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Abstract: A number of research works have been devoted to the optimization of protection strategies (e.g. 

transmission line switch off) of critical infrastructures (e.g. power grids, telecommunication networks, 

computer networks, etc) to avoid cascading failures. This work aims at improving a previous optimization 

approach proposed by some of the authors [1], based on the modified binary differential evolution (MBDE) 

algorithm. The improvements are three-fold: 1) in the optimization problem formulation, we introduce a 

third objective function to minimize the impacts of the switching off operations onto the existing network 

topology; 2) in the optimization problem formulation, we use the final results of cascades, rather than only a 

short horizon of one step cascading, to evaluate the effects of the switching off strategies; 3) in the 

optimization algorithm, the fast non-dominated sorting mechanisms are incorporated into the MBDE 

algorithm: a new algorithm, namely non-dominated sorting binary differential evolution algorithm (NSBDE) 

is then proposed. The numerical application to the topological structure of the 380 kV Italian power 

transmission network proves the benefits of the improvements.  
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1.  INTRODUCTION 

 

In today’s deregulated markets, critical infrastructures (CIs) (e.g. electric power grids, telecommunication 

networks, transportation networks, etc) are often run under stressful conditions which render their 

components more sensitive and vulnerable to natural and/or man-made disturbances [2, 3]. In such systems, 

failure of one component may lead to a cascade of failures of other components and this can result in serious 

economical and social damages, as shown, for example, by recent large-scale blackouts of power grids [4, 5].  

To confront this challenge, a number of analytical/simulation models have been built to anticipate the 

impact of cascading failures in complex networks. These models can be classified into three groups: 1) 

probabilistic models (e.g. CASCADE [6] and branching processes [7]); 2) complex network models (e.g. 

dynamic flow model [8], degree distribution model [9-12], and shortest path routing model [13, 14]); 3) 

physical simulation models (e.g. Oak Ridge-PSERC-Alaska (OPA) model [15], and Power System Analyzer 

(PSA) model [16], and Texas A&M (TAM) model [17]). The first group of probabilistic models does not 

rely on the topological characteristics of the network (e.g. degree, centrality, etc). The second group resorts 

to graph theory to represent the topological properties of the components (nodes or links), which are used to 

describe the loads, and those of the whole network, which are used to define the failure redistribution 

mechanisms. The third group sets itself to account for both the network topology and the physical character 

of the actual systems (e.g. in the case of electrical power network, the power injection and flow according to 

circuit laws [18]).  

The second group of models has been proposed for the vulnerability analysis of CIs [1, 3, 19-23] to: (1) 

identify preliminary vulnerabilities of CIs by topology-driven and dynamic analyses; (2) direct and focus 

further detailed analyses on the most critical areas of the CIs. Complex network models can also be practical 

in devising and verifying network protection (NP) techniques aimed at hampering the propagation of 

cascading failures. Such NP techniques are broadly divided in: (1) network interdiction [24-30], which 

enhances the network protection by designing/enhancing components and/or allocating redundancies to 

avoid failures, and (2) line switching [31-36], which hinders the failure propagation by cutting off the 

possible ‘directions’ along which the failures can spread within the network. Within the complex networks 

frame of work, line switching amounts to disconnecting edges (e.g. removing lines in a power system, 

closing a road in a transportation system or a pipe in a fluid distribution network, or disconnecting a router in 

an information system) in order to avoid or alleviate component overloads that may arise from the 

occurrence of failures in the infrastructure, which hence may initiate a cascading failure process. Such a 

strategy may be employed by an infrastructure either as a manual strategy or as an implemented automatic 

control strategy, in order to re-route flows so that heavily congested components are relieved. Line switching 

has been shown capable of dealing with cascading failures by proactive and economical actions that can be 

implemented immediately after the cascading initiation [1, 32]. The success of this technique relies on the 

search for the optimal set of lines to be switched-off, with the objective of minimizing the extent of 

cascading failures [1, 13, 37].  

In a previous work [1], some of the authors have considered a two–objective optimization framework to 

minimize the connectivity losses in the system at both global and local levels. In the present work, a third 
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objective is included to minimize the number of lines being switched off in order to reduce the impact of the 

switch-off operations onto the topology of the existing network and the associated costs. Indeed, after the 

switch-off is performed, the resulting connectivity reduction may often weaken the network leaving it even 

more vulnerable than before to further attacks or failures. 

To solve the optimization problem for line switching, which is large-scale, nonlinear and combinatorial 

in nature, we propose a multi-objective evolutionary algorithm (MOEA), namely non-dominated sorting 

binary differential evolution (NSBDE) algorithm, whose novelty lies in incorporating the fast non-dominated 

sorting mechanisms [38] into the modified binary differential evolution algorithm (MBDE) [39]. DE is a 

population-based stochastic optimization technique [40] with successful applications in various scientific and 

engineering fields [41-43]. It is often reported that DE has superior performances than other evolutionary 

algorithms (e.g. genetic algorithms, particle swarm optimization) [44]. MBDE is a novel binary version of 

binary differential evolution (DE) [39] specialized on combinatorial problems. 

The rest of this paper is organized as follows: Section 2 presents the cascading failure simulation model, 

the measure of cascading failure consequences, and the protection strategy, i.e. transmission line switching; 

Section 3 presents the general formulation of multi-objective optimization problems; Section 4 describes the 

detailed procedures of the proposed NSBDE algorithm; Section 5 presents the experiment results of NSBDE 

including the analyses and comparisons with the previous work [1]; Section 6 presents the discussions on the 

complex network modeling of cascading failures; Section 7 concludes this study and points out future 

research directions. 

 

2. CASCADING FAILURE MODEL AND PROTECTION STRATEGIES 

 

2.1 Cascading failure model 

In general, the simulation of cascading failures in large-scale networks is computationally expensive. In 

order to focus on analyzing the failure propagation process and devising the prevention and/or mitigation 

measures, a complex network model has been developed by some of the authors [1]. The graph 

representation is used to abstract the electrical properties of the network, while retaining its structural 

properties. The representation is given in the form of an undirected graph         consisting of a set of 

    nodes (substations or buses) and     links (transmission lines). The elements in the set V are divided into 

two subsets:    generation nodes, i.e. sources of power, and    distribution nodes, i.e. loads or substations. 

The network structure is described by an adjacency matrix       of the size        : if there is a link 

between node i and node j, the entry      , otherwise      . The power is assumed to flow along the 

generator-distributor shortest paths [13, 19, 37, 45, 46].  

The load (or stress) on a network component, e.g. a node or transmission line, is modeled as dependent 

on the number of shortest paths transiting through it, when the power flow is sent from the available 

generation nodes to the distribution nodes. More precisely, the load,    of node i is measured by the node 

betweenness [47, 48], calculated as the fraction of the generator-distributor shortest paths passing through 

that node:  



4 

 

 

                                 
 

          
 

      

   
                                                          (1) 

 

where       is the total number of nodes in the graph  ,     is the number of shortest paths between the 

generator-distributor nodes, and        is the number of generator-distributor shortest paths passing through 

the node j. Likewise, the load,     of a link   , is measured by the edge betweenness, calculated as the 

fraction of the generator-distributor shortest paths through that link [49].  

Each component in the network has a definite capacity, i.e. a maximum load it can sustain. The capacity 

of node i (or link   ) is assumed to be proportional to its nominal load    (or    ) at which it is designed to 

operate,            (or             ), where     is the tolerance parameter assumed the same for 

all elements of the entire network. Despite the simplicity of the concept of  , it can be regarded as an 

operating margin allowing safe operations of the components under possible load increments. When    , 

the system is working at its limit capacity; any further load added to a component would result in its failure 

and, possibly, in cascading failures affecting a large portion of the network. 

In the case that a component’s load    (or    ) exceeds its capacity    (or    ), it is considered as failed, 

and thus, removed from the network. This leads to a redistribution of the shortest paths in the network and, 

consequently, to a change in the loads of some working components. If the loads on some components 

exceed their capacities upon the redistribution of the shortest paths, the components fail and, consequently, a 

new redistribution follows. The process continues until there are no further failures or all the components are 

failed [13, 14]. 

 

2.2 Measuring cascading failure consequences 

To measure the effects of cascading failures, the connectivity loss    is used [13, 37]. It quantifies the 

decrease of the ability of distribution substations to receive power from generators: 
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where          and         represent the numbers of generators and substations in the initial state of 

the network respectively, and   
  represents the number of generators able to supply power to distribution 

node i after the cascade of failures takes place.    is an indicator that measures the effects of cascading 

failures at the global system level. On the other hand, it fails to identify the critical locations to which power 

supply has to be guaranteed under any contingency. Therefore, a second, local indicator    
 is proposed to 

measure the effects of cascading failures on an identified critical region A. It quantifies the decrease of the 

ability of the distribution substations within the area A to receive power supply from any generator in the 

whole network: 
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where    
 represents the number of distribution nodes within the area A at the initial state of the network, 

and   
  represents the number of generation units able to supply power flow to distribution node i in the area 

A, after the cascade of failures takes place.  

The cascade size S can also be used to quantify the effects of cascading failures. It is defined as the number 

of nodes that fail and are disconnected from the network at the end of the cascade propagation [1]. Due to the 

strong correlation between them (i.e. an increase of S produces an increase of   ) and importance of    to the 

power engineers, we use    to formulate the first two objectives of the optimization problem. 

 

2.3 Cascading failure protection strategy and definitions of the objective functions 

In this work, the NP is modeled as an operator intervention targeting at minimizing the effects of the cascade 

failure propagation at both system and local levels by switching off a set of transmission lines immediately 

after a cascading failure is triggered. Due to the rapid unfolding of a cascading failure, it is assumed that the 

protection intervention takes place only once after the cascade is triggered: no further actions to correct the 

effects of this only protective action are taken [1]. Then, the problem arises of what is the best set of lines 

whose disconnection hinders the cascade propagation at the maximum while maintaining the minimum 

impact on the topology of the existing network. This issue is crucial because the intentional disconnection of 

lines may worsen the effects of the cascade in the same way as failure propagation does.  

As previously explained, the two indicators,    and    
, can be used to quantify the effects of cascading 

failures. The global protection optimization seeks interventions that minimize the objective function 

           , i.e. the connectivity loss of the line switch-off set                              , 

where      if link j is switched-off, or 0 otherwise. Secondly, the local optimization searches for the 

optimal intervention that minimizes the connectivity loss    
 of a specific area A,          

   . Thirdly, 

to reduce the impact of the mitigation operations, the number of lines being switched-off is also minimized, 

         
 
   . 

In order to fully take advantage of all the perspectives on network protection mentioned above, we look 

into a “hybrid” protection strategy that finds the set of lines to be switched-off,  , that minimize the 

connectivity loss of a pre-identified area A,    
   , the connectivity loss of the whole network,      , and 

the number of lines being switched-off,    
 
   . This originates a multi-objective optimization problem, 

which is here tackled by a MOEA as is detailed in Section 4. The algorithm for simulating the combined 

effects of cascading failures and protection strategies proceeds in successive stages as follows; it will be used 

for the fitness evaluation in the MOEA: 

step 1. Receive all the parameters used to characterize the current topology (after the initial attack) of the 

network   and the protection strategy. The parameters include the set of functioning nodes   and set 

of functioning links  , the load of each node    and the load of each link    , the maximum capacity 
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of each node    and the maximum capacity of each link    , and the vector   indicating the lines to 

be switched-off. Set the stage counter m = 0. It is noted that by setting   to be a zero vector, this 

algorithm is able to simulate the cascading failures without any protection operations. 

step 2. Remove a set of links indicated by   and apply Floyd’s shortest paths algorithm [50] to compute the 

load of each node (see eq. (1)) and link.  

step 3. Test each component for failure: for        , if node i is working and       then node i is 

removed; if link ij is working and         then link ij is removed. Increase the stage counter   by 

1. 

step 4. Evaluate the load of each component using Floyd’s shortest paths algorithm. Then each component 

that is operating is tested for failure: for        , if node i is working and       then node i 

fails; if link ij is working and         then link ij fails. 

step 5. If any working node fails, then increase   by 1 and return to step 4. Otherwise, terminate the 

algorithm. 

 

To simulate the initiating event, i.e. the failure of the most critical component in terms of load, some 

components need to be removed from the network prior to the execution of the algorithm presented above. 

The adopted protection strategy differs from the one presented in [1]. In particular, the former identifies 

solutions that are optimum with respect to    and    
 values at the end of the cascade propagation, while the 

latter identifies solutions that are optimum with respect to    and    
 values at the step immediately 

following protection, i.e. t = 1, and the propagation of the cascade following the step t = 1 is not accounted 

for in the optimization algorithm. Furthermore, the latter does not include the number of lines to switch off 

as an objective of the optimization. 

 

3.  GENERAL FORMULATION OF MULTI-OBJECTIVE OPTIMIZATION 

 

Real world applications involve the simultaneous optimization of several objective functions, which are 

often competing or/and conflicting with one another, and subject to a number of equality and inequality 

constraints. In general, these multi-objective problems can be formulated as follows (in terms of 

minimization): 

 

                                                                                         (4) 

Subject to          
                                    

                               
                                  (5) 

 

where    is the o-th objective function, x is a decision vector that represents a solution, O is the number of 

objectives,    is the l-th of the L equality constraints and    is the m-th of the M inequality constraints. The 

objective functions       must be evaluated in correspondence of each decision variable vector   in the 
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search space. The final goal is to identify a set of optimal decision variable vectors   
           , 

instead of a single optimal solution. In this set of optimal solutions, no one can be regarded to be better than 

any other with respect to all the objective functions. The comparison of solutions may be achieved in terms 

of the concepts of Pareto optimality and dominance [51]: in case of a minimization problem, solution    is 

regarded to dominate solution    (     ) if both following conditions are satisfied: 

 

                                                                               (6) 

                                                                               (7) 

 

If any of the above two conditions is violated, the solution    does not dominate the solution   , and 

   is said to be non-dominated by   . The solutions that are non-dominated within the entire search space 

are denoted as Pareto-optimal and constitute the Pareto-optimal set, and the corresponding values of the 

objective functions form the so called Pareto-optimal front in the objective functions space. The goal of a 

multi-objective optimization algorithm is to guide the search for solutions in the Pareto-optimal set, while 

maintaining diversity so as to cover well the Pareto-optimal front and thus allow flexibility in the final 

decision on the solutions to be actually implemented. 

 

 

4.  NON-DOMINATED SORTING BINARY DIFFERENTIAL EVOLUTION ALGORITHM  

In this Section, we present the operation procedures of the NSBDE algorithm. DE has been originally 

proposed as a population-based global optimization algorithm for real-valued optimization problems [40]. 

The standard DE algorithm is simple and efficient and has been successfully applied in various scientific and 

engineering fields [41-43] often with superior performance than alternative optimization algorithms, e.g. 

particle swarm optimization and genetic algorithms [44]. Modified binary differential evolution (MBDE) is a 

binary version of DE developed to tackle single-objective binary-coded optimization problems [39]. In order 

to solve the combinatorial multi-objective problem of interest, we introduce into MBDE the fast non-

dominated sorting, ranking, and elitism techniques utilized in non-dominated sorting genetic algorithm-II 

(NSGA-II) [38]. The NSBDE algorithm proceeds with the following steps: 

 

Step 1. Initialization of parameters  

Define the values of: the population size NP, the crossover rate CR, the scaling factor F, and the maximum 

number of generations Nmax. 

Step 2. Generation of initial population and evaluation 

Set the generation number t equal to 1. Initialize the population       
      

   which contains M real-

valued parameter vectors of length K. Each vector is also called a chromosome and forms a candidate 

solution to the optimization problem. Each element of each vector    
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        takes a value       from the set {0, 1} with probability equal to 0.5: the element takes value ‘1’ if 

the corresponding line is to be switched-off, 0 otherwise. Evaluate each of the   chromosomes in the initial 

population     by performing the cascading failure protection simulation algorithm presented in Section 2.3. 

Return the values of the two indicators of the connectivity loss,    and    
. The number of switched-off 

lines can be directly obtained by     
  

   . 

Step 3. Generation of intermediate population  

Apply the binary tournament selection operator [38] to the population    to generate a trial population 

       
       

   , which undergoes the evolution operations of mutation and crossover to become an 

intermediate population       
      

  . 

Step 3.1 Mutation 

Apply the mutation operator (7) onto each binary chromosome of     [39]: 

 

      
            

        
          

        
        

    
    where                      (8) 

 

where b is a positive real constant, often set to values around 6, F is the scaling factor,      
  ,      

  , and 

     
   are the elements at the j-th position of the three randomly chosen chromosomes    

      
    and    

  , 

with indexes           . After applying (7) onto the current chromosome, the noisy vector is 

generated as,  

 

   
   

                         
   

                                  
                                                      (9) 

 

where rand is a uniformly distributed random number within the interval [0,1]. 

 

Step 3.2 Crossover 

Apply the crossover operator (9) to mix the noisy and target vectors to create an intermediate vector   . 

The vector inherits different pieces from the noisy and target vectors, as regulated by the crossover rate 

CR. The commonly used binomial crossover is defined as: 

 

   
   

   
                                    

   
                                     

                             (10) 

 

where        is a uniform random value       ,          is a uniform discrete random number in the 

set          , j is the index of the dimensionality and K is the length of the chromosome. 
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Step 4. Evaluation  

Evaluate each of the   chromosomes in the population     by performing the cascading failure protection 

simulation algorithm presented in Section 2.3. Return the values of the two indicators of the connectivity 

loss,    and    
. The number of switched-off lines can be directly obtained by     

  
   . 

Step 5. Union and sorting 

Combine the parent and intermediate populations to obtain a union population         . Rank the 

chromosomes in the population    by running the fast non-dominated sorting algorithm [38] with respect to 

the objective values, and identify the ranked non-dominated fronts            where    is the best front,    

is the second best front and    is the least good front. 

Step 6. Selection 

Select the first    chromosomes from    to create a new parent population     . The crowding distance 

measure is used in this step to compare the chromosomes with the same rank (a more ‘crowded’ 

chromosome has lower priority than a less ‘crowded’ one), where crowding refers to the density of solutions 

present in a neighborhood of a chromosome of specified radius [38]. Increase the generation number t by 1. 

Stop the algorithm if        otherwise go to Step 3.  

 

 

5.  CASE STUDY AND RESULTS 

5.1 Case study description and cascading failures without interventions 

The proposed optimization method for network protection strategies is exemplified with reference to the 

topological network of the 380 kV Italian power transmission network (Figure 1), focusing only on its 

structure with no further reference on the electrical properties. This network is a branch of a high voltage 

level transmission, which can be modeled as a graph of       nodes (      generators and       

distributors) and       edges. In Figure 1, the generators, i.e. hydro and thermal power plants, are 

represented by squares whereas the distribution substations are represented by circles. As shown in Section 

2.1, the load of each component is computed by Eq. (1). In a previous analysis by some of the authors [1], it 

was found that the removal of link 107 (connecting the nodes 78 (Bargi Stazione) and 81 (Calenzano)) 

results in the largest damage in terms of         and failure size (57 nodes fail at the end of cascading). 

Additionally, node 78 was found to be one of the most critical nodes in initiating the cascading failure 

propagation. 

Since the region of Lombardy includes the largest number of distribution nodes in the power grid 

(densely-dotted area in the upper side of Figure 1), i.e. 21 distributors, the local protection strategy focus on 

the minimization of the loss of connectivity of this specific area,    
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Figure 1. The 380 kV Italian power transmission network [52] 

 

Figure 2 illustrates the evolution of the cascade from the initial failure until the end of cascading, when no 

intervention is performed. The tolerance parameter of the cascading failure model α is set to 0.3, in line with 

the previous work [1]. The elements in black color experience load changes beyond their capacity at the 

current cascading stage. It is shown that a large number of elements are overloaded (Figures 2.a and 2.b) and 

fail after the initial attack, and are removed from the network (Figures 2.b and 2.c). Conversely, the loads of 

some elements decrease after the initial attack. Nonetheless, in the following steps these elements exceed the 

maximum capacities and are removed from the network due to the further propagation of the cascade. The 
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cascade stops after the stage t =2 (Figure 2.c). At the end of the cascade, the network is clustered into several 

islands (Figure 2.d). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. Illustration of the cascading failure propagation steps after the initial removal of line 107 and no 

intervention 

 

5.2 Results of the NSBDE algorithm 

According to the protection strategy presented in Section 2.3, it is assumed that the protection 

intervention (line switching) takes place only once when t = 0 after the failure of the transmission line 107. 

The configurations of the NSBDE parameters are summarized in Table 1. The NSBDE parameters and the 

number of experiment runs (equal to 5) are set identical to those in [1].   

 

 

Load variations w.r.t. original after initial attack

 

 

Initial attack

Load beyond capacity

Load increase

No load variation

Load decrease

Load variations at step 1 w.r.t. previous step

Load variations at step 2 w.r.t. previous step Load variations at step 3 w.r.t. previous step
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Table 1. The parameters of the NSBDE algorithm 

NSBDE parameters 

Population size NP 40 

Dimensionality of solutions K 171 

Crossover rate CR 0.8 

Scaling factor F 0.2 

Minimum fitness error 10
-4 

Maximum number of generations 1500 

 

The convergence plots of one experiment run of NSBDE algorithm are shown in Figure 3. The three 

panels in Figure 3 show the three extreme points of the best Pareto-front at each generation during the 

evolution (namely, the minimum global connectivity loss, the minimum local connectivity loss, and the 

minimum number of lines switched-off). It is observed that NSBDE is able to converge after about 600 

generations. 

 

Figure 3. The convergence plots of NSBDE algorithm 

 

The quality of the estimated Pareto front at each experiment run is assessed by the well-known hyper 

volume (HV) [53] measure. HV is defined as the volume or hyper volume between the estimated Pareto front 

and a predefined reference point. The exact computation of HV can be usually time-consuming; here, we 

resort to a MATLAB tool based on the Monte Carlo method [54]. The two parameters for HV calculation, 

the number of sampled random points and the reference point, are set to 10
7
 and (1, 1, 4), respectively. The 

mean value of the five HVs is 0.2771, the standard deviation is 0.0557, the maximal HV is 0.3276, and the 

minimal HV is 0.2175.  
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The final estimated Pareto front obtained by selecting the non-dominated solutions among those 

reached in the five different runs is illustrated in the 3-D space of Figure 4.a. The HV of this front is 0.3278, 

higher than any of the 5 individual fronts. The three 2-D projections of the solutions are shown in Figures 4.b 

to 4.d, respectively. 

 

 

(a) 

 

(b) 

 

(c) 

 

 (d) 

Figure 4. The Pareto front in 3-D space and its 2-D projections 

 

The numerical results of these strategies in terms of the three objective functions,   ,    
 and    

 
    

(i.e. the solutions in the estimated Pareto front) are presented in Table 2. They are non-dominated to each 

other in terms of the three objectives. However, strategy #5 is of particular interest since it has significant 

smaller    and    
values than the other solutions, except strategy #6, and it requires switching off a set of 

only 3 transmission lines, less than in strategy #6. 
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4 0.469 0.300 2 

5 0.132 0.067 3 

6 0.122 0.067 4 

 

 

5.3 Analyses and interpretation of the results 

Strategy #5 is selected for the illustration of cascades development considering the optimal operator 

interventions. Figure 5 contains the ‘snap-shot’ of the cascading failure process at each stage from the initial 

attack until its end. The state of the network following the initial attack presented in Figure 2.a and in Figure 

5.a is the same. Several components are potentially overloaded and would be disconnected from the system 

if no protection was put in action (Figure 2.b). Unlike the scenario presented in Section 5.1, the protection is 

applied (Figure 5.b), and three links are switched off as part of the protection strategy at the stage t = 1, i.e. 

links 43-44, 49-52, and 64-78. As the result of the protection strategy, the potential overloads are relieved 

and the cascading failure is successfully mitigated after these links are switched off (Figure 5.b). Figure 5.b 

shows that none of the elements exceeds the maximum capacity in this scenario. Therefore, there are no 

further disconnections in the network after the protection action is put in action (Figure 5.c), the cascade 

cannot propagate in the network and the failure process stops at t = 1 (Figures 5.c and 5.d). Throughout the 

cascading failure process only 4 links are disconnected, including the initial removal, and no node is 

disconnected resulting in S = 0, i.e. the cascade size is zero. 

 

 

(a) 

 

(b) 

Load variations w.r.t. original after initial attack

 

 

Initial attack

Load beyond capacity

Load increase

No load variation

Load decrease

Load variations w.r.t. original after protection strategy

 

 

Switched-off lines

Load increase

No load variation

Load decrease
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(c) 

 

(d) 

Figure 5. The illustration of cascading failure propagation after the failure of line 107 with optimal 

intervention strategy #5 

 

Figure 6 shows the effects of the operator optimal intervention by comparing the    and    
 values of 

the four optimal strategies in Table 2 at each stage of the cascade. We note that the NSBDE optimization 

identifies that no intervention can be a possible optimum protection strategy, indicated as strategy #1, 

because it provides the global minimum of the number of lines to switch off. Among all strategies, strategy 

#5 presents the best local connectivity loss and the second best global connectivity loss, at the end of the 

cascade failure after the protection strategy is applied at    . These results are consistent with the cascade 

evolution presented in Figure 5. Strategy #1 (no protection) performs better than the other three protection 

strategies at t = 1, but it allows the cascade to propagate and to affect the whole network with disruptive 

consequences. Conversely, strategies #4, #5 and #6 are able to stop the failure process at t = 1. 
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Figure 6. The cascade development in terms of global connectivity loss,   , and local connectivity loss,    
, 

after the failure of line 107, with and without interventions 

 

Looking at the previous results obtained in [1] we note that the effect of introducing the third objective 

of minimizing the number of lines to be switched off, of looking at the outcome of the whole cascades, of 

integrating non-dominated sorting mechanisms in the optimization search (Table 3), leads to strategies 

obtained by NSBDE which are in general superior in terms of the connectivity losses, the number of lines 

being switched off, and the cascade size. In particular, the NSBDE strategy #3 and #4 seem most promising 

and practical because they result in significantly smaller    and    
values than those relative to the other 

strategies, and they require significantly lower numbers of switching off, i.e.    
 
    = 3 or 4. Furthermore, 

the cascade size S is equal to zero because no node is disconnected from the network at the end of the failure 

process. 

 
Table 3. The results of the NSBDE and the results published in [1] 

Method Strategy ID       
    

 
     S 

No 

intervention 

1 0.96 0.99 0 57 

MBDE [1] 1 0.76 0.81 31 10 

 2 0.77 0.89 26 13 

 3 0.75 0.80 30 9 

NSBDE 2 0.719 0.548 1 12 

 3 0.715 0.556 1 10 

 4 0.469 0.300 2 0 

 5 0.132 0.067 3 0 

 6 0.122 0.067 4 0 

 

 

6. DISCUSSION 

 

We embrace the complex network perspective on the network protection (NP) problem. This perspective 

allows characterizing the topology of network systems and identifying critical parts by an analysis that is 

preliminary and complementary to more detailed approaches [55-58]. The feasibility of line switching is 

evaluated by a model of cascading failure process which relies on a topological representation of the network 

connection pattern [46]. The abstract model of flow and cascades is not based on the physics of the actual 

power flow but rather mimics the flow in the network based on the shortest paths that connect generation and 

load nodes. 

Given the somewhat abstract level of the modeling, the results gained with respect to the vulnerable 

points (or lines) in the system (first findings) may not be clear-cut, and major hidden vulnerabilities may still 

be expected. Then, to achieve a higher degree of accuracy, system understanding has to be further developed 

and more detailed information about the system and its operating environment may be needed. The re-

assessment of simplifications made earlier may call for more sophisticated methods for their successive in-

depth analysis [59].  
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In order to draw firm conclusions about the significance of topological methods, e.g. in electricity 

infrastructure vulnerability characterization, current research focuses on systematically comparing their 

results with those obtained from power flow-based models [52, 57, 60]. The general feeling is that only a 

partial superposition of functional and structural criticalities should be expected. In this view, the abstract 

models of flow and cascading failures that are used in this study cannot be interpreted as an approximation of 

real, functional data. 

The research presented, thus exemplifies the proposed methodology with reference to a power 

transmission network, focusing only on its structure and with no further reference on the physical and 

functional properties. As described in Section 2, the load of a node is assumed equal to the total number of 

shortest paths connecting every source node to every sink node passing through that component. This 

assumption may not be functionally valid for electrical power grids, where power flows according to 

physical rules such as Kirchhoff’s laws, and load demand. Nevertheless, it serves the purpose of the paper 

which is to look into the structural properties and apply the NP optimization framework to a complex 

network of realistic size. 

In the energy field, NP by line switching is common practice in problems like line overloads [31], loss 

and/or cost reductions [61], system security improvements [62], or a combination of them [32]. Examples of 

line switching in other types of operations are the traffic closure due to road work, accidents or natural 

disasters, interruption of internet or telecommunication lines. For practical uses, the preliminary analysis 

propounded can serve for guiding more detailed approaches. Nonetheless, the use of line switching, here 

taken only as an example of protection measure, must be carefully considered in practice: as seen in our 

results too, the action of switching off transmission lines during a failure might itself worsen the behavior of 

the system in some cases.  

In this direction, introduction of physical characteristics into abstract modeling approaches is envisaged. 

Indeed, future research steps will consider the extension of the abstract model of cascading failures “beyond 

network abstraction” to incorporate physical properties of the engineered network systems which are 

investigated. This must be done in a way to bridge the modeling close to reality, without over-complicating 

the model that remains appealing if it requires minimum information and provides prompt results about 

network vulnerability.  

Nevertheless, while cascading model abstracts from the modeling of the realistic power flow, the 

proposed optimization method can obtain protective strategies of practical feasibility, i.e. suggesting few 

lines to be turned off to maintain network reliability [34, 55]. 

 

 

7. CONCLUSIONS 

 
This paper presents research work investigating the search for optimal network protection strategies against 

cascading failures within the complex network systems perspective. More specifically, the focus is on the 

strategy of disconnecting edges in order to avoid or alleviate component overloads that may arise from the 

occurrence of failures in the infrastructure, which hence may initiate a cascading failure process. Such a 
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strategy may be employed either as a manual strategy or as an implemented automatic control strategy, in 

order to re-route flows so that heavily congested components are relieved. 

A new algorithm, namely NSBDE, is proposed for the search of optimal network protection strategies 

against cascading failures. This algorithm improves the previously proposed MBDE [1], three-fold: 1) in the 

optimization problem formulation, a third objective function is included to minimize the impact of the 

switching off operations onto the existing network topology; 2) still in the optimization problem formulation, 

the final results of cascades, rather than only a short horizon of one step cascading, are used to evaluate the 

effects of the switch off strategy; 3) in the MOEA, the fast non-dominated sorting mechanisms are 

incorporated into the MBDE algorithm.  

Numerical application to the topological structure 380 kV Italian power transmission network has 

proved the proposed algorithm to be both promising and practical.  

The problem formulation and the optimization algorithm proposed in this work appear to be effective to 

obtain the optimal network protection strategy for mitigating the cascading failures at a low cost. Further 

improvements can be carried out in the following directions: 1) extend the applications onto other cascading 

models with more specific physical properties, e.g. OPA and PSA; 2) comparisons with other evolutionary 

algorithms, e.g. quantum inspired evolutionary algorithm [63], genetic algorithm [33], simulated annealing 

[64], etc.  
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