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Résumé 
 
Nous illustrons un cadre pour la simulation de processus de dégradation des composants de systèmes énergétiques. Ce cadre  
s'articule autour d'une multi-state représentation des processus. La physique qui régissent les processus est capturée dans les 
taux de transition régissant le random-walk à travers les états dégradation. Le cadre de calcul repose sur une représentation de 
la dynamique du processus par les stochastic Petri nets, appuyés par des Bayesian networks pour capturée l'influence de 
facteurs externes qui sont incertains et interdépendants. 
 

Abstract 
 
We illustrate a framework for simulating degradation processes in components of energy systems. The logical framework 
revolves around a multi-state representation of the processes. The physics governing the processes is captured in the transition 
rates governing the random walk across the degradation states. The computational framework relies on a representation of the 
process dynamics by stochastic Petri nets, augmented by Bayesian networks to capture the influence of interdependent 
uncertain external factors.  
 

 
 

Acronyms 

BN  Bayesian network 
CDF  Cumulative distribution function 
CPT  Conditional probability table 
CTMC  Continuous time Markov chain 
DTMC  Discrete time Markov chain 
MC  Monte Carlo 
MSM   Multi-state model 
MSPM  Multi-state physics model 
NHCTMM Non-homogenous continuous time Markov model 
PDF  Probability density function 
PN  Petri-net 
SPN  Stochastic Petri net 

 
Notations 

   The vector of component degradation states 
    Time 
      The discrete function representing the stochastic degradation process, which takes values from   

     The total number of component degradation states 
      The vector of component state probability at time t 
           The transition rate from state i to state j at time t, given the realizations of the uncertain external influencing 

factors   
   The vector of uncertain external influencing factors 
    The total number of transitions among the degradation states 
I  The total number of influencing factors 

       Probability density function of   

  
     Place i of the Petri nets 

  
     Transition j of the Petri nets  

      The holding time at state i  
             Cumulative distribution function of departure time   from state i, given    and   
            The transition probability from state i to state j at time t given   



 
 

Introduction 
 

Most components and systems degrade over time before they are completely failed or exhausted. The component degradation 
processes have been intensively studied in the reliability engineering community (Elsayed and Liao, 2004, Lawless and 
Crowder, 2004, Gebraeel et al., 2009, Zio and Zoia, 2009). In general, the degradation models can be classified into analytical 
models (Elsayed and Liao, 2004, Lawless and Crowder, 2004, Gebraeel et al., 2009, Chryssaphinou et al., 2011) and simulation 
models (Hosseini et al., 2000, Barata et al., 2002, Zio and Zoia, 2009). The analytical degradation models can be further 
classified into the following three groups: 
 

- Statistical models of time to failure (e.g. lifetime distribution (Gebraeel et al., 2009)). 

- Models describing the evolution of a measurable quantity indicating time-dependent degradation, and failure upon 

reaching a threshold value (e.g. Brownian motion (Elsayed and Liao, 2004) and gamma process (Lawless and 

Crowder, 2004)). 

- Multi-state models of degradation (Chryssaphinou et al., 2011). 

Multi-state models (MSM) (Kuo and Zuo, 2003) are frequently applied for component degradation process modeling, since they 
fit practically to component aging processes in real life situations when there is a range of levels from perfect functioning to 
complete failure. To model the dynamics of the degradation processes, Markov (Chana and Asgarpoor, 2006) and semi-Markov 
models (Kim and Makis, 2009) have been used, whose transition rates need to be estimated from the field data. In practice, it 
can be difficult or even impossible to collect sufficient, relevant data especially for highly reliable devices like those employed in 
the nuclear industry. A novel approach based on multi-state physics modeling (MSPM) has been proposed (Unwin et al., 2011), 
in which the transition rates are described by physics functions of influencing factors rather than estimated from service data. 
The resulting model can be non-Markovian if the transition rates are time-dependent and uncertain.  
 
MSPM is powerful when the physics functions are provided. Due to limited information, in some real world applications the 
relationships between transition rates and the influencing factors can only be estimated by expert judgments with certain 
degrees of uncertainties. Therefore, it is necessary to establish an effective methodology capable for handling information of 
different nature, e.g. statistical data, physical functions and expert judgments, with the related uncertainty.  
 
In this work, we propose an integrated framework for modeling stochastic degradation processes in components of energy 
systems, which combines stochastic Petri nets (SPNs) for describing the dynamic transition process, and Bayesian networks 
(BNs) for representing the uncertain influencing factors and the possible interdependencies among them. A Monte Carlo (MC) 
simulation algorithm is proposed to realize the integration and compute the state probability distributions. The rest of the paper 
is organized as follows. Section 2 introduces SPNs and BNs. Section 3 presents the integrated framework and the detailed MC 
simulation procedures of the integrated model. In Section 4, the real-world case study from (Unwin et al., 2011) is used as an 
application. Section 5 concludes the work and points out possible future extensions. 
 
 

Stochastic Petri Nets and Bayesian Networks  
 
 
2.1 Stochastic Petri nets 
 
A Petri net (PN) is a bipartite directed graph with two types of nodes in which abstract objects (tokens), drawn as bold-faced 

dots, are moved, created or diminished (Petri, 1966). The two types of nodes are: places (states)   
           , which are 

circular and usually denote the states of the system being modeled, and transitions   
           , which are bars and denote 

the transitions corresponding to actions or events that result to a state change. Places are linked only to transitions using 
directed arcs    

    
  , and vice versa. It is possible for a place to have multiple arcs to or from the transition, which can be 

condensed down to a single arc with a weight or multiplicity denoted by a slash through the arc with a number next to it. If there 
is no slash, the weight is usually assumed to be 1 (it is also the default weight value). 
 

The tokens, which represent objects in the model, are stored in places. The transition   
   is enabled only if the weight of each 

incoming arc is equal to or less than the number of tokens at the corresponding input place. In original PNs, the transitions are 
assumed to be instantaneous. The stochastic Petri nets (SPNs) introduce delays of a transition which can be instantaneous, 
deterministically time-delayed, or randomly time-delayed dependent on a pre-defined probability distribution. Once the time 
period has passed and the transition remains enabled, the switching will take place. The switching will destroy the number of 
tokens in each input place corresponding to the weight of the relevant incoming arcs and create the number of tokens in each 
output place corresponding to the weights of the relevant outgoing arcs. An example of enabled transition switching is illustrated 
in Fig. 1. 
 

 

Figure 1. Basics of Petri nets: transition enabling and switching. 
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The state corresponding to a PN is called a marking and represents the number of tokens in each place. The initial marking 
represents the initial state. Several transitions can be enabled in a marking and any successful switching of transitions leads to 
a new marking. The SPN is often used as a modeling preprocessor (or representation tool): it can be internally converted to a 
continuous time Markov chain (CTMC) for solution when the time delay at each transition follows an exponential distribution 
(Trivedi, 2002); the Monte Carlo (MC) simulation is used to solve the SPN directly when the use of arbitrary time delay 
distributions is required (Dutuit et al., 1997). For the MSPM formulation embraced in this study, MC simulation is used to solve 
the SPN. 
 
2.2 Bayesian networks 
 
Bayesian networks (BNs) have become a standard tool for uncertainty modeling in reliability engineering and risk analysis 
research. The BN is a directed acyclic graph where the nodes represent the random variables, and the edges represent the 
dependencies or the cause-effect relationships among the variables. A BN represents the probability density function of a set of 

I random variables (or uncertain physical factors in MSPM)             by specifying a set of conditional independence 
statements together with a set of conditional probability functions (CPFs). The CPFs are provided in the conditional probability 
table (CPT). 
 

 
Figure 2.  An example BN over the nodes                 . 

 
 
Each variable (or node) can be described by the probability density function (PDF) of itself given its parents in the graph, i.e. 

            , where        is the set of the parent nodes of   . Given the independency relations in the graph G, the 
joint probability density function of the set of random variables   can be written as a product of the individual density functions 
as: 

 

                  
 
                                                                                   {1} 

 

where I is the total number of physical factors.  

 
 

The Integrated Simulation Model for Component Degradation 
 
3.1 The integration of stochastic Petri nets and Bayesian networks 
 
The MC simulation of SPN models provides the flexibility to describe arbitrary firing delays. Give the general form of the 
transition rate  
 

                 
                       

  
                                                                  {2} 

 

where      is a discrete function representing the stochastic degradation process and taking values from the state space  , the 
total rate of departure from state i is: 
 

                   
   
   

                                                                              {3} 

 
By the deductions presented in our paper (Li et al., 2012), the CDF of departure time   given that it is at state i at time    is 
written as: 
 

      
          

                        
          

                                            {4} 

 

Given    and {4}, the departure time t can be sampled through direct inversion sampling, acceptance-rejection sampling, and 
other sampling techniques (Rubinstein and Kroese, 2009). Following the departure, the marginal transition probabilities to any 
other state              are calculated as: 
 

   

   

      

   



         
         

       
                                                                                 {5} 

 

and a uniformly distributed random number U is sampled in the interval [0,1]: if         
    
              

  

   , then the 

transition to state    is activated and occurs at   units of time. After time          a new token will appear at place    and the 
token at place i is removed.  
 
A graphical sketch of the integration of SPN and BN is given in Fig .3. The transition and departure rates are dependent on the 
values of   which are random parameters whose distributions are described by Bayesian network models: 

                  
 
   , where        is the set of the parent nodes of    and  I is the total number of physical factors. 

 

 

Figure 3. Sketch of the integrated model 
 

 
3.2 The simulation procedure for the integrated Stochastic Petri nets and Bayesian networks 
 
The detailed simulation procedures of the integrated model are presented in this Section. Prior to the simulation procedures, the 
Bayesian network needs to be built through the following steps: 1) formulate the expressions of the transition rates in terms of 

probability distributions, physical functions or expert knowledge; 2) identify the influencing factors    (e.g. temperature, stress); 
3) associate these influencing factors with proper distribution functions,      ; 4) identify the casual relationships among these 
factors and construct the Bayesian network. 
 
The algorithm for the simulation of the process of component degradation on a time horizon          is given in the following 
pseudo-code: 

 
Initialize the system by allocating a token onto place i = M (initial state of perfect performance) and setting the time      (initial 
time)  
While        

Sample a realization of the physics factors   from the distribution function      
Sample a departure time   from the distribution function       

     

Sample a random number   from the uniform distribution in [0, 1] 
For each outgoing transition (j = 0,1,…,M, j≠i) 

 Calculate the transition probability           

If          
    
              

  

    

Then activate the transition to state     
End If 

End For 

Set       
Remove the token from place i and add a new token onto place    

End While 
 

It is noted that the derived distributions      and       
    , may have complicated mathematical expressions; under these 

circumstances, the Markov Chain MC technique can be used to sample random values from them (Zio and Zoia, 2009). 
 
 

Case Study and Results 
 
 
4.1 Case study 
 

SPN 

 

 

 

 

 

BN 

 

 

 

 

 

    

   

      

    
State (place) i 

State (place)    



The case study refers to the cracking process in an Alloy 82/182 dissimilar metal weld in a primary coolant system of a nuclear 
power plant (Unwin et al., 2011). Cracks can grow from the inner to the outer diameter of the dissimilar metal welds in one of 
the three major morphologies: axial, radial, and circumferential. The latter two types can lead to the rupture of the component. 
The crack growth has two steps (1) crack initiation, (2) crack propagation. The radial crack mainly grows outward from the 
initiation site towards the outer diameter; the process can lead to a leak and potentially to rupture. The circumferential crack 
grows relatively evenly around the circumference, potentially leading to a rupture. The transition diagram of the crack growth 
process is given in Fig. 4. The detailed information about the definitions of the transition rates can be found in (Unwin et al., 

2011). It is noted that in their formulation, the transition rates   ,       and    are time-dependent. 
 

 
Figure 4. Markov state transition diagram the multi-state physics model of the crack growth process in Alloy 82/182 dissimilar 

metal weld 
 
 
 
4.2 Results   
 
In this Section, the PN simulation model is first applied to the case study with the parameter settings reported as in (Unwin et 
al., 2011). It is noted that in the original study, the uncertainties of the external influencing factors (e.g. temperature and 
pressure) have not been modeled in the crack initiation process and have been inexplicitly modeled in the crack propagation 

process by means of a uniform distribution of the transition rate    . Our simulation model has been executed          times 
over a component lifetime         years, in line with the original study. To investigate the convergence of the simulation 
model, the     realizations have been subdivided into N = 20 subsamples of 50000 each. The sample mean and variance of 
the estimated state probabilities are calculated. At t = 80 years, the variances are            ,           ,            ,  

           ,            , and             for ‘initial’, ‘micro-crack’, ‘circumferential’, ‘radial’, ‘leak’, and ‘rupture’ states, 
respectively. For the comparison with the original study, the numerical results on the state probability values at year 80 are 
reported in Table 1. In the original study (Unwin et al., 2011), the state-space enrichment approach has been used upon 
discretization of the component lifetime into equally sized time steps, during each of which the transition rate remains constant. 
Then, the component degradation process is converted into a discrete time Markov chain (DTMC) residing in a largely enriched 
state space described by a tuple          , where    is the vector of discretized holding times at each state. The differences 
between the simulation and state-space enrichment method decrease as the step size in the latter is reduced. This confirms 
that the original method is sensitive to the step size, as expected. Both methods are implemented in the MATLAB software 
package. 

 
Table 1. Comparison of simulation results with results from the original method (state probability values at year 80) 

 Simulation state-space 
enrichment method  
Time step size = 1 
year 

state-space 
enrichment method  
Time step size = 
0.5 year 

state-space 
enrichment method  
Time step size = 0.1 
year 

Initial state 
probability 

0.0036 0.0033 0.0034 0.0036 

Micro crack 
probability 

0.9958 0.9963 0.9961 0.9959 

Circumferential 
crack 
probability 

2.72e-4 1.94e-04 2.33e-04 2.78e-04 

Radial crack 
probability 

7.78e-5 6.38e-05 6.97e-05 7.66e-05 

Leak probability 1.18e-5 8.93e-06 1.06e-05 1.24e-05 

Rupture state 
probability 

2.07e-4 1.38e-04 1.73e-04 2.12e-04 

 
 
As explained in Section 3, the integrated simulation framework is able to explicitly accommodate the uncertainties in the external 
influencing factors (it is noted that due to the limitation of data, the interdependencies in the BN are not considered in this case 
study). To show this, as example we assign truncated normal distributions to the temperature T and stress   values of the 

Weibull scale parameter   in the transition rate    (from initial state S to micro-crack state M) defined as: 
 

S 

C 

M 

D 

R 

L 

C:  Circumferential crack 

D:  Radial Crack 

L:   Leak State 
M: Micro Crack 

R:  Ruptured state 

S:  Initial state 
 

   

   

   

   

   

   

   

   

   

   



     
 

 
   

 

 
 
   

                                                                            {6} 

 
where           is the joint probability density function of   and b, and the integral is defined over the domains of   and b.   is a 
time constant which has been observed to have both a stress and temperature dependence; b is a fitting parameter. According 
to (Aly, 2009),    has the following relationship with temperature and stress:  
 

                   
   

            
                                                            {7} 

 
 

 
Figure 5. Function of scale parameter   

 
Fig. 5 illustrates the surface plot of  , given the range [573.15, 623.15] of T and the range [385, 535] of stress  . These ranges 
are set to satisfy the maximum limit of  =40. The truncated normal distributions are defined as follows: 
 

     
        

                     
                                                                             {8} 

     
           

                                 
                                                                {9} 

 
where      denotes the PDF of a normal distribution. Without loss of generality, the variance is assumed to be 1 for the normal 
distributions.  
 
The simulation results are displayed in Figures 6 and 7 for uncertain temperature and uncertain stress, respectively, in terms of 
mean values of the state probabilities (solid lines) together with their 95% confidence intervals (dashed lines). The results in the 
two Figures appear similar, since from Figure 5 it is seen that the factors T and   have similar impact on the values of  . 
Additionally, the confidence intervals are larger at lower probability values, which imply a larger variance on rare events. 
 



 
Figure 6. Simulation accommodating uncertainty in temperature 

 

 
Figure 7. Simulation accommodating uncertainty in stress 

 
 
 

Conclusion 
 
The proposed modeling framework has been applied with success to describe the degradation process of a nuclear component. 
The transition rates are influenced by two independent environmental factors (e.g. temperature and stress), and the 
relationships are described by a set of physical functions. The comparison with analytical approximated results is satisfactory 
and the framework is indeed capable of explicitly accommodating the uncertainties in the environmental factors. Future research 
work is envisaged on the following aspects: 1) involve other types of influencing factors, e.g. failures of other equipment, bad 
maintenance quality, environment, etc; 2) use expert judgments to determine the relationships between these factors and the 
transition rates. 
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