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Convergence analysis of an online approach to parameter

estimation problems based on binary observations

*

Kian Jafari, Jérome Juillard, Morgan Roger

SUPELEC - Department of Signal Processing and Electronic Systems, Gif-sur-Yvette, France

Abstract

In this paper, we present an online identification method to the problem of parameter estimation from binary observations.
A recursive identification algorithm with low-storage requirements and computational complexity is derived. We prove the
convergence of this method provided that the input signal satisfies a strong mixing property. Some simulation results are then
given in order to illustrate the properties of this method under various scenarios. This method is appealing in the context of
micro-electronic devices since it only requires a 1-bit analog-to-digital converter, with low power consumption and minimal

silicon area.
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1 Introduction

The parameter estimation problem for systems with bi-
nary (or quantized) outputs is one of the absorbing ques-
tions in a wide range of applications (Wang et al., 2003;
Juillard et al., 2009). Networked control systems, sensor
networks and telecommunications are some examples in
this domain (Zhao et al., 2007). The use of such meth-
ods is mostly motivated by the fact that low-resolution
observations are much cheaper or easier to obtain than
high-resolution ones.

The method presented in this paper is aimed at the
test of micro-electronic devices, such as MEMS (Micro-
electromechanical systems). It is known that as charac-
teristic dimensions become smaller, the dispersions af-
flicting electronic devices tend to become larger. Varia-
tions in the fabrication process (Deb, 2005) or changes
in the operating conditions, such as temperature, pres-
sure or humidity are typical sources of dispersion (Co-
linet & Juillard, 2010). Tt is then desirable to integrate
self-test (and self-tuning) features, such as parameter es-
timation routines, in each device in order to compensate
the fabrication dispersions and adapt to changing con-
ditions. Ideally, this self-test feature should be as low-
cost as possible, especially in terms of silicon area. Thus,
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parameter estimation routines based on binary observa-
tions are very appealing because they only require the
integration of a 1-bit analog-to-digital converter (ADC)
(Van de Plassche, 2005).

Many significant results have been established for sys-
tem identification based on binary (or quantized) data
in the last few years (Rafajlowicz, 1996; Wigren, 1997,
1998; Wang et al., 2003, 2006; Bai & Reyland Jr., 2008;
Gustafsson & Karlsson, 2009; Colinet & Juillard, 2010).
A brief summary of these works can be found in (Jafari
et al., 2010), where an approach based on the least-mean
squares (LMS) algorithm was introduced.

In particular, Wigren has developed an approach to the
system identification problem based on quantized obser-
vations provided that there is signal energy around the
switch points. The global convergence is proved for a fi-
nite impulse response (FIR) system with an arbitrary
and known output quantizer under the assumption that
the quantizer has at least one threshold value different
from zero, building on arguments from (Ljung, 1999).
Wang and his co-authors have also presented a method
for estimating parameters from binary (or quantized)
data. The unknown system is excited by a periodic sig-
nal and the threshold of the quantizer is randomly spec-
ified by a partially known dithering signal. It is proved
that the cumulative distribution function of the thresh-
old does not have to be known a priori and it can be
estimated along with the system parameters.

The present work differs from Wigren’s method in the
sense that it does not rely on a pseudo-gradient of a least-
squares criterion and it does not require the threshold
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Fig. 1. Block diagram of the system model. Signal y; is not
available for measurement.

value to be different from zero. Furthermore, it does not
require a varying threshold, as opposed to Wang’s ap-
proach.

In this paper, we introduce a new recursive identifi-
cation method based on binary observations. This ap-
proach is an online method which can rule out the ex-
isting techniques relying on batch-data-based methods,
e.g. (Colinet & Juillard, 2010), or on maximum likeli-
hood algorithms in terms of storage requirements and
computational complexity. The convergence of the algo-
rithm, which relies on an adaptive regulative coefficient,
is proved (as opposed to (Jafari et al., 2010)). Further-
more, the influence of the relaxation coefficient, of the
initial point and of the quantization of the input are in-
vestigated by simulation.

The structure of the article is the following. In section
2, the notations and framework are given. In section 3,
the algorithm for estimating the unknown system pa-
rameters from binary outputs is derived. The asymp-
totic convergence of the proposed algorithm is demon-
strated under some mild assumptions. Section 4 illus-
trates the behaviour of the algorithm when these as-
sumptions are partially relaxed. Conclusions and per-
spectives are drawn in section 5.

2 Notations and frameworks

The known input signal uy is filtered by a discrete-time
invariant linear system H(z7!) to produce the system
output yy at time & (Fig. 1).

H has an impulse response of length L, i.e. it can be
represented by a column vector @ = (6;)F,. Let 8}, be
the estimated vector of parameters (of length L) at time
k and 91 be the initial estimate. Let also, by be an ad-
ditive noise at the system output. The output and the
estimated output can be expressed as:

{ n =0T¢k+bk7 Q)

R AT
Yk = Ok ¢k

where ¢, = [uk, uk—1, ..., uk,LH]T is the vector of in-
puts at time k. The system output then goes through a
1-bit ADC so that only the sign s = S(yx) of the sys-
tem output is known, where

Sk = 1, if Yk Z 0
. (2)
sy = —1, otherwise.

Our goal is to develop a recursive estimation method to
estimate 0 from ), based on N observations of Uk, Sk-
Because of the absence of dither signal at the compara-
tor input, it is only possible to identify 6 up to a posi-
tive multiplicative constant (Colinet & Juillard, 2010).
Without loss of generality, we then consider ||@|| =1 in
the remaining of the paper. In summary, we are going to
estimate the coefficients 6 of a FIR filter (of length L)
such that ||@]] = 1 using

- the binary observations sj of the sign of the filter
output.
- the inputs uy, of the filter (not necessarily binary).

We assume the following prior information on the sys-
tem.

AT
Assumption 1l v; =6, 0 > 0.

Remark 1 [t is rather simple to verify assumption 1.
For ezample, a positive constant signal is used as input.
If the sign of the output is positive, it means that the
sign Sy of the static gain is positive (Sy = 1), otherwise
Sy = —1. Choosing

.S
0, = fg x [1,1,...,1]" (3)

then ensures that assumption 1 is verified.

Assumption 2 ¢, is a random process such that

- the probability density function (pdf) of”g—:” s non-
zero on the unit sphere. '

- ¢, wverifies the a-mizing condition (Rosenblatt,
1956).

Remark 2 The first condition in assumption 2 ensures
that ¢, may be in any angular sector of RY and the sec-
ond condition guarantees that ¢y, and ¢y, can be con-
sidered as independent for large enough l. An input sig-
nal verifying assumption 2 is a sequence of i.i.d. random
variables with a continuous pdf whose support contains
an interval of the form [—a,a], a > 0 (e.g. uniform and
centered) (Bai & Reyland Jr., 2008).

In the following section, our approach is presented and
we study the convergence of sequences 0: to 6 based
on an LMS treatment of the offline methods proposed
in (Colinet & Juillard, 2010; Juillard et al., 2009). The
proof of the convergence is first established in the noise-
free case:

Assumption 3 b, =0,

then the convergence of the algorithm in the more real-
istic case when by # 0 is shown by Monte Carlo simula-
tions.



3 Identification algorithm and its convergence

3.1 Basic approach to the problem

In classical offline identification methods (i.e. when the
output of the system is not quantized (Walter & Pron-
zato, 1997; Ljung, 1999)), the quadratic error is defined
as .. (yr — Ux)?. Thus, the instantaneous estimation er-

ror is Ey = yr — yx. As a consequence, the following al-
gorithm is used in the classical LMS approach (Haykin,
2001):

R N 0L}

01 =01 — ap,—= 4

k+1 k k Y (4)

where o > 0 must verify some conditions to guarantee
the stability and convergence of the algorithm.
In (Colinet & Juillard, 2010; Juillard et al., 2009), it is
shown that the offline identification of 8 based on binary
observations can be achieved by minimizing a quadratic
error of the form

1 N

E? = 1 > sk — 8)%01, (5)
k=1

where N is the number of observations. We propose to
extend this offline method to an online approach by us-
ing (4) and the following definition of the instantaneous
error:

. 1 o

Ek = §|5k - sk|yk. (6)
Using (1), (6) and the fact that |s; — 8x|% = 2|s — 8x|,
(4) can be developed as

0111 = Ok — ailsk — Sk indy. (7)

Equation (7) above is equivalent to

otherwise.

ék-‘rl = ék7

Since it is impossible to estimate the static gain of € in

the absence of dither, we shall choose ay, so that |||
remains constant. To this end, we use

1
ap = —=—, 9)
1. b
for which it is possible to verify that ||@xy1| = [|0k]-
Without loss of generality, we impose ||@|| = 1. Let us

consider the sequence vy = 0, 0 . Projecting (7) on 6
under assumption 3, we obtain:

Vg1 = Uk — Ok|Sk — S| Uk (10)

0.5

Fig. 2. As k goes to infinity, ), revolves around 6 on a circle
orthogonal to @, defined as the intersection of the unit sphere
and a cone of revolution with axis @ and half-angle cos™! (vec ).

The product gryr being negative if sp # S, this se-
quence is monotonically increasing. Furthermore, the
Cauchy-Schwartz inequality

AT ~
6,6 <[0x[[6] = 6] (11)

implies that the sequence (vg) is bounded from above
and thus, converges to a limit v.,. This means that:

- either ék converges to a limit éoo.

- or 0, is drawn towards a cone whose axis is oriented
by 0 with half-angle cos™! (vs) (Fig. 2) without
converging, for example, orbiting around 6 on and
on.

Although simulations seem to show that the second case
is never met in practice, for a wide class of inputs, we
have not been able to prove the convergence of (7) with-
out resorting to overly strong hypotheses'. However,
one may construct another sequence of 0y in order to
avoid getting stuck on a cone. Intuitively, this sequence
may be constructed from a combination of 8, and of the
ék+1 derived from (7). If k is large enough so that 05
and ék+1 are close to the limit cone, the angle between 0
and the vector resulting from any convex combination of
;. and ék+1 will necessarily be smaller than cos ™! (v).
Thus, it should be possible to relax (7) to ensure con-
vergence. This is studied in the next subsection.

3.2 Relaxed approach

The following relaxed algorithm is considered:

Oy, — povk sy — 81Uk dp (12)
Wi ’

041 =

! Note that, for example, the convergence of (7) can be
proved by assuming that the data is absolutely linearly sep-
arable (i.e. 3n > 0 | |yx| > 7n,Vk) and the training set is
repeated over and over (Haykin, 2001). However, these hy-
potheses do not hold in the context of this paper.



where 0 < u < 1 and

wy, = \/1 —2u(1 — p)a|sk — 8kl57 < 1 (13)
is a normalizing factor so that ||@| = 1, Vk.

Remark 3 If u = 1, algorithm (7) is obtained. On the
other hand, if p = 0, we get 0, =6,,Vk.

Theorem 4 Under assumptions 1, 2 and 3, the sequence
defined by (12)-(13) and (9) converges surely to 0, Vu €

Y

PROOF. When 0 < p < 1, the ; defined by (12) is
a convex combination of 8 (with weight 1 — p) and of

the 0441 defined by (7) (with weight ). Projecting (12)
on 0, we get

Vg — HOk| Sk — Sk|TRYk
Wi ’

V1 = (14)

Since pag|sk — Sklgryr < 0,0 < wp < 1 and v > 0,
the sequence (vg) is monotonically increasing. As it is

also bounded from above (11), it converges and then
k—o0

ke —— 1.
Vk+1
From (14) and (13), =% < wy < 1, hence wy, koo,

Vk+1

Considering the definition of wy, (13), this proves that
ak|sk — 8|03 LNy} Furthermore, projecting (12) on
05 yields:

NP

AT A 1 — poglsk — Sk|U;

9k+19k = .
Wi

(15)

AT ~
Hence, 0, 0 E2%, 1. On the other hand, projecting
(12) on By, 1 yields:

AT ~ o R
S pra| sy — 8k |k O (16)
wy,

which implies ay|sy — §k|g)k¢zék+1 Foeo, 0, since wy,

AT ~
and 6, 0111 converge to 1 as seen above. Furthermore,

~ ~ T A k—oo
one proves that agi1[sky1 — Sky1|Jrr1Pp 10k —— 0

by projecting (12) on aji1[ski1 — Ski1|fki1¢4, and
using the Cauchy-Schwartz inequality on the second
term of the right-hand side. Replacing k£ by k 4+ 1 in

(12) and projecting the resulting equation on 6, we

AT A
obtain an expression of 8,0}, as a function of quanti-
ties whose convergence is already established. It is then

AT ~
straightforward that 6, ,0 57220, 1 and by induction,

k—o0

/R N (17)

Fig. 3. If ¢, belongs to the sector Sk, then si # 3. When ¢,
also belongs to the elliptical cone Cé/Q C Sk, then si # 55 and
_4akz}kyk >1—vg.

Consequently, since
R ~ AT 4
10541 — Ok = 2 (1 - 9k+l9k) ; (18)

the sequence 0y is Cauchy. R¥ being complete, 6. con-
verges to a limit 0. Let us then show that, provided
certain hypotheses hold, vo, = 9;0 =1.

As vy is necessarily smaller than 1, we try to deter-
mine under what circumstances v, can be increased by
e(1—wg), € € (0,1]. The coefficient wy, being smaller
than 1, a sufficient condition for vy1 —vg > € (1 — vg) is
that the right-hand term of the numerator of (14) should
be greater than € (1 — vy) when s # 8, i.e.

2uak@kyk + € (1 — Uk) < 0. (19)

Multiplying (19) by ¢, ¢y, = oy yields

oF (u (eéz " ékeT) Fe(l—ug) IL) b, <0, (20)

where Iy, is the L x L identity matrix. Let us decompose

ék as ék =0+ /1 — viwk, where 1), is a unit vector
orthogonal to 0, and ¢, as ¢, = a0 + bpy;, + cr&},
where &, is a unit vector orthogonal to 8 and v, (Fig.
3). Then, the condition for s # §, is derived as:

ay (akvk + b /1 — v,%) <0 (21)
and (20) can be rewritten as:

ax
(ak by, Ck) Ap | be | <0, (22)

Ck



where
€ (1 —vg) + 2uvk py/1 — v} 0

E(].—’Uk) 0
0 0 €(1—wvg)

Ay = py/1 —v?

Condition (21) imposes that ¢, should belong to a cer-
tain angular sector Sy to verify s, # § (Fig. 3). The
condition (22) cannot be verified unless € < p. If such is
the case, it imposes that ¢, should belong to the inside
of an elliptical cone? contained in Sj. For example, the
elliptical cone C';/ 2 corresponding to € = /2 is repre-
sented in Fig. 3. Its major half-angle is o = 7 and its
minor half-angle is

B = tan™" (1/ ;;Z:) . (23)

. 1/2 . . .
As k increases, Ck/ shrinks (because [y is a decreasing

function of vy, ) while revolving around 6. As ), is drawn
t0 O, C;/Q goes to a limiting cone C’%Q with major
half-angle o and minor half-angle 3.

Let us suppose v, < 1. Since vy converges, Vn > 0 there
exists K large enough so that Vk > Ky, vee — vi < 7.
For example, we take n = & (1 —vy). Since v < 1,

the solid angle B, defined by the limiting cone C(%Q is
greater than 0. Moreover, it is clear that 3K; > K, such
that 1/2
= ) 24
k>mchk C#90 (24)

Consequently, for k& > K, any ¢, inside C' would in-
crease v by at least § (1 — voo) = 21, which would con-
tradict our initial hypothesis that ve, — vi < 7.

A necessary condition for v, < 1 is then that
Vk > K1,P (¢, € C)=0. (25)

However, ¢,, verifies assumption 2. This means that the
probability that a given vector of inputs enters C' in finite
time after K is 1. Thus (25) cannot hold and ve = 1

(i.e. @0 = ). This completes the proof of the theorem.

4 Numerical results

In this section, we show by simulations that, in order
to obtain an appropriate performance of the proposed
method (called LIMBO for LMS-based Identification
Method using Binary Observations) in real applications,
assumptions 1, 2 and 3 used in the proof of the conver-
gence do not need to be stringently verified. The influ-
ence of the relaxation coefficient 1 on the convergence

2 If L = 2, the ¢, verifying (19) are inside a two-dimensional
angular sector contained in Sj. The rest of the proof is un-
affected.
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Fig. 4. 80" percentile of (1 — vy,) for various values of u and oy,
using a uniformly distributed input signal.

rate is also investigated. We choose the same test case as
in (Wigren, 1998): 6 =[1 —0.7 4 —2.8]. Note that
6 is normalized before starting the LIMBO algorithm.
The results of the Monte Carlo simulations presented in
this section are based on 5000 realizations of the input
signal (and of the measurement noise when by, # 0).

First, we study the influence of p and measurement
noise. The signal uy, is uniformly distributed on [—1, 1],
br has a Gaussian distribution with zero mean and vari-
ance O'g and both signals are white. The algorithm is

initialized with 6, = [0 0 0 1]. Figure 4 illustrates
the estimation quality, measured by the 80" percentile
of (1 — vg) from the Monte Carlo realizations, for two
values of p and op. In the noise-free case (o, = 0),
the larger p is, the faster the convergence of the algo-
rithm is. Moreover, the convergence is obtained even in
the non-relaxed case (u = 1). Regardless of the speed
of convergence, the optimal parameters are found for
all values of 0 < p < 1 (Fig. 4). When o, # 0, the
algorithm estimates the system parameters more pre-
cisely if p is small. In other words, when p increases
the algorithm speed increases, however the precision
of the estimation decreases. Therefore, in the presence
of measurement noise, it is necessary to make a good
compromise between the rate of convergence and the
desired estimation quality. Using an adaptive relaxation
coefficient (for example, a decreasing sequence as in
classical LMS approaches) may also yield good results.

Note that the starting point of the algorithm 0, =
[0 0 0 1]does not verify assumption 1 (i.e. v1 < 0).
Nevertheless, the convergence takes place (Fig. 4). Sim-
ilar results are also obtained for different initial points,
whether they verify assumption 1 or not, and regardless
of the value of 1 and oy,

Now, assumption 2 is put to the test. The second part
of this assumption (the c-mixing condition) is easy to
obtain in practice by using an input sequence having a
finite correlation length. On the other hand, if the input
signal is quantized (on a finite number of bits, n), the
first condition of assumption 2 cannot be verified, since
there only exists 2" different ¢,.. Note that the quan-
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Fig. 5. 80" percentile of (1 —wy,) for three values of n with g = 1
and o, = 0.

tization levels of the input signal should not include
zero, because the probability of having ||¢, || = 0, which
causes «y, to be undefined, would then be non-zero. This
problem can also be tackled by adding a small positive
constant in the denominator of ¢y, as in the normalized
LMS algorithm (Haykin, 2001).

Figure 5 shows the estimation quality, defined as above,
for n = 2, 3 and 16 bits, in the absence of measurement
noise. As expected, the larger n is, the finer the esti-
mation is. In this case, n = 3 yields very satisfactory
results, nonetheless. Finally, it should be noted that,
when L is large, a very coarse quantization of the input
signal can still yield some very good results (the number
of possible ¢, increases exponentially with L, whereas
the number of parameters to be estimated increases
linearly). A result of similar nature was established and
verified in (Juillard & Colinet, 2007).

5 Conclusion

In this paper, we introduced LIMBO, a recursive param-
eter estimation method using binary observations based
on the LMS algorithm. The asymptotical convergence
of the method was investigated. In particular, we gave
some assumptions under which the convergence of the
algorithm to the optimal system parameters is theoret-
ically guaranteed. We showed by simulation that these
assumptions do not necessarily have to be met in prac-
tice in order to obtain a good performance of the method.
This method has a very low computational complexity
and implementation cost, making it appropriate for use
in the context of micro-electronics. The extension of this
approach to more complex systems (IIR systems), the
study of the convergence rate and the design of an opti-
mal input signal are the subject of future works.
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