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_______________________________________________________________________ 

 

Abstract - Multi-state physics modeling (MSPM) of degradation processes is an 

approach proposed for estimating the failure probability of components and systems. This 

approach integrates multi-state modeling, which describes the degradation process 

through transitions among discrete states (e.g. initial, micro-crack, rupture, etc), and 

physics modeling by (physics) equations that describe the degradation process within the 

states. In reality, the degradation process is non-Markovian, its transition rates are time-

dependent, and the degradation is possibly influenced by uncertain external factors such 

as temperature and stress. Under these conditions, it is in general difficult to derive the 

state probabilities analytically. 

In this paper, we overcome this difficulty by building a simulation model supported by a 

stochastic Petri net representing the multi-state degradation process. The proposed 

modeling approach is applied to the problem of a nuclear component undergoing stress 

corrosion cracking. The results are compared with those derived from the state-space 

enrichment Markov chain approximation method applied in a previous work of literature. 

 

 

Keywords – Component degradation, multi-state physics model, non-homogeneous 

Markov process, Monte Carlo simulation, stochastic Petri net.  
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CDF  Cumulative distribution function 
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PN  Petri-net 

SPN  Stochastic Petri net 

 

 

Notations 

   The vector of component degradation states 

    The vector of enriched state space considering process holding time 

    Time 

      The discrete function representing the stochastic degradation process, 

which takes values from   

     The total number of component degradation states 

      The vector of component state probability at time t 

           The transition rate from state i to state j at time t, given the realizations of 

the uncertain external influencing factors   

            The vector of uncertain external influencing factors, where N+1 is 

the total number of factors 

       Probability density function of   

  
     Place i of the Petri nets 

  
     Transition j of the Petri nets 

      The holding time at state i  

           Cumulative distribution function of holding time     given   

           The transition probability from state i to state j at time t given   

 

 

1. Introduction 

Most products, components, and systems age, wear, and degrade over time until they are 

completely failed or exhausted. Degradation processes have been intensively studied by 

the reliability engineering community [1]-[10]. In general, the degradation models can be 

classified into analytical models [3], [7]-[10], and simulation models [5]-[6], [11]. The 

analytical degradation models can be further classified into the following three groups.  

1. Statistical models of time to failure (e.g. lifetime distribution [7]). 

2. Models describing the evolution of a measurable quantity indicating time-

dependent degradation, and failure upon reaching a threshold value (e.g. 

Brownian motion [9], and gamma process [8]). 

3. Multi-state models of degradation [3], [10]. 

Multi-state models (MSM) [12]-[13] are frequently applied for component 

degradation process modeling because they fit practically to component aging processes 

in real life situations when there is a range of levels from perfect functioning to complete 
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failure. To model the dynamics of the degradation process, Markov [14]-[15] and semi-

Markov models [16]-[17] have been used. In the Markov models, the transition rates 

between states are constant, and the state holding times follow exponential distributions, 

which means that the degradation process is memoryless. In the semi-Markov models, the 

state holding times may follow arbitrary distributions. In some recent works [18]-[19], 

the non-homogenous continuous time Markov model (NHCTMM) has been introduced to 

account for the aging effects of un-repairable components or systems. The component 

degradation process is also possibly affected by other external factors (e.g. temperature, 

stress) [20].  

Multi-state modeling requires estimating the transition rates from field data. In 

practice, it can be difficult or even impossible to collect relevant data, especially for the 

highly reliable devices (e.g. nuclear components, aerospace devices, etc).  

To overcome some of the problems mentioned above, a novel approach based on 

multi-state physics modeling has been proposed [21], in which the transition rates are 

described by physics functions (e.g. crack growth) rather than estimated from service data. 

The resulting model is non-Markovian because the transition rates are time-dependent 

and uncertain. To solve the problem, in the original work by [21], a state-space 

enrichment approach has been used upon discretization of the component lifetime into 

equally sized time intervals, during each of which the transition rate remains constant. 

Then, the component degradation process is converted into a discrete time Markov chain 

(DTMC) residing in a largely enriched state space described by a tuple          , 

where   is the vector of original component degradation states, and    is the vector of 

discretized holding times at each state.  

In this work, we propose an integrated simulation framework for modeling the 

stochastic aging behavior of components. Such framework is supported by a stochastic 

Petri net (SPN), which provides a flexible model representation scheme for describing the 

state transition process. Uncertain external influencing factors (e.g. temperature, stress) 

are included. A Monte Carlo (MC) simulation algorithm is proposed to realize the 

degradation transition process, and compute the state probability distributions.  

The rest of the paper is organized as follows. Section 2 presents the formal definition 

of the multi-state physics model, with consideration of time-dependent transition rates, 
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and uncertain external influencing factors. Section 3 introduces the stochastic Petri nets. 

Section 4 presents the integrated framework, and the detailed MC simulation procedures 

of the integrated model. In Section 5, the real-world case study from Unwin et al. [21]is 

used as an application, and a comparison is made with the state-space enrichment 

technique. Section 6 concludes the work, and points out possible future extensions. 

 

2. Multi-state physics modeling of component degradation process 

Under the framework of multi-state modeling, the dynamics of component degradation is 

described by transitions among a finite number of discrete degradation states   

            . The solution of the multi-state model is the state probability vector at any 

time instant t,                           , given the transition rates      from state i 

to state j. In the MSPM, the transition rate           is a function of time t, for given 

values of physical factors  . This function can be formulated based upon material science 

knowledge about the degradation physics of the component (e.g. the crack development 

process [20]). With the consideration of degradation physics, the following assumptions 

are made for MSPM.  

 

1. The component consists of (M+1) states where states ‘0,’ and ‘M’ represent the 

complete failure state, and perfect functioning state, respectively. The generic 

intermediate state i (0<i<M) is a degradation state where the component is 

partially functioning. 

2. The initial state (at time t = 0) of the component is M. 

3. Repair can be performed on the intermediate states. Once the component is in 

complete failure (e.g. rupture), it is no longer repairable. 

4. The transition rates           from state i to state j is a function of time, and of the 

external influencing factors  , whose values may not be precisely known. 

 

Fig. 1 depicts the state-space diagram of the component degradation process with repairs. 
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Fig 1. A State-space diagram of the component degradation process.  

 

 

The transition rate is defined as  

 

                 
                       

  
                                (1) 

 

where  and       are defined in the notation list and      is the probability density 

function (PDF) of   . 

The target of multi-state modeling is to solve the state probability vector      

                      with  

 

                         .                                      (2) 

 

The integral at the right-hand side of (2) is over all possible values of  . If the transition 

rates are constant, the state probabilities can be obtained by solving the ordinary 

differential equations corresponding to the state space diagram. 

Solving analytically the Markov model with time-dependent transition rates and 

possibly random   is a difficult task [22]. Then, approximation methods are introduced. 

One used by several researchers [21]-[22] amounts to discretizing the component lifetime 

into intervals, and assuming a constant value of transition rate in each interval. By doing 

so, the description of the stochastic process is converted into a discrete time Markov 

chain (DTMC) with a significantly enriched state space which includes discrete time 

steps, and characterized by a sparse transition matrix. For example, given a component 

0 1 M M-1 
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with 6 original degradation states, and a lifetime of 100 years discretized in time steps of 

0.5 years, the approximation method would generate a transition matrix of           

entries. Alternatively, the simulation modeling framework offers a promising alternative. 

 

3. Stochastic Petri nets 

Petri nets (PNs), coined by Carl Petri [23], are an adaptive, versatile, and yet simple 

graphical modeling tool for representing dynamic systems. PNs have successful 

applications in the reliability modeling of various systems, such as computer software 

and hardware systems [24], manufacturing systems [5], occupant safety systems [25], and 

others.  

A PN is a bipartite directed graph with two types of nodes in which abstract objects 

(tokens), drawn as bold-faced dots, are moved, created, or removed [26]. The two types 

of nodes are places (states)   
           , which are circular, and usually denote the 

states of the system being modeled; and transitions   
           , which are bars, and 

denote the transitions corresponding to actions or events that result to a state change. 

Places are linked only to transitions using directed arcs    
    

  , and vice versa. It is 

possible for a place to have multiple arcs to or from the transition, which can be 

condensed down to a single arc with a weight or multiplicity denoted by a slash through 

the arc with a number next to it. If there is no slash, the weight is usually assumed to be 1 

(it is also the default weight value).  

The tokens, which represent objects in the model, are stored in places. The 

movements of the tokens passing between places represent the transitions in the system. 

The transition   
   is enabled only if the weight of each incoming arc is at most equal to 

the number of tokens at the corresponding input place. In original PNs, the transitions are 

assumed to be immediate. In stochastic PNs (SPNs) a transition can be immediate (in this 

work, it is noted by a solid bar), deterministically time-delayed, or randomly time-

delayed based on a pre-defined probability distribution. Once the time delay has passed, 

and if transition remains enabled the switching takes place. The switching will remove 

the number of tokens in each input place corresponding to the weight of the relevant 

incoming arcs, and create the number of tokens in each output place corresponding to the 
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weights of the relevant outgoing arcs. More details about the different types of SPNs can 

be found in [27].  

The SPN is often used as a model representation tool. It can be internally converted to 

a continuous time Markov chain (CTMC), when the time delay at each transition follows 

an exponential distribution [28]; the Monte Carlo (MC) simulation is used to solve the 

SPN directly, when time delays are random [29]. For the MSPM formulation embraced in 

this study of a stochastic degradation process, MC simulation is used to solve the SPN.  

 

4. The Integrated Simulation Model for Component Degradation 

4.1. The integration of stochastic Petri nets and uncertain external influencing 

factors 

A graphical sketch of the integration of SPN and uncertain external influencing 

factors is given in Fig 2. The transition rates are physically dependent on the values of  , 

which is a vector of n random parameters with joint probability distribution     . 

 

Fig 2. Sketch of the integrated model. 

Given the general form of the transition rate (1), the total rate of departure from state i 

is  

                  
 
   
   

.                                               (3) 

 

Physical factors 
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   … 
   

   

    State (place) i State (place)    
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4.2. Basics of the Monte Carlo simulation model 

To obtain the state probability in (2), the following M differential equations need to 

be solved given the realizations of   (the detailed theoretical analysis for Monte Carlo 

simulation for ICTMC can be found in [30]).  

 

  
                                

 
   
   

                              (4) 

where        , and 

                           .                                           (5) 

The quantity           is regarded as the conditional probability that, given the transition 

out of state j at time t, and the values of  , the transition arrival state will be i. To rewrite 

(4) into integral form, an integrating factor                          
 

 
  is used. 

Multiplying both sides of (4) by the integrating factor, we obtain  

 

  
                                               

 
   
   

.                   (6) 

Taking the integral of both sides, we obtain  

                                  
         

        
     

   
   

    
 

 
.  (7) 

Substituting         with                 
 

 
 , we obtain  

                       
       

 

 

   

           
         

 

  
      

         
        

     
   
   

   
 

 
.                 (8) 

In the MC simulation, the probability distribution function         is not sampled 

directly. Instead, the process holding time at state i is sampled, and then the transition 

from state i to another state j is determined. This procedure is repeated until the 

accumulated holding time reaches the predefined time horizon. The resultant time 

sequence consists of the holding times at different states.  
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To sample the holding time, the probability density (or total frequency) of the 

departing state i,        , needs first to be obtained by multiplying          to both sides 

of (8).  

                       

                                     
       

 

 

 

                    
         

 

  
       

         
    

 

   
   

   
 

 

 

                      
         

          
        

 

 
 
   
   

                           (9) 

where 

       
                      

         
 

  
             .                    (10) 

This result is defined as the conditional probability density function (PDF) that the 

process will depart state i at time t, given that the process is at state i at time   , and the 

values of the external influencing factors  . Equation (9) indicates that the probability 

density function         consists of the sum of contributions from the random walks 

with transitions passing through all the states (including state i) from time 0 to t, given 

the values of  . To obtain the marginal distribution      , the conditional distribution is 

multiplied with the PDF of  , and the result is integrated over all possible values of  : 

                     .                                           (11) 

Based on (11), the MC simulation procedure mentioned above can be derived. The 

CDF of the departure time   given that it is at state i at time    is denoted as  

      
          

                        
         

 

  
       . 

(12) 
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Given   , and (12), the departure time t can be sampled through direct inversion 

sampling, acceptance-rejection sampling, and other sampling techniques [31]. 

Following the departure, the marginal transition probabilities to any other state 

             are calculated as  

         
         

       
      ,                                           (13) 

and a uniformly distributed random number U is sampled in the interval [0,1]; if 

        
    
              

  

   , then the transition to state    is activated, and occurs at 

  units of time. After time         , a new token will appear at place   , and the token 

at place i is removed.  

 

4.3 The simulation procedures  

Prior to the simulation, incorporation of the external influencing factors should be 

carried out through the following steps.  

1) Formulate the functions describing the physics of the transition rates.  

2) Identify the external influencing factors    (e.g. temperature, stress).  

3) Define the distribution functions,      representing the uncertainties in the values 

of these factors.  

The algorithm for the simulation of the process of component degradation on the time 

horizon          is sketched in the following pseudo-code.  

Initialize the system by allocating a token onto place i = M (initial state of perfect 

performance), setting the time t = 0 (initial time), and setting the total number of 

replications to     .  

Set     . 

Set    . 

While       ,  

While       , 
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sample a realization of the external influencing factors   from the joint 

probability function     .  

Sample a departure time   from the distribution function       
    . 

Sample a random number   from the uniform distribution in [0, 1]. 

For each outgoing transition (j = 0,1,…,M, j i), 

  Calculate the transition probability          . 

If       
    
           

  

   , 

then activate the transition to state    . 

End If. 

End For. 

Set     .  

Remove the token from place i, and add a new token onto place   . 

End While. 

Set      . 

End While. □ 

Subsequent to the execution of the simulation algorithm, an estimate       

                         of the state probability vector is computed by dividing the total 

number of visits to each state by the total number of simulations   :       

 

    
                     , where                        is the total number of 

visits to state i at time t. The derived distributions      and       
   may have 

complicated mathematical expressions; under these circumstances, the Markov Chain 

MC technique can be used to sample random values [6]. 

 

5. Experiments, and results 

5.1 Case study 

The case study refers to the cracking process in an Alloy 82/182 dissimilar metal weld in 

a primary coolant system of a nuclear power plant [21]. Cracks can grow from the inner 

to the outer diameter of the dissimilar metal welds in one of the three major morphologies: 

axial, radial, and circumferential. The latter two types can lead to the rupture of the 

component. The crack growth has two steps 1) crack initiation, and 2) crack propagation. 
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The radial crack mainly grows outward from the initiation site towards the outer diameter; 

the process can lead to a leak, and potentially to rupture. The crack grows relatively 

evenly around the circumference, potentially leading to a rupture.  

The Alloy 82/182 crack growth rate equations have been studied by various 

organizations including Ringhals AB, Electricité de France, and the Electric Power 

Research Institute. The forms that these equations take are similar, and include a stress 

and Arrhenius temperature dependence  

 

   
  

  
                

                                         (14) 

 

where    (    ) is the crack growth rate in time, a is the crack length (m), t is the time 

since crack initiation (s),   is the crack growth amplitude,         is a constant (equal to 

1.0, and 0.385 for Alloy 182, and Alloy 82 respectively),          is a constant equal to 

1.0, K is the crack tip stress intensity factor (MPa√m),   is the stress intensity exponent, 

Q is the thermal activation energy for crack growth (kJ/mole), R is the universal gas 

constant (kJ/mole-
o
K), T is the absolute operating temperature at crack location (

o
K), and  

     is the absolute reference temperature used to normalize data (
o
K).  

The multi-state physics model, proposed by Unwin et al. [21] to describe the crack 

growth in the case study of interest, is represented in Fig. 3. 

 
Fig. 3. Transition diagram of the multi-state physics model of crack development in 

Alloy 82/182 dissimilar metal welds. 

 

S 

C 

M 

D 

R 

L C:  Circumferential crack 
D:  Radial Crack 
L:   Leak State 
M: Micro Crack 
R:  Ruptured state 
S:  Initial state 

 

   

   

   

   

   

   

   

   

   

   



13 
 

 In [21], the transition rates   ,       , and    are time-dependent, and stochastic, 

whereas the others are assumed constant. 

The transition rate    from initial state S to micro-crack state M is defined as  

 

     
 

 
   

 

 
 
   

                                               (15) 

 

where           is the joint probability density function of   and b, and the integral is 

defined over the domains of   and b.   is a time constant which has been observed to 

have both a stress and temperature dependence; b is a fitting parameter. 

The transition rates   , and   , describing the transitions from micro-crack state M to 

radial-crack state D, and circumferential-crack state C, respectively, have similar 

definitions. Let    denote the threshold length of a radial-crack; then, at time u after 

crack initiation, the probability of the state D is defined as  

 

                      
 

 
                                    (16) 

 

where    is the probability that the crack grows to state D given that the current state is 

M. The analogous probability      that the crack goes to state C at time u after crack 

initiation is defined as  

 

                      
 

 
                                      (17) 

 

where    is the threshold length of a circumferential-crack, and    is the probability that 

the crack goes to state C given that the current state is M.  

The transition rate    (between state M and D) is defined as [32]  

   
        

      
 

      
           

             
 
    

,                                       (18) 

and similarly,  

   
        

      
 

      
           

             
 
    

.                                        (19) 
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By assuming that the crack growth rate    is following a uniform distribution with a 

maximum value of    , i.e.  

       

 

   
            

                            

 ,                                           (20) 

then (10), and (11) are reduced to 

 

    

    

                        
                  

                            

  ,                     (21) 

 

and 

    

    

                        
                  

                            

                      (22) 

 

respectively.  

The transition rate    from state D to state L is defined by the growth in crack size up 

to a threshold    of leakage:  

 

                      
 

 
                                    (23) 

   
        

      
                                                     (24) 

 

where w is the time since the radial crack formation [21]. By assuming the same 

distribution over the crack growth rate, then  

    
 

 
                       

                                
                           (25) 

Transition rates from leak to rupture, and from circumferential crack to rupture, are 

assumed to be constant. These transition rates, together with other constant parameters, 

are presented in Table I below.  

 

Table I 

 Case Study Parameter Definitions, and Values 

b –Weibull shape parameter for crack initiation model 2.0 
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τ – Weibull scale parameter for crack initiation model   4 years 

   – Crack length threshold for radial macro-crack 10 mm 

   – Probability that micro-crack evolves as radial crack   0.009 

    – Maximum credible crack growth rate 9.46 mm/yr 

   – Crack length threshold for circumferential macro-crack 10 mm 

   – Probability that micro-crack evolves as circumferential crack   0.001 

   – Crack length threshold for leak   20 mm 

  - Repair transition rate from micro-crack   1 x10-3 /yr 

  - Repair transition rate from radial macro-crack   2 x10-2 /yr 

  - Repair transition rate from circumferential macro-crack   2 x10-2 /yr 

  - Repair transition rate from leak   8 x10-1 /yr 

   – Leak to rupture transition rate   2x10-2 /yr 

   – Macro-crack to rupture transition rate  1x10-5 /yr 

 

5.2 Results 

The simulation model supported by a Petri net description of the degradation process 

(Fig. 4) is applied to the case study with the parameter settings reported in Table I. In the 

original study [21], the uncertainties of the external influencing factors (e.g. temperature 

and pressure) have not been modeled in the crack initiation process (as shown in (15)), 

and have been implicitly modeled in the crack propagation process by means of a 

uniform distribution of the transition rate     (as shown in(20)).  
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Fig 4. The SPN simulation model of Alloy 82/182 dissimilar metal weld degradation.  

 

The simulation model has been executed          times over a component 

lifetime         years, in line with the original study. To investigate the convergence 

of the simulation model, the     realizations have been subdivided into N = 20 

subsamples of 500,000 each. The sample mean and variance of the estimated state 

probabilities are calculated as  

 

      
 

 
       

 
                                                (26) 

         
 

   
               

  
                                  (27) 

where        is the estimated state probability vector from the k-th subsample. The 

convergence of the state probability values can be observed by the variance in (27), and 

the sequence of sample means on the steadily incremental subsamples  

 

           
 

 
       

 
                                          (28) 

 

where n takes value from 1 to N.  

At t = 80 years, the variances are            ,           ,            ,  

           ,            , and             for ‘initial’, ‘micro-crack’, 

‘circumferential’, ‘radial’, ‘leak’, and ‘rupture’ states, respectively. Similar results are 

found at different time moments. The examples of convergence curves at 80 years are 

presented in Fig. 5. The good stabilization of             is manifested. It is also noted 

that                 . Similar convergence curves are obtained at different time 

moments, but are not presented to save space.   
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Fig 5. Convergence plots of state probabilities at t = 80 years. 

  

For comparison with the state-space enrichment technique proposed in the original 

study of [21], the state probabilities resulting from     simulation runs are shown in Fig. 

6 as functions of time. The results from the state-space enrichment method considering 

different step sizes (e.g. 1 year, 0.5 year, and 0.1 year) are shown in Figs. 7 to 9, 

respectively. The general shapes and trends of the results are similar for the simulation , 

and the state-space enrichment with different steps; in all plots, there is: 1) an early, rapid 

transition from the Initial state to the Micro-crack state; 2) a monotonic increase in the 

probability of the rupture state. 
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Fig 6. State probabilities obtained by simulation. 

 

 

Fig 7. State probabilities obtained by state-space enrichment with step size = 1 year. 

 

 

 

Fig 8. State probabilities obtained by state-space enrichment with step size = 0.5 year 
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Fig 9. State probabilities obtained by state-space enrichment with step size = 0.1 year. 

 

The numerical comparisons on the state probability values at year 80 are reported in 

Table II. As expected, the relative differences (i.e. the differences between the state 

probability values computed by the simulation method minus those obtained with the 

state-space enrichment method, divided by the former) decrease as the step size is 

reduced.  

 
Table II 

Comparison of simulation results with state-space enrichment results (state probability values at year 80) 
 Simulation State-space 

enrichment 

Step size = 

1 year 

Relative 

difference 

State-space 

enrichment 

Step size = 

0.5 year 

Relative 

difference  

State-space 

enrichment 

Step size = 

0.1 year 

Relative 

difference 

Initial state 

probability 
0.0036 0.0033 8.33% 0.0034 5.56% 0.0036 0.00% 

Micro-crack 

probability 
0.9958 0.9963 -0.05% 0.9961 -0.03% 0.9959 -0.01% 

Circumferential 

crack 

probability 

2.72e-4 1.94e-04 28.68% 2.33e-04 14.34% 2.78e-04 -2.21% 

Radial crack 

probability 
7.78e-5 6.38e-05 17.99% 6.97e-05 10.41% 7.66e-05 1.54% 

Leak 

probability 
1.18e-5 8.93e-06 24.32% 1.06e-05 10.17% 1.24e-05 -5.08% 

Rupture state 

probability 
2.11e-4 1.38e-04 34.60% 1.73e-04 18.01% 2.12e-04 

-0.47% 
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All the experiments have been performed in MATLAB on a PC with a 2.1 GH INTEL 

processor, and a 512 MB memory. The average computation time of the simulation 

method is 1,069.9 seconds. The computation times of the state-space enrichment method 

with different time step sizes (e.g. 1 year, 0.5 year, and 0.1 year) are 2.2 seconds, 6.3 

seconds, and 290.2 seconds, respectively. The computation expense of the state-space 

enrichment method increases non-linearly as the time step size decreases. In the current 

experiments, the simulation method is about 3 times slower than the state-space 

enrichment method with the time step size 0.1 year. However, it is expected that the state-

space enrichment method will be more time consuming when the time step size further 

decreases, or more degradation states are considered, or a longer time horizon is 

considered, or any combination of these conditions. This is because such conditions 

involve a large scale sparse state-space enriched matrix of the dimension          

1)×1   2, where  +1 is the total number of degradation states, and     is the time 

step size. Also, the sparse matrix multiplication algorithm has been used in the 

computation process of state-space enrichment method, because the state-space enriched 

matrix is close to the size of the memory when     equals 0.1 year. 

 

5.3 Uncertain external influencing factors 

As explained in Section 4, the SPN-supported simulation framework is able to explicitly 

accommodate the uncertainties in the external influencing factors. To show this ability, as 

an example, we assign truncated normal distributions to the temperature T and stress   

values of the Weibull scale parameter   in (15), which is the rate of the first transition. 

According to [33],    has the following relationship with temperature and stress.  
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Fig 10. Function of scale parameter  . 

Fig. 10 illustrates the surface plot of  , given the range [573.15, 623.15] of T, and the 

range [385, 535] of stress  . These ranges are set to satisfy the maximum limit of  =40. 

The truncated normal distributions are defined as  

     
        

                     
 

     
           

                                 
 

where      denotes the PDF of a normal distribution. Without loss of generality, the 

variance is assumed to be 1 for the normal distributions.  

The simulation results are displayed in Fig. 12, and Fig. 13 for uncertain temperature, 

and uncertain stress, respectively, in terms of mean values of the state probabilities (solid 

lines), together with their 95% confidence intervals (dashed lines). The results in the two 

Figures appear similar, because from Figure 11 it is seen that the factors T and   have a 
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similar impact on the values of  . Additionally, the confidence intervals are larger at 

lower probability values, which imply a larger variance on rare events. 

 

 

Fig 11. SPN simulation accommodating uncertainty in temperature.  

 

 

 

Fig 12. SPN simulation accommodating uncertainty in stress.  

 

Numerical comparisons are reported in Table III and Table IV. Table III gives the 

mean state probability values at year 80, and the relative differences computed as the 

percentage differences of the results obtained by simulation with uncertain factors 

relative to simulation without any uncertain factor. It is observed that both factors have 

significant impacts on the mean probability value of the initial state, as expected. Table 4 

presents the state probability standard deviations averaged over 80 years, and the absolute 
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relative differences.  Both factors have significant impacts on the variability of all state 

probabilities, especially on initial and micro-crack states, implying that the variances in 

the uncertain factors influencing the first transition have propagated to the probability 

estimates of all other states. 

Table III 

Comparison of simulation results w/o uncertain factors (mean state probability values at year 80) 
 Without 

uncertain factors 

Uncertain 

temperature 

Relative 

differences 

Uncertain 

stress 

Relative 

differences 

Initial state probability 0.0036 0.012 -236.17% 0.011 -196.79% 

Micro crack probability 0.9958 0.9873 0.86% 0.9887 0.71% 

Circumferential crack 

probability 
2.72e-4 2.96e-4 -8.82% 3.04e-4 -11.76% 

Radial crack probability 7.78e-5 9.15e-5 -17.61% 8.35e-5 -7.33% 

Leak probability 1.18e-5 1.55e-5 -31.36% 1.35e-5 -14.41% 

Rupture state probability 2.07e-4 2.14e-4 -3.38% 2.15e-4 -3.62% 

 
Table IV Comparisons of simulation results w/o the uncertain factors (state probability standard deviations 

averaged over 80 years) 

 
Without 

uncertain factors 

Uncertain 

temperature 

Absolute 

relative 

differences 

Uncertain 

stress 

Absolute 

relative 

differences 

Initial state probability 1.15e-4 3.82e-4 230.79% 3.96e-4 242.92% 

Micro crack probability 1.32e-4 3.87e-4 193.91% 3.93e-4 198.80% 

Circumferential crack 

probability 
2.72e-5 3.94e-5 45.18% 4.45e-5 63.76% 

Radial crack probability 2.42e-5 4.10e-5 69.63% 4.16e-5 71.93% 

Leak probability 1.09e-5 1.92e-5 77.16% 2.01e-5 84.80% 

Rupture state probability 1.70e-5 2.21e-5 30.18% 2.65e-5 56.13% 

 

 
 

6. Conclusions, and future works 

An SPN-supported simulation framework has been proposed to solve the multi-state 

physics model (MSPM) describing a component degradation process with time-

dependent transition rates, and uncertain external influencing factors. SPN provides a 

flexible tool for representing the dynamics of degradation processes, and the simulation 

solution allows handling time-dependent transition rates and uncertain influencing factors, 

without complications.  

The framework has been applied with success on a nuclear component undergoing 

stress corrosion cracking. The comparison with analytical approximated results has been 

satisfactory. The framework has been shown to be capable of indeed explicitly 

accommodating the uncertainties in the external influencing factors. Thanks to the local 

place and parallelism of Petri Nets, and the flexibility of Monte Carlo simulation, the 
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proposed framework has the potential to model the degradation processes of more 

complex components and systems (e.g. with a larger number of degradation states and 

transitions), which could be difficult to handle with analytical approximations (e.g. state-

space enrichment method).   

 Future research work is envisaged: 1) comparison with the U.S. Nuclear Regulatory 

Commission xLPR program [34]; 2) representation and propagation of uncertainty in the 

external influencing factors when there are insufficient data to assign probabilities (non-

probabilistic approaches, e.g. based on Dempster-Shafer theory, would be useful in this 

respect); 3) extension to more complicated application cases, e.g. including multiple 

competing degradation processes of components and systems, and interdependencies 

among the external factors. 
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