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A Multi-state Physics Model of Component Degradation based on Stochastic Petri Nets and Simulation
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Multi-state physics modeling (MSPM) of degradation processes is an approach proposed for estimating the failure probability of components and systems. This approach integrates multi-state modeling, which describes the degradation process through transitions among discrete states (e.g. initial, micro-crack, rupture, etc), and physics modeling by (physics) equations that describe the degradation process within the states. In reality, the degradation process is non-Markovian, its transition rates are timedependent, and the degradation is possibly influenced by uncertain external factors such as temperature and stress. Under these conditions, it is in general difficult to derive the state probabilities analytically. In this paper, we overcome this difficulty by building a simulation model supported by a stochastic Petri net representing the multi-state degradation process. The proposed modeling approach is applied to the problem of a nuclear component undergoing stress corrosion cracking. The results are compared with those derived from the state-space enrichment Markov chain approximation method applied in a previous work of literature.

Introduction

Most products, components, and systems age, wear, and degrade over time until they are completely failed or exhausted. Degradation processes have been intensively studied by the reliability engineering community [START_REF] Park | Stochastic degradation models with several accelerating variables[END_REF]- [START_REF] Chryssaphinou | Multi-State Reliability Systems Under Discrete Time Semi-Markovian Hypothesis[END_REF]. In general, the degradation models can be classified into analytical models [START_REF] Li | Reliability modeling of multi-state degraded systems with multicompeting failures and random shocks[END_REF], [START_REF] Gebraeel | Residual Life Predictions in the Absence of Prior Degradation Knowledge[END_REF]- [START_REF] Chryssaphinou | Multi-State Reliability Systems Under Discrete Time Semi-Markovian Hypothesis[END_REF], and simulation models [START_REF] Hosseini | An inspection model with minimal and major maintenance for a system with deterioration and Poisson failures[END_REF]- [START_REF] Zio | Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo[END_REF], [START_REF] Barata | Simulation modelling of repairable multi-component deteriorating systems for 'on condition' maintenance optimisation[END_REF]. The analytical degradation models can be further classified into the following three groups.

1. Statistical models of time to failure (e.g. lifetime distribution [START_REF] Gebraeel | Residual Life Predictions in the Absence of Prior Degradation Knowledge[END_REF]).

2. Models describing the evolution of a measurable quantity indicating timedependent degradation, and failure upon reaching a threshold value (e.g.

Brownian motion [START_REF] Elsayed | A geometric Brownian motion model for field degradation data[END_REF], and gamma process [START_REF] Lawless | Covariates and random effects in a gamma process model with application to degradation and failure[END_REF]).

3. Multi-state models of degradation [START_REF] Li | Reliability modeling of multi-state degraded systems with multicompeting failures and random shocks[END_REF], [START_REF] Chryssaphinou | Multi-State Reliability Systems Under Discrete Time Semi-Markovian Hypothesis[END_REF].

Multi-state models (MSM) [START_REF] Lisnianski | Multi-state System Reliability: Assessment, Optimization and Applications[END_REF]- [START_REF] Kuo | Optimal Reliability Modeling: Principles and Applications[END_REF] are frequently applied for component degradation process modeling because they fit practically to component aging processes in real life situations when there is a range of levels from perfect functioning to complete failure. To model the dynamics of the degradation process, Markov [START_REF] Chana | Optimum maintenance policy with Markov processes[END_REF]- [START_REF] Sim | A failure-repair model with minimal and major maintenance[END_REF] and semi-Markov models [START_REF] Black | A semi-Markov approach for modelling asset deterioration[END_REF]- [START_REF] Kim | Optimal maintenance policy for a multi-state deteriorating system with two types of failures under general repair[END_REF] have been used. In the Markov models, the transition rates between states are constant, and the state holding times follow exponential distributions, which means that the degradation process is memoryless. In the semi-Markov models, the state holding times may follow arbitrary distributions. In some recent works [START_REF] Liu | Optimal Replacement Policy for Multi-State System under Imperfect Maintenance[END_REF]- [START_REF] Liu | New model and measurement for reliability of multi-state systems[END_REF], the non-homogenous continuous time Markov model (NHCTMM) has been introduced to account for the aging effects of un-repairable components or systems. The component degradation process is also possibly affected by other external factors (e.g. temperature, stress) [START_REF] Institute | Materials Reliability Program Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking of Alloy 82,182, and 132 Welds[END_REF].

Multi-state modeling requires estimating the transition rates from field data. In practice, it can be difficult or even impossible to collect relevant data, especially for the highly reliable devices (e.g. nuclear components, aerospace devices, etc).

To overcome some of the problems mentioned above, a novel approach based on multi-state physics modeling has been proposed [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF], in which the transition rates are described by physics functions (e.g. crack growth) rather than estimated from service data.

The resulting model is non-Markovian because the transition rates are time-dependent and uncertain. To solve the problem, in the original work by [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF], a state-space enrichment approach has been used upon discretization of the component lifetime into Section 4 presents the integrated framework, and the detailed MC simulation procedures of the integrated model. In Section 5, the real-world case study from Unwin et al. [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF]is used as an application, and a comparison is made with the state-space enrichment technique. Section 6 concludes the work, and points out possible future extensions.

Multi-state physics modeling of component degradation process

Under the framework of multi-state modeling, the dynamics of component degradation is The transition rate is defined as

(1)
where and are defined in the notation list and is the probability density function (PDF) of .

The target of multi-state modeling is to solve the state probability vector with .

(

) 2 
The integral at the right-hand side of ( 2) is over all possible values of . If the transition rates are constant, the state probabilities can be obtained by solving the ordinary differential equations corresponding to the state space diagram.

Solving analytically the Markov model with time-dependent transition rates and possibly random is a difficult task [START_REF] Lisnianski | Maintenance contract assessment for aging systems[END_REF]. Then, approximation methods are introduced.

One used by several researchers [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF]- [START_REF] Lisnianski | Maintenance contract assessment for aging systems[END_REF] amounts to discretizing the component lifetime into intervals, and assuming a constant value of transition rate in each interval. By doing so, the description of the stochastic process is converted into a discrete time Markov chain (DTMC) with a significantly enriched state space which includes discrete time steps, and characterized by a sparse transition matrix. For example, given a component
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with 6 original degradation states, and a lifetime of 100 years discretized in time steps of 0.5 years, the approximation method would generate a transition matrix of entries. Alternatively, the simulation modeling framework offers a promising alternative.

Stochastic Petri nets

Petri nets (PNs), coined by Carl Petri [START_REF] Petri | Communication with automation[END_REF], are an adaptive, versatile, and yet simple graphical modeling tool for representing dynamic systems. PNs have successful applications in the reliability modeling of various systems, such as computer software and hardware systems [START_REF] Yang | Modeling and quantitatively predicting software security based on stochastic Petri nets[END_REF], manufacturing systems [START_REF] Hosseini | An inspection model with minimal and major maintenance for a system with deterioration and Poisson failures[END_REF], occupant safety systems [START_REF] Kleyner | Application of Petri nets to reliability prediction of occupant safety systems with partial detection and repair[END_REF], and others.

A PN is a bipartite directed graph with two types of nodes in which abstract objects (tokens), drawn as bold-faced dots, are moved, created, or removed [START_REF] Schneeweiss | Tutorial: Petri nets as a graphical description medium for many reliability scenarios[END_REF]. The two types of nodes are places (states) , which are circular, and usually denote the states of the system being modeled; and transitions , which are bars, and denote the transitions corresponding to actions or events that result to a state change.

Places are linked only to transitions using directed arcs , and vice versa. It is possible for a place to have multiple arcs to or from the transition, which can be condensed down to a single arc with a weight or multiplicity denoted by a slash through the arc with a number next to it. If there is no slash, the weight is usually assumed to be 1

(it is also the default weight value).

The tokens, which represent objects in the model, are stored in places. The movements of the tokens passing between places represent the transitions in the system.

The transition is enabled only if the weight of each incoming arc is at most equal to the number of tokens at the corresponding input place. In original PNs, the transitions are assumed to be immediate. In stochastic PNs (SPNs) a transition can be immediate (in this work, it is noted by a solid bar), deterministically time-delayed, or randomly timedelayed based on a pre-defined probability distribution. Once the time delay has passed, and if transition remains enabled the switching takes place. The switching will remove the number of tokens in each input place corresponding to the weight of the relevant incoming arcs, and create the number of tokens in each output place corresponding to the weights of the relevant outgoing arcs. More details about the different types of SPNs can be found in [START_REF] Reisig | Petri nets with individual tokens[END_REF].

The SPN is often used as a model representation tool. It can be internally converted to a continuous time Markov chain (CTMC), when the time delay at each transition follows an exponential distribution [START_REF] Trivedi | Probability and statistics with reliability, queuing and computer science applications[END_REF]; the Monte Carlo (MC) simulation is used to solve the SPN directly, when time delays are random [START_REF] Dutuit | Dependability modeling and evaluation by using stochastic Petri nets: application to two test cases[END_REF]. For the MSPM formulation embraced in this study of a stochastic degradation process, MC simulation is used to solve the SPN. 

The Integrated Simulation

Basics of the Monte Carlo simulation model

To obtain the state probability in (2), the following M differential equations need to be solved given the realizations of (the detailed theoretical analysis for Monte Carlo simulation for ICTMC can be found in [START_REF] Lewis | Monte Carlo reliability modeling by inhomogeneous Markov processes[END_REF]).

where , and

. ( 5 
)
The quantity is regarded as the conditional probability that, given the transition out of state j at time t, and the values of , the transition arrival state will be i. To rewrite (4) into integral form, an integrating factor is used.

Multiplying both sides of (4) by the integrating factor, we obtain .

Taking the integral of both sides, we obtain . [START_REF] Gebraeel | Residual Life Predictions in the Absence of Prior Degradation Knowledge[END_REF] Substituting with , we obtain

. ( 8 
)
In the MC simulation, the probability distribution function is not sampled directly. Instead, the process holding time at state i is sampled, and then the transition from state i to another state j is determined. This procedure is repeated until the accumulated holding time reaches the predefined time horizon. The resultant time sequence consists of the holding times at different states.

To sample the holding time, the probability density (or total frequency) of the departing state i, , needs first to be obtained by multiplying to both sides of (8).

(
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where
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)
This result is defined as the conditional probability density function (PDF) that the process will depart state i at time t, given that the process is at state i at time , and the values of the external influencing factors . Equation [START_REF] Elsayed | A geometric Brownian motion model for field degradation data[END_REF] indicates that the probability density function consists of the sum of contributions from the random walks with transitions passing through all the states (including state i) from time 0 to t, given the values of . To obtain the marginal distribution , the conditional distribution is multiplied with the PDF of , and the result is integrated over all possible values of :

. ( 11 
)
Based on [START_REF] Barata | Simulation modelling of repairable multi-component deteriorating systems for 'on condition' maintenance optimisation[END_REF], the MC simulation procedure mentioned above can be derived. The CDF of the departure time given that it is at state i at time is denoted as .

Given , and ( 12), the departure time t can be sampled through direct inversion sampling, acceptance-rejection sampling, and other sampling techniques [START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF].

Following the departure, the marginal transition probabilities to any other state are calculated as

, ( 13 
)
and a uniformly distributed random number U is sampled in the interval [0,1]; if , then the transition to state is activated, and occurs at units of time. After time , a new token will appear at place , and the token at place i is removed.

The simulation procedures

Prior to the simulation, incorporation of the external influencing factors should be carried out through the following steps.

1) Formulate the functions describing the physics of the transition rates.

2) Identify the external influencing factors (e.g. temperature, stress).

3) Define the distribution functions, representing the uncertainties in the values of these factors.

The algorithm for the simulation of the process of component degradation on the time horizon is sketched in the following pseudo-code.

Initialize the system by allocating a token onto place i = M (initial state of perfect performance), setting the time t = 0 (initial time), and setting the total number of replications to .

Set .

Set .

While ,

While , sample a realization of the external influencing factors from the joint probability function .

Sample a departure time from the distribution function .

Sample a random number from the uniform distribution in [0, 1].

For each outgoing transition (j = 0,1,…,M, j i),

Calculate the transition probability .

If ,

then activate the transition to state .

End If.

End For.

Set .

Remove the token from place i, and add a new token onto place .

End While.

Set .

End While. □

Subsequent to the execution of the simulation algorithm, an estimate of the state probability vector is computed by dividing the total number of visits to each state by the total number of simulations :

, where is the total number of visits to state i at time t. The derived distributions and may have complicated mathematical expressions; under these circumstances, the Markov Chain MC technique can be used to sample random values [START_REF] Zio | Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo[END_REF].

Experiments, and results

Case study

The case study refers to the cracking process in an Alloy 82/182 dissimilar metal weld in a primary coolant system of a nuclear power plant [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF]. Cracks can grow from the inner to the outer diameter of the dissimilar metal welds in one of the three major morphologies: axial, radial, and circumferential. The latter two types can lead to the rupture of the component. The crack growth has two steps 1) crack initiation, and 2) crack propagation.

The radial crack mainly grows outward from the initiation site towards the outer diameter;

the process can lead to a leak, and potentially to rupture. The crack grows relatively evenly around the circumference, potentially leading to a rupture. 

where is the probability that the crack grows to state D given that the current state is M. The analogous probability that the crack goes to state C at time u after crack initiation is defined as [START_REF] Kim | Optimal maintenance policy for a multi-state deteriorating system with two types of failures under general repair[END_REF] where is the threshold length of a circumferential-crack, and is the probability that the crack goes to state C given that the current state is M.

The transition rate (between state M and D) is defined as [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF] , [START_REF] Liu | Optimal Replacement Policy for Multi-State System under Imperfect Maintenance[END_REF] and similarly, .

By assuming that the crack growth rate is following a uniform distribution with a maximum value of , i.e. , [START_REF] Institute | Materials Reliability Program Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking of Alloy 82,182, and 132 Welds[END_REF] then [START_REF] Chryssaphinou | Multi-State Reliability Systems Under Discrete Time Semi-Markovian Hypothesis[END_REF], and ( 11) are reduced to , ( 21) and ( 22)

respectively.

The transition rate from state D to state L is defined by the growth in crack size up to a threshold of leakage:

(23) ( 24 
)
where w is the time since the radial crack formation [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF]. By assuming the same distribution over the crack growth rate, then

Transition rates from leak to rupture, and from circumferential crack to rupture, are assumed to be constant. These transition rates, together with other constant parameters, are presented in Table I below. 

Results

The simulation model supported by a Petri net description of the degradation process (Fig. 4) is applied to the case study with the parameter settings reported in Table I. In the original study [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF], the uncertainties of the external influencing factors (e.g. temperature and pressure) have not been modeled in the crack initiation process (as shown in ( 15)),

and have been implicitly modeled in the crack propagation process by means of a uniform distribution of the transition rate (as shown in [START_REF] Institute | Materials Reliability Program Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking of Alloy 82,182, and 132 Welds[END_REF]). 

where is the estimated state probability vector from the k-th subsample. The convergence of the state probability values can be observed by the variance in [START_REF] Reisig | Petri nets with individual tokens[END_REF], and the sequence of sample means on the steadily incremental subsamples [START_REF] Trivedi | Probability and statistics with reliability, queuing and computer science applications[END_REF] where n takes value from 1 to N.

At t = 80 years, the variances are , , For comparison with the state-space enrichment technique proposed in the original study of [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF], the state probabilities resulting from simulation runs are shown in Fig. 6 as functions of time. The results from the state-space enrichment method considering different step sizes (e.g. 1 year, 0.5 year, and 0.1 year) are shown in Figs. 7 to 9, respectively. The general shapes and trends of the results are similar for the simulation , and the state-space enrichment with different steps; in all plots, there is: 1) an early, rapid transition from the Initial state to the Micro-crack state; 2) a monotonic increase in the probability of the rupture state. The numerical comparisons on the state probability values at year 80 are reported in Table II. As expected, the relative differences (i.e. the differences between the state probability values computed by the simulation method minus those obtained with the state-space enrichment method, divided by the former) decrease as the step size is reduced. Reliability Association, ESRA. He is a member of the editorial board of various international sciatic journals on reliability engineering and system safety. He is co-author of four international books, and more than 170 papers in international journals. He serves as referee of several international journals.
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  equally sized time intervals, during each of which the transition rate remains constant. Then, the component degradation process is converted into a discrete time Markov chain (DTMC) residing in a largely enriched state space described by a tuple , where is the vector of original component degradation states, and is the vector of discretized holding times at each state. In this work, we propose an integrated simulation framework for modeling the stochastic aging behavior of components. Such framework is supported by a stochastic Petri net (SPN), which provides a flexible model representation scheme for describing the state transition process. Uncertain external influencing factors (e.g. temperature, stress) are included. A Monte Carlo (MC) simulation algorithm is proposed to realize the degradation transition process, and compute the state probability distributions. The rest of the paper is organized as follows. Section 2 presents the formal definition of the multi-state physics model, with consideration of time-dependent transition rates, and uncertain external influencing factors. Section 3 introduces the stochastic Petri nets.
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 1 Fig. 1 depicts the state-space diagram of the component degradation process with repairs.
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 41 The integration of stochastic Petri nets and uncertain external influencing factors A graphical sketch of the integration of SPN and uncertain external influencing factors is given in Fig 2. The transition rates are physically dependent on the values of , which is a vector of n random parameters with joint probability distribution .

Fig 2 .

 2 Fig 2. Sketch of the integrated model.

Fig 4 .

 4 Fig 4. The SPN simulation model of Alloy 82/182 dissimilar metal weld degradation.

  ', 'micro-crack', 'circumferential', 'radial', 'leak', and 'rupture' states, respectively. Similar results are found at different time moments. The examples of convergence curves at 80 years are presented in Fig. 5. The good stabilization of is manifested. It is also noted that . Similar convergence curves are obtained at different time moments, but are not presented to save space.
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 5 Fig 5. Convergence plots of state probabilities at t = 80 years.
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 6789 Fig 6. State probabilities obtained by simulation.
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 1012 Fig 10. Function of scale parameter .

  differences. Both factors have significant impacts on the variability of all state probabilities, especially on initial and micro-crack states, implying that the variances in the uncertain factors influencing the first transition have propagated to the probability estimates of all other states.

  An SPN-supported simulation framework has been proposed to solve the multi-state physics model (MSPM) describing a component degradation process with timedependent transition rates, and uncertain external influencing factors. SPN provides a flexible tool for representing the dynamics of degradation processes, and the simulation solution allows handling time-dependent transition rates and uncertain influencing factors, without complications. The framework has been applied with success on a nuclear component undergoing stress corrosion cracking. The comparison with analytical approximated results has been satisfactory. The framework has been shown to be capable of indeed explicitly accommodating the uncertainties in the external influencing factors. Thanks to the local place and parallelism of Petri Nets, and the flexibility of Monte Carlo simulation, the publications, all in refereed international journals, conferences, and books. He is an invited reviewer of 9 international journals. He is a member of the IEEE. Enrico Zio (M'06-SM'09) has a B.S. in nuclear engineering, Politecnico diMilano,1991; a M.Sc. in mechanical engng., UCLA, 1995; a Ph.D., in nuclear engng.,Politecnico di Milano, 1995; and a Ph.D., in nuclear engng., MIT, 1998. He is the Director of the Graduate School of the Politecnico di Milano, and the full Professor of Computational Methods for Safety and Risk Analysis. He is the Chairman of the European Safety and

  

  Table III and Table IV. TableIIIgives the mean state probability values at year 80, and the relative differences computed as the percentage differences of the results obtained by simulation with uncertain factors relative to simulation without any uncertain factor. It is observed that both factors have significant impacts on the mean probability value of the initial state, as expected. Table4presents the state probability standard deviations averaged over 80 years, and the absolute
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All the experiments have been performed in MATLAB on a PC with a 2.1 GH INTEL processor, and a 512 MB memory. The average computation time of the simulation method is 1,069.9 seconds. The computation times of the state-space enrichment method with different time step sizes (e.g. 1 year, 0.5 year, and 0.1 year) are 2.2 seconds, 6.3 seconds, and 290.2 seconds, respectively. The computation expense of the state-space enrichment method increases non-linearly as the time step size decreases. In the current experiments, the simulation method is about 3 times slower than the state-space enrichment method with the time step size 0.1 year. However, it is expected that the statespace enrichment method will be more time consuming when the time step size further decreases, or more degradation states are considered, or a longer time horizon is considered, or any combination of these conditions. This is because such conditions involve a large scale sparse state-space enriched matrix of the dimension 1)×1 2, where +1 is the total number of degradation states, and is the time step size. Also, the sparse matrix multiplication algorithm has been used in the computation process of state-space enrichment method, because the state-space enriched matrix is close to the size of the memory when equals 0.1 year.

Uncertain external influencing factors

As explained in Section 4, the SPN-supported simulation framework is able to explicitly accommodate the uncertainties in the external influencing factors. To show this ability, as an example, we assign truncated normal distributions to the temperature T and stress values of the Weibull scale parameter in [START_REF] Sim | A failure-repair model with minimal and major maintenance[END_REF], which is the rate of the first transition.

According to [START_REF] Aly | Preliminary Study for Extension and Improvement on Modeling of Primary Water Stress Corrosion Cracking at Control Rod Drive Mechanism Nozzles of Pressurized Water Reactors[END_REF], has the following relationship with temperature and stress.

proposed framework has the potential to model the degradation processes of more complex components and systems (e.g. with a larger number of degradation states and transitions), which could be difficult to handle with analytical approximations (e.g. statespace enrichment method).

Future research work is envisaged: 1) comparison with the U.S. Nuclear Regulatory Commission xLPR program [START_REF] Mattie | Nuclear Regulatory Commission Extremely Low Probability of Rupture Pilot Study: xLPR Framework Model User's Guide[END_REF]; 2) representation and propagation of uncertainty in the external influencing factors when there are insufficient data to assign probabilities (nonprobabilistic approaches, e.g. based on Dempster-Shafer theory, would be useful in this respect); 3) extension to more complicated application cases, e.g. including multiple competing degradation processes of components and systems, and interdependencies among the external factors.