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Abstract. This paper proposes a new image-semantic measure, named
"Semantico-Visual Relatedness of Concepts" (SVRC ), to estimate the
semantic similarity between concepts. The proposed measure incorpo-
rates visual, conceptual and contextual information to provide a measure
which is more meaningful and more representative of image semantics.
We also propose a new methodology to automatically build a semantic
hierarchy suitable for the purpose of image annotation and/or classifica-
tion. The building is based on the previously proposed measure SVRC

and on a new heuristic, named TRUST-ME, to connect concepts with
higher relatedness till the building of the final hierarchy. The built hie-
rarchy explicitly encodes a general to specific concepts relationship and
therefore provides a semantic structure to concepts which facilitates the
semantic interpretation of images. Our experiments showed that the use
of the constructed semantic hierarchies as a hierarchical classification
framework provides a better image annotation.

1 Introduction

Achieving high level semantic interpretation of images is necessary to match
user expectations in image retrieval systems. Effective tools are then required
to allow a precise semantic description of images and allow at the same time
a good interpretation of them. A wide number of approaches have been propo-
sed for automatic image annotation, i.e. the textual description of images, to
address the well-known semantic gap [23] problem. However in most of the pro-
posed approaches the semantics is often limited to its perceptual manifestation,
i.e. by the learning of high-level concepts from low-level features [3, 14]. These
approaches adequately describe the visual content of images but are unable to
extract image semantics as humans can do. They are also faced with the sca-
lability problem when dealing with broad content image databases [16]. The
obtained performance varies significantly according to the concept number and
the targeted data sets as well [13]. This variability may be explained by the
huge intra-concept variability and wide inter-concept similarities on their vi-
sual properties that often lead to uncertain annotations and even contradictory.
Thus, it is clear there is a lack of coincidence between the high-level semantic
concepts and the low-level features, and that semantics is not always correlated
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with visual appearance. Therefore, the only use of machine learning seems to be
insufficient to solve the problem of image annotation.

A new trend to overcome the aforementioned problems is to use semantic hie-
rarchies [2]. Indeed, the use of explicit knowledge such as semantic hierarchies
can help reduce, or even remove this uncertainty by supplying formal frameworks
to argue about the coherence of extracted information from images. Semantic
hierarchies have shown to be very useful to narrow the semantic gap [7]. Three
types of hierarchies have been recently explored for image annotation and clas-
sification: 1) language-based hierarchies: based on textual information (ex. tags,
surrounding context, WordNet, Wikipedia, etc.) [18, 24, 8], 2) visual hierarchies:
based on low-level image features [22, 4, 26], 3) semantic hierarchies: based on
both textual and visual features [15, 9, 25]. Although the two first approaches
have received more attention, they showed a limited success in their general
usage. Indeed, conceptual semantics is often not correlated with perceptual se-
mantics, and is then insufficient to build a good hierarchy for image annotation.
Whereas perceptual semantics cannot lead by itself to have a meaningful seman-
tic hierarchy, as it is hard to interpret in higher levels of abstraction. Therefore,
it seems mandatory to combine the both component of image semantics in order
to build a semantic hierarchy faithful to image application purposes. The use of
semantic hierarchies is then more convenient as they consider both, perceptual
and conceptual semantics.

The rest of this paper is structured as follows: Section 2 reviews some related
work. Section 3 introduces our proposal to build suitable semantic hierarchies
for image annotation. Section 4 reports our experimental results on Pascal VOC
dataset. The paper is concluded in Section 5.

2 Related Work

Several methods [15, 9, 18, 24, 22, 4] have been proposed to build semantic hie-
rarchies dedicated to image annotation. A semantic hierarchy classifier based on
WordNet is proposed in [18]. Their hierarchy is built by extracting the relevant
subgraph of WordNet that may link all concepts. ImageNet is proposed in [8],
which is a large-scale ontology of images built upon the backbone of WordNet.
LSCOM [19] aims to design a taxonomy with a coverage of around 1000 concepts
for broadcast news video retrieval. An Ontology-enriched Semantic Space (OSS)
was built in [24] to ensure globally consistent comparison of semantic similari-
ties. The above approaches can be qualified as language-based hierarchies, as
those hierarchies are built upon textual information. While these hierarchies are
useful to provide a meaningful structure (organization) for concepts, they ignore
visual information which is an important part of image semantics.

Other approaches are based on visual information [22, 4, 26]. An image par-
sing to text description (I2T) framework is proposed in [26], which generates text
descriptions for images and videos. I2T is mainly based on an And-or Graph for
visual knowledge representation. Sivic & al. propose to group visual objects using
a multi-layer hierarchy tree that is based on common visual elements [22]. Bart
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& al. proposed a Bayesian method to organize a collection of images into a tree
shaped hierarchy [4]. A method to automatically build classification taxonomy
in order to increase classification rapidity is proposed in [12]. These hierarchies
serve to provide a visual taxonomy, and a major problem with them is how they
can be interpreted in higher levels of abstraction. Therefore, building meaningful
semantic hierarchies should be done upon both semantic and visual information.

Among approaches for building semantic hierarchies, Li & al. [15] proposed
a method based on visual features and tags to automatically build the "seman-
tivisual" image hierarchy. A Semantic hierarchy based on contextual and visual
similarity is proposed in [9]. Fan & al. [10] proposed an algorithm to integrate
the visual similarity contexts between the images and the semantic similarity
contexts between their tags for topic network generation. Flickr distance is pro-
posed in [25], which is a novel measurement of the relationship between semantic
concepts in visual domain. A visual concept network (VCNet) based on Fli-
ckr distance is also proposed [25]. Semantic hierarchies have great potential to
improve image annotation, particularly through their explicit representation of
concepts relationships that may help to understand image semantics.

2.1 Discussion

Many approaches for hierarchical image annotation use WordNet as a hierarchy
of concepts [18, 8]. However, WordNet is not very appropriate to model image se-
mantics. Concepts organization in WordNet follows a psycholinguistic structure,
which may be useful for reasoning about concepts and understand their mea-
ning, but is limited and inefficient to reason about image context or its content.
Indeed, distances between related concepts in WordNet do not necessarily re-
flect an appropriate semantic measure for reasoning about images, i.e. distances
between concepts is not proportional to their semantic relatedness with respect
to image domain. For example, according to the shortest path in WordNet the
semantic relatedness of "shark" and "whale" is 11 (nodes), and of "man" and
"whale" is 7. This is meant that concept "whale" is closer to "human" than to
"shark". This is coherent from a biological point of view because "whale" and
"human" are mammal while "shark" is not. However, in image domain it is more
accurate to have higher similarity between "shark" and "whale" as they live in
the same environment, share many visual features, and it is more common that
they co-appear in a photo, unlike with humans. Then, an appropriate semantic
hierarchy should represent this information or allow it to be deducted to help
understand image semantics.

3 Building of the Hierarchy

Based on the previous discussion, we define the following assumptions underlying
our approach: A suitable semantic hierarchy for image annotation should: 1)
model images context (as defined in the previous section), 2) allow grouping
visually similar concepts in order to obtain better performance of classifiers, 3)
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Fig. 1. The SVRC is based on visual, conceptual and contextual similarities.

reflect image semantics, i.e. the organization of concepts into the hierarchy and
their semantic relatedness reflect image semantics.

Following the above assumptions, we propose in this paper a new method for
building appropriate semantic hierarchies to images annotation. Our approach is
based on a new measure to estimate the semantic relatedness between concepts,
which is more faithful to image semantics since it is based on its different mo-
dalities. This measure, named SVRC, is based on 1) a visual similarity which
represents the visual correspondence between concepts, 2) a conceptual similarity
which defines a relatedness measure between target concepts, based on concepts
definition in WordNet, and 3) a contextual similarity which measures the distri-
butional similarity between each pair of concepts (cf. Fig.1). SVRC is then used
in TRUST-ME, a set of heuristic rules that allow deciding the likelihood of the
semantic relatedness between concepts, and help building the hierarchy.

Given a set of pairs image/annotation, where each annotation describes a set
of concepts associated with an image, our approach allows to automatically build
a semantic hierarchy suitable for image annotation. Formally, we consider I =<

i1, i2, · · · , iL > all images of a considered database, and C =< c1, c2, · · · , cN >

the annotation vocabulary of these images, i.e. the set of concepts associated with
these images. The approach we propose consists in identifying M new concepts
that link all the concepts of C in a hierarchical structure that best represents
image semantics.

3.1 Visual Similarity

Let xv
i be any visual representation of an image i (a visual features vector), we

learn for each concept cj a classifier that can associate this concept with its
visual features. For this, we use N binary Support Vector Machines (SVM) [6]
(one-versus-all) with a decision function G(xv):

G(xv) =
∑

k

αkykK(xv
k, x

v) + b (1)
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where K(xv
i , x

v) is the value of a kernel function for the training sample xv
i and

the test sample xv, yi ∈ {1,−1} the class label of xv
i , αi the learned weight of

the training sample xv
i , and b is a learned threshold parameter. Notice that the

training samples xv
i with weight αi > 0 are the support vectors.

After several tests on the training sample, we decided to use a radial basis
function kernel:

K(x, y) = exp
(‖x− y‖2

σ2

)
(2)

Now, given these N trained SVMs where inputs are images visual features
and outputs are concepts (image classes), we want to define a centroid ϑ(ci) for
each concept class ci that best represent it. These centroids should then minimize
the sum of squares within each set Si:

argmin
S

N∑

i=1

∑

xv
j
∈Si

‖xv
j − µi‖

2 (3)

where Si is the set of support vectors of class ci, S = {S1, S2, · · · , SN }, and µi

is the mean of points in Si.
The objective being to estimate a distance between these classes in order

to assess their visual similarities, we compute the centroid ϑ(ci) of each visual
concept ci using:

ϑ(ci) =
1

|Si|

∑

xj∈Si

xv
j (4)

The visual similarity between two concepts ci and cj , is then inversely pro-
portional to the distance between their visual features ϑ(ci) and ϑ(cj):

ϕ(ci, cj) =
1

1 + d(ϑ(ci), ϑ(cj))
(5)

where d(ϑ(ci), ϑ(cj)) is the Euclidean distance between ϑ(ci) and ϑ(cj).

3.2 Conceptual Similarity

Conceptual similarity reflects the semantic relatedness between two concepts
from a linguistic and a taxonomic point of view. Several conceptual similarity
measures have been proposed [5, 21, 1]. Most of them are based on a lexical
resource, such as WordNet [11]. A first family of approaches is based on the
structure of this external resource (often used as a semantic network or a direc-
ted graph), and the similarity between concepts is computed according to the
distances of the paths connecting them in this structure [5]. However, as afo-
rementioned, the structure of these resources does not necessarily reflect image
semantics, and therefore such measures does not seem suited to our problem. An
alternative approach to measure the semantic relatedness between concepts is to
use their provided definition. In the WordNet case, these definitions are known
as the glosses and are provided by the synsets associated to each concept. For
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example, Banerjee and Pedersen [1] proposed a measure of semantic relatedness
between concepts that is based on the number of shared words (overlaps) in their
definitions (glosses).

In this work we used the gloss vector relatedness measure proposed by [20],
in which they suggest to exploit "second order" co-occurrence vector of glosses
rather than matching words that co-occur in it. Specifically, in a first step a
word space of size P is built by taking all the significant words used to define all
synsets of WordNet. Thereby, each concept ci is represented by a context vector
−→w ci of size P, where each nth element of this vector represents the number of
occurrences of nth word in the word space in the gloss of ci. The semantic rela-
tedness of two concept ci and cj is therefore measured using the cosine similarity
between −→w ci and −→w cj :

η(ci, cj) =
−→w ci ·

−→w cj

|−→w ci ||
−→w cj |

(6)

Some concepts definitions in WordNet are very concise and thus make the
measure unreliable. Consequently, [20] proposed extending the glosses of concepts
with the glosses of adjacent concepts (located in their immediate neighborhood).
Hence, for each concept ci the set Ψci is defined as all the adjacent glosses connec-
ted to ci (Ψci={gloss(ci), gloss(hyponyms(ci)), gloss(meronyms(ci)), etc.}). Then
each element x (gloss) of Ψci is represented by −→w x as explained above. The si-
milarity measure between two concepts ci and cj is then defined as the sum of
the individual cosines of the corresponding gloss vectors:

θ(ci, cj) =
1

|Ψci |

∑

x∈Ψci
,y∈Ψcj

−→w x · −→w y

|−→w x||
−→w y|

, where|Ψci | = |Ψcj |. (7)

Finally, each concept in WordNet may match several senses (synsets) that
differ from each other in their position in the hierarchy and their definition. A
disambiguation step is then necessary to identify the good synset. For example,
the similarity between "Mouse" (Animal) and "Keyboard" (device) differs widely
from the one of "Mouse" (device) and "Keyboard" (device). Therefore, we first
compute the conceptual similarity between the different senses (synset) of ci
and cj . The maximum value of similarity is then used to identify the most likely
meaning of these two concepts, i.e. disambiguate ci and cj . Thus, the conceptual
similarity is calculated as following:

π(ci, cj) = argmax
δi∈s(ci),δj∈s(cj)

θ(δi, δj) (8)

where s(cx) is "all synsets that can be associated to the meanings of cx".

3.3 Contextual Similarity

It is intuitively clear that if two concepts are similar or related, it is likely that
their role in the world will be similar, and thus their context of occurrence will
be equivalent (i.e. they tend to occur in similar contexts, for some definition of
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context). The information related to the context of appearance of concepts, cal-
led contextual, is used to connect concepts that often appear together in images
although semantically distant from the taxonomic point of view. Moreover, this
contextual information can also help to infer higher-level knowledge from images.
For example, if a photo contains "Sea" and "Sand", it is likely that the scene
depicted in this photo is the one of beach. It is therefore important to mea-
sure the contextual similarity between concepts. However, unlike the visual and
the conceptual similarity, this one is a "corpus-dependent" measure, and more
precisely depends on the distribution of concepts in the corpus.

In our approach, we define the contextual similarity between two concepts ci
and cj as the Pointwise Mutual Information (PMI) ρ(ci, cj):

ρ(ci, cj) = log
P (ci, cj)

P (ci)P (cj)
(9)

where: P (ci) is the probability of occurrence of ci, and P (ci, cj) is the joint
probability of ci and cj . These probabilities are estimated by computing the
frequency of occurrence and cooccurrence of concepts ci and cj in the database.

Given N the total number of concepts in the database, L the total number
of images, ni the number of images annotated by ci (occurrence frequency of ci)
and nij the number of images co-annotated by ci et cj , the above probabilities

can be estimated by: P̂ (ci) =
ni

L , ̂P (ci, cj) =
nij

L .

⇒ ρ(ci, cj) = log
L ∗ nij

ni ∗ nj

(10)

ρ(ci, cj) quantifies the amount of information shared between the two concepts
ci and cj . Thus, if ci and cj are independent concepts, then P (ci, cj) = P (ci) ·
P (cj) and therefore ρ(ci, cj) = log 1 = 0. ρ(ci, cj) can be negative if si ci et cj
are negatively correlated. Otherwise ρ(ci, cj) > 0 and quantifies the degree of
dependence between these two concepts. In this work, we only want to measure
the positive dependence between concepts and therefore we set negative values
of ρ(ci, cj) to 0. Finally, to normalize the contextual similarity between two
concepts ci and cj into [0,1], we compute it in our approach by:

γ(ci, cj) =
ρ(ci, cj)

− log[max(P (ci), P (cj))]
(11)

3.4 Semantico-Visual Relatedness of Concepts (SVRC )

For two given concepts ci and cj , their similarity measures: visual ϕ(ci, cj),
conceptual π(ci, cj) and contextual γ(ci, cj) are first normalized into the same
interval using the Min-Max Normalization. Then, the Semantico-Visual Rela-
tedness φ(ci, cj) of these concepts ci and cj is defined as:

φ(ci, cj) = ω1 · ϕ(ci, cj) + ω2 · π(ci, cj) + ω3 · γ(ci, cj) ,
3∑

i=1

ωi = 1 (12)
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The choice of weights ωi is very important. According to the target appli-
cation, some would prefer to build a domain-specific hierarchy (that best repre-
sents a specific-domain or corpus), and can therefore assign a higher weight to
the contextual similarity (ω3 ր). Others would be conducted to build a generic
hierarchy, and will therefore assign a higher weight to the conceptual similarity
(ω2 ր). However if the purpose of the hierarchy is rather to build a hierarchical
framework to image classification, it may be advantageous to assign a higher
weight to the visual similarity (ω1 ր).

3.5 Heuristic Rules for Hierarchy Building

Once we have estimated the semantic relatedness between each pair of concepts,
it is important to regroup them in a more comprehensive hierarchy despite the
uncertainty introduced by semantic similarity measurements. In the following
we propose a heuristic named TRUST-ME, that allows to infer Hypernym re-
lationships between concepts, and to bring together these various concepts in a
hierarchical structure.

Let us define the following functions to understand the reasoning rules we
used for the building of our hierarchy:

– Closest(ci) returns the closest concept to ci according to the SVRC measure:

Closest(ci) = argmax
ck∈C\{ci}

φ(ci, ck) (13)

– LCS(ci, cj) allows to find the Least Common Subsumer of ci and cj in Word-
Net:

LCS(ci, cj) = argmin
cl∈{H(ci)∩H(cj)}

len(cl, root) (14)

where H(ci) allows to find all of hypernyms of ci in WordNet, root is the
root node of WordNet and len(cx, root) returns the length of the shortest
path in WordNet between cx and root.

– Hits3(ci) returns the 3 closest concepts to ci within the meaning of Closest(ci).

Basically TRUST-ME consists of three rules which are based on the SVRC
measure and on reasoning about the Least Common Subsumer (LCS) to select
concepts to be connected to each other. These rules are illustrated and executed
in the order described in Fig.2. First rule checks whether a concept ci is classi-
fied as the closest relative to more than one concept ((Closest(cj) = ci), ∀j ∈
{1, 2, · · · }). If so and if these concepts {cj} are reciprocal in Hits3(ci), then ac-
cording to their LCS they will be connected either directly to their LCS or in a
tow level structure as illustrated in Fig.2(a). In the second, if (Closest(ci) = cj)
and (Closest(cj) = ci) (can also be written as Closest(Closest(ci)) = ci) then
ci and cj are actually related and are connected to their LCS. The third rule
covers the case when (Closest(ci) = cj) and (Closest(cj) = ck) - cf. Fig.2(b).

The building of the hierarchy is bottom-up (starts from leaf concepts) and
uses an iterative algorithm until it reaches the root node. Given a set of tags
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Ci Ck 

LCS(Ci, Cj) 

if (Closest(cj) = ci) AND (Closest(ck) = ci) then 

Cj 

Ci 

Ck 

LCS(Cj, Ck) 

Cj 

LCS(Ci, Cjk) 

if LCS(ci,cj)=H(LCS(cj, ck)) then if LCS(ci,cj) = LCS(cj, ck) then 

if cj, ck  Hits3(ci) then 

Build Build 

(a) 1
stRule.

Ci Ck 

LCS(Ci, Cj) 

if (Closest(ci) = cj) AND (Closest(cj) = ck) then 

Cj 

Ci 

Ck 

LCS(Cj, Ck) 

Cj 

LCS(Ci, Cjk) 

if LCS(ci,cj)= H(LCS(cj, ck)) then if LCS(ci,cj) = LCS(cj, ck) then 

if (ci  Hits3(cj)) AND (cj  Hits3(ck)) then 

Build Build 

(b) 3
rd Rule.

Ci Cj 

LCS(Ci,Cj) 

if Closest(Closest(ci))==ci then 

Build 

(c) 2
nd Rule.

Fig. 2. Rules in TRUST-Me allowing to infer the relationship between the different
concepts. Preconditions (in red) and actions (in black).

associated with images in a dataset, our method compute the SVRC φ(ci, cj)
between all pairs of concepts, then links most related concepts to each other
while respecting the defined rules in TRUST-ME. Thus, we obtain a new set of
concepts in a higher level resulted by the linked concepts in the lower level. We
iterate the process until all concepts are linked to a root node. Fig.3 illustrates
the built hierarchy on Pascal VOC dataset.

4 Experimental Result

As part of this work, we evaluate our semantic hierarchy by comparing the
performance of a flat image classification versus a hierarchical based one. Pascal
VOC’2010 dataset (11 321 images, 20 concepts) is used for building the hierarchy
and evaluating the classification.

4.1 Visual Representation of Images

To compute the visual similarity of concepts, we used in our approach the Bag-of-
Features (BoF) model, also known as bag-of-visual words. The used BoF model
is built as following: feature detection using Lowe’s DoG Detector [17], feature
description using SIFT descriptor [17] and codebook generation. The generated
codebook is a set of features assumed to be representative of all images features.
Given the collection of detected patches from the training images of all categories,
we generate a codebook of size D = 1000 by performing k-means algorithm.
Thus, each patch in an image is mapped to the most similar visual word in the
codebook through a KD-Tree. Each image is then represented by a histogram of
D visual words, where each bin in the histogram correspond to the occurrence
number of a visual word in that image.
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4.2 Weighting

As this paper aims to build a hierarchy suitable for image classification/annotation,
we set the weighting factors in an experimental way as follows: ω1 = 0.4,
ω2 = 0.3, and ω3 = 0.3. Our experimentations on the impact of weights (ωi)
showed also that the visual similarity is more representative of concepts simila-
rity, as it will be illustrated with the produced hierarchies in Fig.3.

4.3 Evaluation

To evaluate our approach, we used 50% of VOC images for learning concepts
and the others for testing. Each image may belong to one or more of the 20 exis-
ting classes. For the flat classification we used N SVM one-against-all, where
the inputs are the BoF images representations and outputs are the desired SVM
responses for each image (1 or -1) - for details cf. Section 3.1. However Pascal
VOC dataset is unbalanced, i.e. many concepts are represented by few hundred
of images among the 11321 images in the database (much more negative data
than the positive ones for many concepts). To overcome this problem we used
cross-validation, taking at each fold as many positive as negative images. Hierar-
chical classification is made by training a set of (N+M) hierarchical classifiers
consistent with the structure of the hierarchy in Fig.3. M is the number of new
concepts created during the building of the hierarchy. For training the classifier
of each concept in the hierarchy, we took all images of children nodes (of a given

Photo

Abstraction Organism

Sofa Dining_table Chair

Pot_plantBottle Tv_monitor

Car Bicycle Motorbike

Train Bus Bird

Sheep Horse CowBoat Aeroplane

Person

Cat Dog

Carnivore

Instrumentality Whole Conveyance

Furniture Craft Vehicle Wheeled_vehicle

Vertebrate

Bovid

Fig. 3. The semantic hierarchy built on Pascal VOC’2010 dataset. Green nodes are
original concepts, and the red one is the root of the produced hierarchy.
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Fig. 4. Average precision of flat and hierarchical classification on Pascal VOC concepts.
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(a) Concept Person. (b) Concept Tv_monitor.

Fig. 5. Precision/recall curves for hierarchical (green) and flat (in red) classification
on concepts "Person" and "TV_Monitor".

concept) as positive and all images of children nodes of its immediate ancestor as
negative. For example, to train a classifier for "Carnivore" all images of "Dog"
and "Cat" are taken as positive while images of "Bird", "Sheep", "Horse" and
"Cow" as negative. Thus, each classifier is trained to distinguish one class from
others in the same category. For testing the hierarchical classification, a given
image can take one (or more) path in the hierarchy based on classifiers responses,
and starting from the root node until reaching a leaf node. Results are evaluated
with the recall/precision curves and the average precision score.

Fig.4 compares the performance of our semantic hierarchic classifier with the
performance of a flat classification. Our approach performs a better classification
than the flat one, with a mean improvement of +8.4%. Using half of the training
images from the VOC challenge (we have used the validation set for testing)
and including the images marked as difficult, hierarchical classification achieves
an average precision of 28.2% when the flat one achieves 19.8%. Fig.5 shows the
recall/precision curves for concepts "Person" and "Tv_Monitor" using hierarchi-
cal and flat classification. This comparison shows that hierarchical classification
has the best performance at all levels of recall.

5 Conclusion

This paper proposes a new approach to automatically build a suitable semantic
hierarchy for image annotation. Our approach is based on a new measure of
semantic relatedness, called SVRC, that takes into account the visual similarity,
the conceptual and the contextual ones. SVRC allows estimating the semantico-
visual relatedness of concepts. A new heuristic, TRUST-ME, is also proposed
for reasoning about concepts relatedness, and to link together concepts that
are semantically related in a semantic hierarchy. Our experiments showed that
the built semantic hierarchy improves significantly the classification performance
on Pascal VOC dataset. Our future research will concern the evaluation of our
approach on larger datasets (MirFlicker and ImageNet), and the assessment of
our hierarchy in terms of structure and contribution of knowledge.
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