI-OBJECTIVE MEMETIC ALGORITHM 

In general, MA consists of two types of operations: global exploration and local exploitation. To design an 

effective and efficient MA for global optimization, the exploration abilities of a global search algorithm and 
the exploitation abilities of a local search algorithm need to be well-balanced [25]. In this Section, we 

present the operation procedures of the MOMA have developed by combining MOBDE and LLS for the bi-

objective NP problem of interest. 

 

4.1 Global search algorithm 

 

DE has been originally proposed as a population-based global optimization algorithm for real-valued 
optimization problems [26]. The standard DE algorithm is simple and efficient and has been successfully 

applied in various scientific and engineering fields [27-29] often with superior performance than alternative 

optimization algorithms, e.g. particle swarm optimization and GAs [30]. Modified binary differential 
evolution (MBDE) is a binary version of DE developed to tackle single-objective binary-coded optimization 

problems [16]. In order to solve the combinatorial multi-objective problem of interest, we introduce into 

MBDE the non-dominated sorting, ranking, and elitism techniques utilized in non-dominated sorting genetic 

algorithm-II (NSGA-II) [13]. This new version of MBDE, named MOBDE, proceeds with the following 
steps: 

 

Step 1. Initialization of parameters  

Define the values of: the population size NP, the crossover rate CR, the scaling factor F, and the maximum 

number of generations Nmax. 

Step 2. Generation of initial population  

Set the generation number t equal to 1. Initialize the population       
      

   which contains M real-
valued parameter vectors of length K. Each vector is also called a chromosome and forms a candidate 

solution to the optimization problem. Each element of each vector    
      

     
                   

        takes a value       from the set {0, 1} with probability equal to 0.5: the element takes value ‘1’ if 

the corresponding line is to be switched-off, 0 otherwise.  

Step 3. Generation of intermediate population  

Apply the binary tournament selection operator [13] to the population    to generate a trial population 

       
       

   , which undergoes the evolution operations of mutation and crossover to become an 

intermediate population       
      

  . 

Step 3.1 Mutation 

Apply the mutation operator (7) onto each binary chromosome of     [16]: 
 

      
            

        
          

        
        

    
    where                      (7) 
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where b is a positive real constant, often set to values around 6, F is the scaling factor,      
  ,      

  , and 

     
   are the elements at the j-th position of the three randomly chosen chromosomes    

      
    and    

  , 

with indexes           . After applying (7) onto the current chromosome, the noisy vector is 

generated as,  

 

   
   

                         
   

                                  
                                                      (8) 

 
where rand is an uniformly distributed random number within the interval [0,1]. 

 
Step 3.2 Crossover 

Apply the crossover operator (9) to mix the noisy and target vectors to create an intermediate vector   . 

The vector inherits different pieces from the noisy and target vectors, as regulated by the crossover rate 

CR. The commonly used binomial crossover is defined as: 
 

   
   

   
                                    

   
                                     

                             (9) 

 

where        is a uniform random value       ,          is a uniform discrete random number in the 

set          , j is the index of the dimensionality and K is the length of the chromosome. 

 

Step 4. Evaluation  

Evaluate the two objectives    and    
 for the   chromosomes in the population    . 

Step 5. Union and sorting 

Combine the parent and the intermediate populations to obtain a union population         . Rank the 

chromosomes in the population    by running the fast non-dominated sorting algorithm [13] with respect to 

the objective values, and identify the ranked non-dominated fronts            where    is the best front,    

is the second best front and    is the least good front. 

Step 6. Selection 

Select the first    chromosomes from    to create a new parent population     . The crowding distance 

measure is used in this step to compare the chromosomes with the same rank (a more ‘crowded’ 
chromosome has lower priority than a less ‘crowded’ one), where crowding refers to the density of solutions 

present in a neighborhood of a chromosome of specified radius [13]. Increase the generation number t by 1 

and go to Step 3.  
 

The algorithm stops once the pre-defined maximum number of generations is reached. 

 
4.2 Local search algorithm 

Local search can enhance the capability of global search. In single-objective MAs, the local search 

operator is driven by the same objective function as the global search operator. However, the design of a 
MOMA is different, because the local search is generally guided by a single-objective for finding a single 

optimal solution while the global search is supposed to search for a number of non-dominated solutions with 

respect to multiple objectives [15]. Therefore, the local search needs to be modified to handle multiple 
objectives. In our study, the Pareto dominance is considered to guide also the local search (i.e. to determine 

if the newly obtained solution is better than the current one).  

Local search design issues include the length of the local search and the selection of the individuals to 

undergo local search. The length of local search is critical to the successful design of memetic algorithms 
because a too short local search may not efficiently explore the neighborhood of the current solution and 

therefore bring little improvement to the search quality. Conversely, an overly lengthy local search may 

consume unnecessary fitness function evaluations and therefore hinder the efficiency of the memetic 
algorithm altogether. For the selection of individuals whose neighborhood should be explored, in principle 
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the local search operator should be applied to those individuals which are the most likely ones to direct the 

search towards the global optimum. In evolutionary computation, the individuals with best fitness values are 

generally regarded as the most preferable individuals for reproduction.  
To take into account the above design issues, we have modified the 1-Opt LLS algorithm [31] to handle 

multiple objectives. 1-Opt searches for improvements by randomly flipping one bit of the chromosome at 

each iteration. As soon as an improved (in terms of Pareto dominance) solution is found, the LLS algorithm 
is terminated and the modified solution replaces the original solution. If no improvement is found, 1-Opt 

LLS is stopped upon reaching a maximum number of iterations,      . The individual undergoing the local 

search is randomly selected from the best front    in the current generation. 

 

 
5.  CASE STUDY AND RESULTS 

 
The 380 kV Italian power transmission network (Figure 1) has been taken as case study. The network can be 

modeled as a graph of        nodes (      generators and       distributors) and       edges.  

 

 
Figure 1. The 380 kV Italian power transmission network [32] 

 

In a previous study by some of the authors [10], it was found that the removal of link 107 (connecting 

nodes 78 and 81) results in the largest damage in terms of        . Since the region of Lombardy includes 

the largest number of distribution nodes in the power grid (densely-dotted area in the upper side of Figure 1), 
i.e. 21 distributors, the local protection strategy will focus on the minimization of the loss of connectivity of 

this specific area,    
  Figure 2 presents the evolution of the cascade after the initial failure, without 

intervention. It is shown that the cascading failure stops after the step t=2. 
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Figure 2. The cascade development in terms of global connectivity loss,   , and local connectivity loss,    

, 

after the failure of line 107 without intervention 

 

According to the protection strategy presented in Section 2.3, it is assumed that the protection 
intervention (line switching) takes place only once when t = 1 after the failure of the transmission line 107. 

The configurations of the MOMA parameters are summarized in Table 1. For the purpose of comparison, the 

MOBDE without local search is also run. To ensure that both algorithms do the same number of fitness 

evaluations (one-step cascade failure calculations, in this case), the population size of MOBDE is set to 40. 
The remaining parameter settings of MOMA and MOBDE are identical. 

 

Table 1. The parameters of the MOMA algorithm 

MOMA parameters 

Population size NP 30 

Dimensionality of solutions K 171 

Crossover rate CR 0.8 

Scaling factor F 0.2 

Minimum fitness error 10-4 

Maximum number of generation 300 

Maximum number of local search 10 

 
Figure 3 illustrates the Pareto fronts for the bi-objective (global connectivity loss,   , and local 

connectivity loss,    
) problem obtained by MOBDE and MOMA at t = 1. It is shown that MOMA achieves 

a better Pareto front than MOBDE does, with the same number of fitness evaluations. 
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Figure 3. The Pareto fronts obtained by MOBDE and MOMA at t = 1 

 
Table 2 shows the complete evolutions of the cascades with optimal interventions (obtained by 

MOBDE and MOMA, respectively) at t = 1, and without intervention. It is interesting to observe that the 

optimal protection strategies at t = 1 do not necessarily guarantee the minimization of    at the end of the 

cascades. For example, solution #4 obtained by MOBDE has final          and    
= 0.860, while it has 

         and    
= 0.492 at t = 1; solution #3 obtained by MOMA has final          and    

= 0.900, 

while it has          and    
= 0.492 at t = 1. Solution #3 by MOMA dominates solution #4 by MOBDE 

at t =1, but they are mutually non-dominated at the end of the cascade. Another observation is that solutions 
#1 and #2 obtained by MOBDE show that the cascade propagation ends at t = 1 and they are the best results 

obtained at the end of the cascade propagation. 

These observations lead to a direction of future work aiming at improving the optimal protection 
strategy by taking into consideration the final results of cascades rather than only a short horizon of one step 

cascading. 

 

 
Table 2. Results of cascading failures w/o optimal protections 
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MOBDE

MOMA

Method Steps  Solution #1 Solution #2 Solution #3 Solution #4 Solution #5 

 t       
       

       
       

       
 

MOBDE 0 0.062 0.000 0.062 0.000 0.062 0.000 0.062 0.000 0.062 0.000 
 1 0.754 0.538 0.761 0.500 0.759 0.524 0.765 0.492 0.749 0.556 
 2     0.870 0.862 0.875 0.860 0.816 0.683 
            

MOMA 0 0.062 0.000 0.062 0.000 0.062 0.000     

 1 0.748 0.514 0.759 0.467 0.753 0.492     

 2 0.949 0.970 0.856 0.811 0.870 0.900     

            

No 

intervention 

0 0.062 0.000         

 1 0.960 0.980         
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6. CONCLUSIONS 

 
For optimal NP against cascading failures, we have proposed a MOMA combining a binary differential 

evolution algorithm with a Lamarckian local search to identify the transmission lines to be switched-off for 

minimizing the global and local effects on the network. 

Numerical application on a mid-size network has proved both feasible and satisfactory. The comparison 
with the MOBDE shows that MOMA can achieve superior solutions given the same number of evaluations.  
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