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Abstract. Scanning Mobility Particle Sizer (SMPS) is a high resolution nanoparticle sizing
system that has long been hailed as the researcher’s choice for airborne nanoparticle size
characterization for nano applications including nanotechnology research and development.
SMPS is widely used as the standard method to measure airborne particle size distributions
below 1 µm. It is composed of two devices: a Differential Mobility Analyzer (DMA) selects
particle sizes thanks to their electrical mobility and a Condensation Particle Counter (CPC)
enlarges particles to make them detectable by common optical counters. System raw data
represent the number of particles counted over several classes of mobility diameters. Then,
common inversion procedures lead to the estimation of the aerosol size distribution. In this
paper, we develop a methodology to compute the uncertainties associated with the estimation
of the size distribution when several experiences have been carried out. The requirement to
repeat the measure ensures a realistic variability on the simulated data to be generated. The
work we present consists in considering both the uncertainties coming from the experimental
dispersion and the uncertainties induced by the lack of knowledge on physical phenomena.
Experimental dispersion is quantified with the experimental data while the lack of knowledge is
modelled via the existing physical theories and the judgements of experts in the field of aerosol
science. Thus, running Monte-Carlo simulations give an estimation of the size distribution and
its corresponding confidence region.

1. Introduction
Among devices using electrical mobility methods to measure aerosol particle size distribution,
the Scanning Mobility Particle Sizer (SMPS) is the most widely used to characterize particles
smaller than 1µm. Since it can be applied in fields like: indoors air quality measurement, vehicle
exhaust pipes, atmospheric studies, toxicology testing, etc., it has become of interest to assess
the uncertainty associated with its outputs. So far, although some works have been carried on
the adequacy of particle size measurements made by this device, such a dimensional feature
uncertainty cannot be provided. SMPS is composed of a Differential Mobility Analyser (DMA)



and a Condensation Particle Counter (CPC). First one selects particles mobility diameters while
the other is a counter used for the detection. First, aerosol passes through an inertial impactor to
avoid largest particles to enter the DMA column, then the aerosol enters the charge neutraliser
to be conditioned. Indeed, aerosol particles are usually charged. In this case, a bipolar charge
distribution is created by exposing the aerosol to a radioactive source, so, particles that carry
several charges lose their charge excess. Once aerosol is well conditioned particles are selected
using electrical classification inside DMA column: an electric field is created, and the airborne
particles drift in the DMA according to their electrical mobility. Once selected, particles reach
the CPC to be counted. In this paper, we focus on providing the users with a methodology to
compute the uncertainties associated to the size distribution estimated by an inversion procedure.
The article is organized as follows: section 2 defines the technical protocol to produce the data,
section 3 describes the physical model to relate the experimental data to the size distribution
and the inversion procedure to estimate the size distribution. Improvements are mainly brought
in section 4 where the sources of uncertainty arising from both the measure and the estimation
of the size distribution are decomposed and propagated. Thus, the experimental dispersion is
represented by errors on the raw data. Section 4.1 explains how the model of these errors is
deduced from some observed signals. Then, section 4.2 describes how the estimation of the size
distribution is realized via an inversion model whose variability will refer to the lack of knowledge
on the parameters and other physical laws of the system. Preliminary results obtained when
this methodology is carried out on SiO2 airborne nanoparticles are presented in section 5 and it
is followed by a discussion about the limits of the methodology and the possible improvements.

2. Technical protocol
Measurements using a SMPS can be performed via several kind of devices. The measurement
process can be split into phases: the generation of the aerosol, the neutralization of the charges,
the selection of the particles and their detection. In this case, the measurement is assured by a
pneumatic atomizer 3076, a charge neutraliser using Krypton source (85Kr), a Long-DMA 3081,
and a butanol based CPC 3022. Each equipment comes from TSI company. As an example, an
other choice could have been an electrospray, a corona charger, a nano-DMA and a water based
CPC. The results that will be shown later in this paper refer to the chosen devices.
The protocol that is used is defined as follows:

• Instruments are warmed up for at least 30 minutes

• TSI 3076 operates in the following conditions: air flow rate: 3 L.min−1 with inlet pressure
at 2.5 kg.cm−2, liquid flow rate: 20 cm3.min−1 at 2.5 kg.cm−2 which are nominal settings
for the device

• Nanoparticles generated by the atomizer pass through the charge neutralizer 3077, and
then, are introduced into the DMA

• DMA settings only consist in defining the following equalities for the flow rates: Qsh = Qexc
and Qa = Qcpc so that the flows are symmetric inside the classifier

• CPC low flow mode is activated such that the inlet flow is 5 cm3.s−1

Figure 1 presents a schematic diagram of the experimental setup.



Figure 1. Schematic diagram of the experimental setup

3. Model definition and Inversion procedure
The recovery of size distributions, which is referred as data inversion, requires the solution of
the set of Fredholm integral equations. Let yi be the number of particles counted by the CPC
in the ith channel, ki the nonnegative kernel function for the time range corresponding to the
channel i, dp the mobility diameter of the particle, u the logarithm function, εi the measurement
error in the ith channel and finally f the aerosol size distribution, then:

yi =

∫ +∞

0
ki(dp)f(u(dp))d(u(dp)) + εi, i = 1, ...,m (1)

where each kernel function is expressed as:

ki(dp) = Qat
i
c

∑+∞
p=1

Φ(p, dp)W (dp)Ω̄i(dp, p). (2)

Components Φ, W and Ω̄i of the kernel function respectively represent the bipolar charge
distribution function, the CPC detection efficiency and the mean transfer function for the time
range corresponding to the channel i, p being the number of charges carried by the particle, Qa
the aerosol flow rate entering the DMA and tic the counting time for the ith channel.
The principle of selection is based on the relation between the voltage applied at the center
rod of the column of the classifier and the mobility diameter. This relationship is expressed via
the electrical mobility. The experimental electrical mobility, denoted as Zv, can be computed
according to the voltage V , the flow rates (Qsh the sheath flow rate entering the DMA and



Qex the excess flow rate exiting the DMA) and the geometry of the DMA (L the length of the
column, r1 and r2 respectively the inner and outer radii of the electrodes). The theoretical
electrical mobility, noted Zd, relates Zv to a specific mobility diameter dp. Finally considering
the equality of both quantities, one can get the mobility diameter associated to the applied
voltage.

Zv =
(Qsh +Qex)log(r2/r1)

4πLV
, Zd =

peCc(dp)

3πµgdp
, (3)

where e is the charge of the electron, µg the dynamic gas viscosity and Cc the slip correction
factor. The expression of the slip correction factor is based on the triplet (α, β, γ) and its
expression is as follows:

Cc(dp) = 1 +Kn(dp) [α+ β exp(−γ/Kn(dp))] , (4)

Kn(dp) = (2λm)/dp, (5)

where Kn is called the Knudsen number and λm is the mean free path of a particle.

Since the DMA voltage is being continuously scanned, the times of the system become crucial.
Indeed, particles are selected by the DMA and after transport through the tubing (transport
time is denoted as td), the counter detects them. An error in the time specification corresponding
to the time for particles to pass from the DMA exit slit to the CPC counting chamber lead to
an error in the estimation of f on the diameter space. The same kind of statement can be made
in what concerns the time for particles to pass through the DMA column (denoted as tf ). This
time is computed as the time for the aerosol to pass through the DMA.
The discrete form of equation 1 after applying a numerical quadrature to approach the integral
numerically can be written as:

yi =
j=n∑
j=1

wijkijfj + εi, i = 1, ...,m, (6)

where kij = ki(dp,j), fj = f(dp,j), (dp,j)j=1,...,n being the vector of points used for the
discretization of the diameter space. Once the relationship between the inputs and the outputs
of the measurement system is well-defined, next step is to estimate each component of the vector
f . Several algorithms lead to comparable estimations of the size distribution. Most commonly
used algorithms in the field of aerosol are those developed by Seinfeld [1], Twomey [2],[3] and
more recently Collins et al. [4] or Talukdar [5]. Following Seinfeld’s method, inversion with
regularization techniques has been chosen here. It leads to a fast and accurate estimation of
f and it also takes into account the judgements of the experts through the prior. Let H the
matrix such that H = (wijkij)

j=1,...,n
i=1,...,m ∈ R

m×n, y = (yi)i=1,...,m ∈ Rm and f = (fj)j=1,...,n ∈ R
n,

then the inversion procedure becomes the minimization problem: find f∗ ∈ Rn such that

f∗ = arg min
f≥0

{
‖Hf − y‖22 + λ‖D2f‖22

}
, (7)

= arg min
f≥0
{G (H, f, y, λ)} , (8)

where D2 is the second-order difference matrix and f ≥ 0 means fj ≥ 0, ∀j .

Here the prior penalizes solutions that are not smooth. This type of penalty seems justified
in this application because aerosol processes often tend to smooth rough distributions. The



parameter λ will be a trade off between the prior we associate to the solution to be estimated
and the solution that minimizes the quadratic error term. The L-curve method is chosen here to
determine the regularization parameter and it is computed via the pruning algorithm developed
in [6]. To ensure robustness, λ is calibrated through the all set of data. The solution of the
minimization is computed via the fast non negative least-square algorithm (fnnls [7]) algorithm
that is an optimized version of Lawson and Hanson non negative least-square algorithm (nnls [8]).
Several references [1],[2],[3],[4],[5] define how to estimate the size distribution, this article does
not intend to bring improvements in the inversion procedure but mainly in the following section
dedicated to the uncertainty analysis.

4. Uncertainty analysis
In this part, the aim is to quantify and to propagate the uncertainties coming from both the
measurement process and the inversion. The experimental dispersion is difficult to model since
each component of uncertainty that it involves is not accurately modelled yet. Thus, choice
has been made to quantify it with experimental data. It can be seen as a behavioural model
and it has the advantage that it warranties a realistic quantification of this source. On the
other hand, the uncertainty associated with the inversion procedure is modelled. Unlike for
the experimental dispersion, the uncertainty it induces cannot be track down into the data
because the error it produces is systematic. The major source is the lack of knowledge on
the physical models to be used to define the matrix H. Indeed, several theories compete to
define the factors of Cunningham, the bipolar charging law or the diffusive transfer function.
Moreover, elements of this group are different in terms of nature: scalars and functions. Some
scalars can be modelled with corresponding uncertainty because they can be measured (L, r1,
r2). Some cannot be measured but the existing theories can be used to bound them (α, β, γ) or
concerning the functions φ and Ω, comparisons between data and models have been performed
under controlled conditions. In this paper, we will only consider the ignorance on parameters,
so Fuch’s theory [9] is chosen to define φ and Stolzenburg’s work [10] is used to model the
diffusional transfer function. To sum up, the experimental dispersion, denoted as the first group
of uncertainty represents 3 major components:

• the instability of the aerosol generation,

• the partial variability of the physical parameters (flow rates, environmental conditions, etc.),

• the noise coming from the CPC counting process,

while the inversion uncertainty that is considered as the second group is made of:

• the lack of knowledge associated with the choice of the physical parameters,

• the variability induced by the choice of the regularization parameter,

• the bias due to the method of regularization.

The evaluation of the bias requires an aerosol of reference from a metrological point of view.
Since it is not available due to the instabilities of the generation process, it is not yet possible
to account for it in the uncertainty budget.

4.1. The experimental dispersion

In practice, a set of measurements have been made and the user’s got observations (yil)
l=1,...,nl
i=1,...,m,

i being the index for the class of diameter and l the index that corresponds to the number of
experiences. We consider that the experiences have been repeated nl times, so that enough
information can be extracted from the data. The idea we propose is to infer a model based
on this information by considering simulated data modelled as a correlated Gaussian process
noted ỹ. Experiences tend to justify the Gaussian assumption and authors usually abound



in that sense. Let C be the empirical correlation matrix, the autocorrelated Gaussian kernel
is computed by performing a SVD (Singular Value Decomposition) on C such that it can be
decomposed as C = UΣV ∗.
ỹ is then created as follows:

ỹ =
(
U
√

Σz
)
σ + µ, (9)

where z = (z1, z2, ..., zm) with zi ∼ N(0, 1), µ and σ are respectively the mean and standard

deviation of the real observations: µ = (µ1, µ2, ..., µm) ∈ Rm such that µi = 1
nl

∑l=nl
l=1 yil,

σ = (σ1, σ2, ..., σm) ∈ Rm such that σi = 1
nl−1

∑l=nl
l=1

√
(yil − µi)2. To propagate the uncertainty

arising from the experimental dispersion, the methodology is to generate a set of simulated data
via Monte-Carlo simulations and to estimate the vector f via the minimization described in (eq
7). Let ỹ[q] ∈ Rm be the simulated data generated for the qth simulation, nq the total number
of simulations and λ̄Lcurve the regularization parameter calibrated thanks to the set of real data
y via the L-curve algorithm, then the estimation of the solution vector f for the qth simulation
denoted as f̂ [q] ∈ Rn is computed as:

f̂ [q] = arg min
f≥0

{
G
(
H, f, ỹ[q], λ̄Lcurve

)}
, q = 1, ..., nq. (10)

4.2. The inversion uncertainty
A parametric model is developed in order to take into account the uncertainty associated with the
lack of knowledge on parameters to be used for the definition of the matrix H. These parameters
are selected such that they are not well-known or because several theories compete to define
them and especially because they have a significant effect on the final estimation. In a previous
paper [11], sensitivity analysis has been carried out to determine the most significant parameters,
significant means here that a small error in their definition produces a large variability on the
reconstruction of the solution vector. The chosen parameters are: L, r1, r2, α, β and γ. Nominal
values for α, β and γ are taken from experiments made by Kim et al.. [12]. Experiences realized
by Hutchins et al.. [13] and Allen and Raabe [14] are chosen as bounds around the nominal values.
Subscripts k, h and ar refer to each author. Nominal values for the geometrical parameters of
the DMA are given by the constructor and their associated uncertainty is taken from the ISO
standard (reference ISO 15900:2009(E)). To account for the uncertainty the selected parameters
produce, they are modelled as random variables and propagate through the inversion via Monte-
Carlo simulations as for the experimental dispersion. Table 1 summarizes the choices made for
the definition of the random variables. Let H̃ [q] be the matrix drawn by the random variables

for the qth simulation, for a chosen experimental measurement y = (yil)
l=l

′

i=1,...,m , f̂ [q] is now
computed as:

f̂ [q] = arg min
f≥0

{
G
(
H̃ [q], f, y, λ̄Lcurve

)}
, q = 1, ..., nq. (11)



Table 1. Definition of the parameters that model the lack of knowledge. U and N respectively
refer to Uniform and Normal distributions. Subscript 0 refers to the nominal value given by the
constructor for the corresponding parameter.

Name Law Mean Standard deviation Min Max

r1 U r1,0 - r1,0 − 0.001r1,0 r1,0 + 0.001r1,0

r2 U r2,0 - r2,0 − 0.0006r2,0 r2,0 + 0.0006r2,0

L U L0 - L0 − 0.005L0 L0 + 0.005L0

α N αk
max(‖αh−αk‖,‖αar−αk‖)

αk
- -

β N βk
max(‖βh−βk‖,‖βar−βk‖)

βk
- -

γ N γk
max(‖γh−γk‖,‖γar−γk‖)

γk
- -

The decomposition of the sources of uncertainty as presented above is required when the
purpose is to characterize their respective effect on the reconstruction of the solution vector
f . Nevertheless, the final result is the estimation of f with the associated uncertainty and it
has to be computed when both sources are simultaneously considered. Combining the sources
is straightforward since the procedure is the same as for each source taken individually. Thus,
when both sources are combined, the estimation of the solution vector f for the qth simulation
is obtained as:

f̂ [q] = arg min
f≥0

{
G
(
H̃ [q], f, ỹ[q], λ[q],Lcurve

)}
, q = 1, ..., nq, (12)

where λ[q],Lcurve is the regularization parameter computed for the qth simulation.

5. Results
Starting from real observations, the aim of this part is to show the uncertainty associated with

the mean estimate, denoted
¯̂
f , that is computed with the methodology presented above for

each source taken individually and combined. As an example, SiO2 airborne nanoparticles are
presented. The aerosol presents 2 populations in terms of size: the first one is around 30 nm
while the second population stands around 40 nm. Dispersions around the peaks are similar.
These observations will prove the robustness of the inversion procedure, indeed, both peaks are
really close and a bad estimation of the regularization parameter shall lead to over-smooth the
solution. Figure 2 shows the real observations y (l = 40 in this case) and the corresponding
simulated data generated via Monte-Carlo simulations. Following the developments proposed
in section 4, experimental dispersion and its effects on the estimation of the vector f as well as
the lack of knowledge and its impact on the reconstruction are illustrated in figure 3. Combined
uncertainties of both sources are also presented in this figure. The uncertainties are shown
through a confidence region with a confidence level of 95 %. The results suggest that the
experimental dispersion affects the estimation of f on the y axis (concentration of particles)
with the same amplitude through the all diameters while the lack of knowledge on the physical
phenomena does not significantly affect the concentration of particles but it induces a translation



of the reconstruction. Other experiences are actually being realized on different aerosols in order
to confirm these results.

Figure 2. Real data (top) versus simulated data (bottom) for SiO2 airborne nanoparticles



Figure 3. Illustrations of the 95 % confidence region computed thanks to Monte-Carlo
simulations for each source of uncertainty. The figures show respectively the uncertainty
associated with the experimental dispersion (top), the lack of knowledge (middle) and both
sources combined (bottom)



6. Conclusion
A methodology has been presented to compute the confidence region on the estimated size
distribution when several experiences have been carried out to characterize an aerosol. The
statistical model that accounts for the experimental dispersion has been inferred from real
observations because spatial correlations are difficult to model precisely. The statistical
inversion procedure takes into account the uncertainties coming from the lack of knowledge
on parameters that are used to relate the data to the size distribution through the matrix of
kernel functions. An example of aerosol composed of SiO2 airborne nanoparticles is treated
using this methodology. Results reveal that the uncertainty arising from each source affects
respectively the reconstruction on the concentration of particles and on the diameters. Some
sources still need to be added especially the impact of the prior in the minimization problem and
the bias that it introduces on the estimation of f . Next step will be to consider analytical size
distributions to estimate the bias induced by the prior since an aerosol of reference is not yet
available. An other improvement would be to precisely model and propagate the uncertainties
when only one experience is available.
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