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In this paper, we present an online identification method to the problem of parameter estimation from binary observations. A recursive identification algorithm with low-storage requirements and computational complexity is derived. We prove the convergence of this method provided that the input signal satisfies a strong mixing property. Some simulation results are then given in order to illustrate the properties of this method under various scenarios. This method is appealing in the context of micro-electronic devices since it only requires a 1-bit analog-to-digital converter, with low power consumption and minimal silicon area.

Introduction

The parameter estimation problem for systems with binary (or quantized) outputs is one of the absorbing questions in a wide range of applications [START_REF] Wang | System identification using binary sensors[END_REF][START_REF] Juillard | Asymptotic consistency of weighted least-square estimators for parameter estimation problems based on binary measurements[END_REF]. Networked control systems, sensor networks and telecommunications are some examples in this domain [START_REF] Zhao | Identification of wiener systems with binary-valued output observations[END_REF]. The use of such methods is mostly motivated by the fact that low-resolution observations are much cheaper or easier to obtain than high-resolution ones. The method presented in this paper is aimed at the test of micro-electronic devices, such as MEMS (Microelectromechanical systems). It is known that as characteristic dimensions become smaller, the dispersions afflicting electronic devices tend to become larger. Variations in the fabrication process [START_REF] Deb | Defect Oriented Test of Inertial Microsystems[END_REF] or changes in the operating conditions, such as temperature, pressure or humidity are typical sources of dispersion (Colinet & Juillard, 2010). It is then desirable to integrate self-test (and self-tuning) features, such as parameter estimation routines, in each device in order to compensate the fabrication dispersions and adapt to changing conditions. Ideally, this self-test feature should be as lowcost as possible, especially in terms of silicon area. Thus, parameter estimation routines based on binary observations are very appealing because they only require the integration of a 1-bit analog-to-digital converter (ADC) ( [START_REF] Van De Plassche | CMOS integrated analog-todigital and digital-to-analog converters[END_REF]. Many significant results have been established for system identification based on binary (or quantized) data in the last few years [START_REF] Rafajlowicz | Linear systems identification from random threshold binary data[END_REF][START_REF] Wigren | ODE analysis and redesign in blind adaptation[END_REF][START_REF] Wigren | Adaptive filtering using quantized output measurements[END_REF][START_REF] Wang | System identification using binary sensors[END_REF][START_REF] Wang | Joint identification of plant rational models and noise distribution functions using binary-valued observations[END_REF][START_REF] Bai | Towards identification of wiener systems with the least amount of a priori information on the nonlinearity[END_REF][START_REF] Gustafsson | Statistical results for system identification based on quantized observations[END_REF]Colinet & Juillard, 2010). A brief summary of these works can be found in [START_REF] Jafari | A recursive system identification method based on binary measurements[END_REF], where an approach based on the least-mean squares (LMS) algorithm was introduced. In particular, Wigren has developed an approach to the system identification problem based on quantized observations provided that there is signal energy around the switch points. The global convergence is proved for a finite impulse response (FIR) system with an arbitrary and known output quantizer under the assumption that the quantizer has at least one threshold value different from zero, building on arguments from [START_REF] Ljung | System identification -theory for the user[END_REF]. Wang and his co-authors have also presented a method for estimating parameters from binary (or quantized) data. The unknown system is excited by a periodic signal and the threshold of the quantizer is randomly specified by a partially known dithering signal. It is proved that the cumulative distribution function of the threshold does not have to be known a priori and it can be estimated along with the system parameters. The present work differs from Wigren's method in the sense that it does not rely on a pseudo-gradient of a leastsquares criterion and it does not require the threshold value to be different from zero. Furthermore, it does not require a varying threshold, as opposed to Wang's approach.

In this paper, we introduce a new recursive identification method based on binary observations. This approach is an online method which can rule out the existing techniques relying on batch-data-based methods, e.g. (Colinet & Juillard, 2010), or on maximum likelihood algorithms in terms of storage requirements and computational complexity. The convergence of the algorithm, which relies on an adaptive regulative coefficient, is proved (as opposed to [START_REF] Jafari | A recursive system identification method based on binary measurements[END_REF]). Furthermore, the influence of the relaxation coefficient, of the initial point and of the quantization of the input are investigated by simulation. The structure of the article is the following. In section 2, the notations and framework are given. In section 3, the algorithm for estimating the unknown system parameters from binary outputs is derived. The asymptotic convergence of the proposed algorithm is demonstrated under some mild assumptions. Section 4 illustrates the behaviour of the algorithm when these assumptions are partially relaxed. Conclusions and perspectives are drawn in section 5.

Notations and frameworks

The known input signal u k is filtered by a discrete-time invariant linear system H(z -1 ) to produce the system output y k at time k (Fig. 1). H has an impulse response of length L, i.e. it can be represented by a column vector θ =( θ l ) L l=1 .L e t θk be the estimated vector of parameters (of length L) at time k and θ1 be the initial estimate. Let also, b k be an additive noise at the system output. The output and the estimated output can be expressed as:

y k = θ ⊤ φ k + b k ŷk = θ⊤ k φ k , (1) 
where

φ k =[ u k ,u k-1 , ..., u k-L+1 ]
⊤ is the vector of inputs at time k. The system output then goes through a 1-bit ADC so that only the sign s k = S(y k ) of the system output is known, where

s k =1, if y k ≥ 0 s k = -1, otherwise. ( 2 
)
Our goal is to develop a recursive estimation method to estimate θ from θk based on N observations of u k , s k .

Because of the absence of dither signal at the comparator input, it is only possible to identify θ u pt oap o s itive multiplicative constant (Colinet & Juillard, 2010). Without loss of generality, we then consider θ =1in the remaining of the paper. In summary, we are going to estimate the coefficients θ of a FIR filter (of length L) such that θ = 1 using -the binary observations s k of the sign of the filter output. -the inputs u k of the filter (not necessarily binary).

We assume the following prior information on the system.

Assumption 1 v 1 = θ⊤ 1 θ ≥ 0.
Remark 1 It is rather simple to verify assumption 1.

For example, a positive constant signal is used as input.

If the sign of the output is positive, it means that the sign S g of the static gain is positive (S g =1 ) ,o t h e r w i s e

S g = -1. Choosing θ1 = S g L × [1, 1, ..., 1] ⊤ (3)
then ensures that assumption 1 is verified.

Assumption 2 φ k is a random process such that -the probability density function (pdf ) of φ k φ k is nonzero on the unit sphere.

φ k verifies the α-mixing condition [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF].

Remark 2 The first condition in assumption 2 ensures that φ k may be in any angular sector of R L and the second condition guarantees that φ k and φ k+l can be considered as independent for large enough l.A ni n p u ts i gnal verifying assumption 2 is a sequence of i.i.d. random variables with a continuous pdf whose support contains an interval of the form [-a, a], a>0 (e.g. uniform and centered) [START_REF] Bai | Towards identification of wiener systems with the least amount of a priori information on the nonlinearity[END_REF].

In the following section, our approach is presented and we study the convergence of sequences θk to θ based on an LMS treatment of the offline methods proposed in (Colinet & Juillard, 2010;[START_REF] Juillard | Asymptotic consistency of weighted least-square estimators for parameter estimation problems based on binary measurements[END_REF]. The proof of the convergence is first established in the noisefree case:

Assumption 3 b k =0,
then the convergence of the algorithm in the more realistic case when b k = 0 is shown by Monte Carlo simulations.

3 Identification algorithm and its convergence

Basic approach to the problem

In classical offline identification methods (i.e. when the output of the system is not quantized [START_REF] Walter | Identification of parametric models from experimental data[END_REF][START_REF] Ljung | System identification -theory for the user[END_REF]), the quadratic error is defined as k (y kŷk ) 2 . Thus, the instantaneous estimation error is Ẽk = y kŷk . As a consequence, the following algorithm is used in the classical LMS approach [START_REF] Haykin | Adaptive Filter Theory[END_REF]:

θk+1 = θk -α k ∂ Ẽ2 k ∂ θ , (4) 
where α k > 0 must verify some conditions to guarantee the stability and convergence of the algorithm.

In (Colinet & Juillard, 2010;[START_REF] Juillard | Asymptotic consistency of weighted least-square estimators for parameter estimation problems based on binary measurements[END_REF], it is shown that the offline identification of θ based on binary observations can be achieved by minimizing a quadratic error of the form

E 2 = 1 4 N k=1 (s k -ŝk ) 2 ŷ2 k , ( 5 
)
where N is the number of observations. We propose to extend this offline method to an online approach by using (4) and the following definition of the instantaneous error:

Ẽk = 1 2 |s k -ŝk |ŷ k . (6) 
Using ( 1), ( 6) and the fact that

|s k -ŝk | 2 =2 |s k -ŝk |, (4) can be developed as θk+1 = θk -α k |s k -ŝk |ŷ k φ k .
(7) Equation ( 7) above is equivalent to

θk+1 = θk -2α k ŷk φ k , if s k =ŝ k θk+1 = θk , otherwise. ( 8 
)
Since it is impossible to estimate the static gain of θ in the absence of dither, we shall choose α k so that θk remains constant. To this end, we use

α k = 1 φ ⊤ k φ k , (9) 
for which it is possible to verify that θk+1 = θk . Without loss of generality, we impose θk =1 .L e tu s consider the sequence v k = θ⊤ k θ . Projecting (7) on θ under assumption 3, we obtain:

v k+1 = v k -α k |s k -ŝk |ŷ k y k .
(10) The product ŷk y k being negative if s k =ŝ k ,t h i ss equence is monotonically increasing. Furthermore, the Cauchy-Schwartz inequality

θ⊤ k θ ≤ θk θ = θ (11)
implies that the sequence (v k ) is bounded from above and thus, converges to a limit v ∞ . This means that:

-either θk converges to a limit θ∞ .

-o r θk is drawn towards a cone whose axis is oriented by θ with half-angle cos -1 (v ∞ ) (Fig. 2) without converging, for example, orbiting around θ on and on.

Although simulations seem to show that the second case is never met in practice, for a wide class of inputs, we have not been able to prove the convergence of ( 7) without resorting to overly strong hypotheses 1 . However, one may construct another sequence of θk in order to avoid getting stuck on a cone. Intuitively, this sequence may be constructed from a combination of θk and of the θk+1 derived from (7). If k is large enough so that θk and θk+1 are close to the limit cone, the angle between θ and the vector resulting from any convex combination of θk and θk+1 will necessarily be smaller than cos -1 (v ∞ ). Thus, it should be possible to relax (7) to ensure convergence. This is studied in the next subsection.

Relaxed approach

The following relaxed algorithm is considered:

θk+1 = θk -µα k |s k -ŝk |ŷ k φ k w k , ( 12 
)
where 0 <µ<1and

w k = 1 -2µ(1 -µ)α k |s k -ŝk |ŷ 2 k 1 (13)
is a normalizing factor so that θk =1, ∀k.

Remark 3 If µ =1 , algorithm (7) is obtained. On the other hand, if µ =0, we get θk = θ1 , ∀k.

Theorem 4 Under assumptions 1, 2 and 3, the sequence defined by ( 12)-( 13) and (9) converges surely to θ, ∀µ ∈ (0, 1).

PROOF. When 0 <µ<1, the θk+1 defined by ( 12) is a convex combination of θk (with weight 1µ)a n do f the θk+1 defined by ( 7) (with weight µ). Projecting ( 12) on θ,w eget

v k+1 = v k -µα k |s k -ŝk |ŷ k y k w k . ( 14 
)
Since µα k |s kŝk |ŷ k y k ≤ 0, 0 ≤ w k ≤ 1a n dv 1 ≥ 0, the sequence (v k ) is monotonically increasing. As it is also bounded from above (11), it converges and then

v k v k+1 k→∞ ----→ 1.
From ( 14) and ( 13

), v k v k+1 w k 1, hence w k k→∞ ----→ 1.
Considering the definition of w k (13), this proves that

α k |s k -ŝk |ŷ 2 k k→∞
----→ 0. Furthermore, projecting (12) on θk yields:

θ⊤ k+1 θk = 1 -µα k |s k -ŝk |ŷ 2 k w k . ( 15 
)
Hence, θ⊤ k+1 θk k→∞ ----→ 1. On the other hand, projecting (12) on θk+1 yields: Consequently, since

1= θ⊤ k θk+1 -µα k |s k -ŝk |ŷ k φ ⊤ k θk+1 w k (16) which implies α k |s k -ŝk |ŷ k φ ⊤ k θk+1 k→∞ ----→ 0,
θk+l -θk 2 =2 1 - θ⊤ k+l θk , ( 18 
)
the sequence θk is Cauchy. R L being complete, θk converges to a limit θ∞ . Let us then show that, provided certain hypotheses hold, v ∞ = θ⊤ ∞ θ =1. As v k is necessarily smaller than 1, we try to determine under what circumstances v k can be increased by

ǫ (1 -v k ), ǫ ∈ (0, 1]. The coefficient w k being smaller than 1, a sufficient condition for v k+1 -v k ≥ ǫ (1 -v k )is
that the right-hand term of the numerator of ( 14) should be greater than ǫ

(1 -v k )whens k =ŝ k , i.e. 2µα k ŷk y k + ǫ (1 -v k ) < 0. ( 19 
) Multiplying (19) by φ ⊤ k φ k = α -1 k yields φ ⊤ k µ θ θ⊤ k + θk θ ⊤ + ǫ (1 -v k ) I L φ k < 0, ( 20 
)
where

I L is the L × L identity matrix. Let us decompose θk as θk = v k θ + 1 -v 2 k ψ k , where ψ k is a unit vector orthogonal to θ,a n dφ k as φ k = a k θ + b k ψ k + c k ξ k ,
where ξ k is a unit vector orthogonal to θ and ψ k (Fig. 3). Then, the condition for s k =ŝ k is derived as:

a k a k v k + b k 1 -v 2 k < 0 (21)
and ( 20) can be rewritten as:

a k b k c k A k ⎛ ⎜ ⎜ ⎝ a k b k c k ⎞ ⎟ ⎟ ⎠ < 0, (22) 
where

A k = ⎛ ⎜ ⎜ ⎝ ǫ (1 -v k )+2µv k µ 1 -v 2 k 0 µ 1 -v 2 k ǫ (1 -v k )0 00 ǫ (1 -v k ) ⎞ ⎟ ⎟ ⎠ .
Condition ( 21) imposes that φ k should belong to a certain angular sector S k to verify s k =ŝ k (Fig. 3). The condition ( 22) cannot be verified unless ǫ<µ.Ifsuchis the case, it imposes that φ k should belong to the inside of an elliptical cone 2 contained in S k . For example, the elliptical cone C

1/2 k corresponding to ǫ = µ/2i sr e p r esented in Fig. 3. Its major half-angle is α = π 4 and its minor half-angle is

β k =tan -1 1 -v k 3+v k . ( 23 
) As k increases, C 1/2 k shrinks (because β k is a decreasing function of v k ) while revolving around θ.As θk is drawn to θ∞ , C 1/2 k goes to a limiting cone C 1/2 ∞ with major half-angle α and minor half-angle β ∞ . Let us suppose v ∞ < 1. Since v k converges, ∀η>0there exists K 0 large enough so that ∀k>K 0 , v ∞ -v k <η. For example, we take η = µ 4 (1 -v ∞ ). Since v ∞ < 1, the solid angle β ∞ defined by the limiting cone C 1/2 ∞ is greater than 0. Moreover, it is clear that ∃K 1 >K 0 such that ∩ k>K1 C 1/2 k = C = ∅. (24) 
Consequently, for k>K 1 ,a n yφ k inside C would increase v k by at least µ 2 (1v ∞ )=2η, which would contradict our initial hypothesis that v ∞v k <η. A necessary condition for v ∞ < 1 is then that

∀k>K 1 ,P (φ k ∈ C)=0. (25) 
However, φ k verifies assumption 2. This means that the probability that a given vector of inputs enters C in finite time after K 1 is 1. Thus (25) cannot hold and v ∞ =1 (i.e. θ∞ = θ). This completes the proof of the theorem.

Numerical results

In this section, we show by simulations that, in order to obtain an appropriate performance of the proposed method (called LIMBO for LMS-based Identification Method using Binary Observations) in real applications, assumptions 1, 2 and 3 used in the proof of the convergence do not need to be stringently verified. The influence of the relaxation coefficient µ on the convergence rate is also investigated. We choose the same test case as in [START_REF] Wigren | Adaptive filtering using quantized output measurements[END_REF] 4 illustrates the estimation quality, measured by the 80 th percentile of (1v k ) from the Monte Carlo realizations, for two values of µ and σ b . In the noise-free case (σ b =0 ) , the larger µ is, the faster the convergence of the algorithm is. Moreover, the convergence is obtained even in the non-relaxed case (µ = 1). Regardless of the speed of convergence, the optimal parameters are found for all values of 0 <µ 1 (Fig. 4). When σ b =0 ,t h e algorithm estimates the system parameters more precisely if µ is small. In other words, when µ increases the algorithm speed increases, however the precision of the estimation decreases. Therefore, in the presence of measurement noise, it is necessary to make a good compromise between the rate of convergence and the desired estimation quality. Using an adaptive relaxation coefficient (for example, a decreasing sequence as in classical LMS approaches) may also yield good results. Note that the starting point of the algorithm θ1 = [0 0 0 1] does not verify assumption 1 (i.e. v 1 < 0). Nevertheless, the convergence takes place (Fig. 4). Similar results are also obtained for different initial points, whether they verify assumption 1 or not, and regardless of the value of µ and σ b . Now, assumption 2 is put to the test. The second part of this assumption (the α-mixing condition) is easy to obtain in practice by using an input sequence having a finite correlation length. On the other hand, if the input signal is quantized (on a finite number of bits, n), the first condition of assumption 2 cannot be verified, since there only exists 2 nL different φ k . Note that the quan- tization levels of the input signal should not include zero, because the probability of having φ k =0,whic h causes α k to be undefined, would then be non-zero. This problem can also be tackled by adding a small positive constant in the denominator of α k as in the normalized LMS algorithm [START_REF] Haykin | Adaptive Filter Theory[END_REF]. Figure 5 shows the estimation quality, defined as above, for n = 2, 3 and 16 bits, in the absence of measurement noise. As expected, the larger n is, the finer the estimation is. In this case, n = 3 yields very satisfactory results, nonetheless. Finally, it should be noted that, when L is large, a very coarse quantization of the input signal can still yield some very good results (the number of possible φ k increases exponentially with L,w h e r e a s the number of parameters to be estimated increases linearly). A result of similar nature was established and verified in [START_REF] Juillard | Initialization of the BIMBO self-test method using binary inputs and outputs[END_REF].

5C o n c l u s i o n

In this paper, we introduced LIMBO, a recursive parameter estimation method using binary observations based on the LMS algorithm. The asymptotical convergence of the method was investigated. In particular, we gave some assumptions under which the convergence of the algorithm to the optimal system parameters is theoretically guaranteed. We showed by simulation that these assumptions do not necessarily have to be met in practice in order to obtain a good performance of the method. This method has a very low computational complexity and implementation cost, making it appropriate for use in the context of micro-electronics. The extension of this approach to more complex systems (IIR systems), the study of the convergence rate and the design of an optimal input signal are the subject of future works.
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 1 Fig. 1. Block diagram of the system model. Signal y k is not available for measurement.

Fig. 2 .

 2 Fig. 2. As k goes to infinity, θk revolves around θ on a circle orthogonal to θ, defined as the intersection of the unit sphere and a cone of revolution with axis θ and half-angle cos -1 (v∞).

  since w k and θ⊤ k θk+1 converge to 1 as seen above. Furthermore, one proves that α k+1 |s k+1 -ŝk+1 |ŷ k+1 φ ⊤ k+1 θk k→∞ ----→ 0 by projecting (12) on α k+1 |s k+1 -ŝk+1 |ŷ k+1 φ ⊤ k+1 and using the Cauchy-Schwartz inequality on the second term of the right-hand side. Replacing k by k +1 i n (12) and projecting the resulting equation on θk ,w e obtain an expression of θ⊤ k+2 θk as a function of quantities whose convergence is already established. It is then straightforward

Fig. 3 .

 3 Fig. 3. If φ k belongs to the sector S k ,t h e ns k =ŝ k .W h e nφ k also belongs to the elliptical cone C 1/2 k ⊂ S k ,t h e ns k =ŝ k and -4α k ŷk y k > 1v k .

Fig. 4 .

 4 Fig. 4. 80 th percentile of (1v k ) for various values of µ and σ b using a uniformly distributed input signal.

Fig. 5 .

 5 Fig. 5. 80 th percentile of (1v k ) for three values of n with µ =1 and σ b =0.

  : θ =[1 -0.74 -2.8]. Note that θ is normalized before starting the LIMBO algorithm. The results of the Monte Carlo simulations presented in this section are based on 5000 realizations of the input signal (and of the measurement noise when b k =0). First, we study the influence of µ and measurement noise. The signal u k is uniformly distributed on [-1, 1], b k has a Gaussian distribution with zero mean and variance σ 2 b and both signals are white. The algorithm is initialized with θ1 = [0 0 0 1].Figure

Note that, for example, the convergence of (7) can be proved by assuming that the data is absolutely linearly separable (i.e. ∃η>0 || y k | >η , ∀k) and the training set is repeated over and over(Haykin

, 2001). However, these hypotheses do not hold in the context of this paper.
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