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Abstract: The aim of this work is to assess the performance of a maintenance policy when a stochastic model 

of the life of the component of interest is known, but relies on parameters that are imprecisely known, and 

only through information elicited from experts. The case in which the information used to feed the model 

comes from a single expert has been investigated by the authors in a previous work. This paper deals with 

the different situation in which a number of experts are involved in the elicitation of the uncertain 

parameters; in particular, each expert provides an interval he/she believes containing the unknown value of 

the parameter which he/she is knowledgeable about. The different type of available information calls for the 

development of a different method to represent and propagate the associated uncertainty. Resorting to 

Probability theory to address this issue is questionable. Then, a technique based on the Dempster-Shafer 

Theory of Evidence (DSTE) is embraced in this work, which allows facing a practical case study concerning 

the check valve of a turbo-pump lubricating system in a Nuclear Power Plant. The output of such method 

consists of couples of Lower and Upper cumulative distributions describing the uncertainty in the 

maintenance performance indicators of interest (i.e., unavailability and costs), which accounts for both the 

aleatory and epistemic contributions. 

Keywords: Maintenance, Uncertainty, Dempster-Shafer Theory of Evidence (DSTE).  

1 Introduction 

The performance of a given maintenance policy can be a priori evaluated by modeling the behavior of the 

maintained component. The models developed to this aim rely on a number of parameters which may be 

weakly known in real applications, due to lack of real/field data collected during operation or properly 

designed tests. In these cases, the main source of information to estimate these parameters becomes the 

experts’ judgment, which is in general poorly refined. A number of methods and techniques have been 

proposed in the literature to address the maintenance performance assessment issue in the presence of the 

imprecision, from different angles: 

 Probability distributions have been used to represent the uncertainty in the parameters of the 

stochastic models of the degradation mechanisms (e.g.,[33]). However, resorting to probability 

distributions to represent uncertainty due to a lack of knowledge may result in a set of 

assumptions and biases, with loss of generality ([16], [18], [44]). 

 Stochastic Flowgraphs [25] and Hidden Markov Models [35] (both based on the Maximum 

Likelihood Estimation method) have been proposed to estimate the unknown parameters of the 

stochastic model of the maintained component, when some field data are missing (e.g., [26], [43]). 
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 Fuzzy Logic ([47]) has been applied to address the cases in which the lack of knowledge concerns 

both the degradation model of a component and its parameters (e.g.,[1]-[3], [27]). 

 Theoretical (e.g., [22]) and computational (e.g., [28]) methods have been developed to incorporate 

the imprecise parameters (e.g., represented by interval probabilities [11], [37], [39] or by fuzzy 

stets [20]) into markov models. 

On the other side, there are other techniques such as DSTE and Possibility Theory (see [5]-[8], [13]-[16], 

[18], [21], [23], [38], [40], [45], [46], for detailed surveys and comparisons) which are emerging to be 

more appropriate in describing epistemic uncertainty, though they have never been adopted in Markov 

models (as pointed out in [37]) nor in other models of the degradation mechanisms ([4]).  

To plug this gap, in a previous work ([4]) the authors have applied one such technique, based on the 

concept of Fuzzy Random Variables (FRVs), to the maintenance policy performance assessment issue. The 

situation investigated in [4] can be summarized as follows: 

 the stochastic model that describes the life of the component of interest, in terms of degradation 

process, failure behavior and maintenance interventions, is known without any uncertainty. 

 The model of the component’s behavior depends on a number of ill-known parameters. 

 Information about the ill-known parameters is elicited from a single expert, who provides for 

every uncertain parameter a set of intervals, which contain its true value with different degrees of 

confidence. 

With reference to the latter point, the situation considered in [4] requires that a single expert is 

knowledgeable, at least qualitatively, on all uncertain parameters and, what is more, he/she is able to provide 

intervals with associated confidence levels: this may be difficult in some practical cases. In the present work, 

this restrictive condition is relaxed: different teams of experts, with diverse skills and competences, are 

involved in the elicitation of the information about the parameters of the model. In particular, each expert is 

asked to provide an interval that he/she supposes containing the true value of the uncertain parameter. This 

calls for a proper technique to represent and aggregate the experts’ knowledge. Namely, the intervals are 

treated as random sets, and then combined to build an Evidence Space, according to the DSTE. 

The uncertainty representation technique influences the method for uncertainty propagation. To this aim, an 

hybrid Monte Carlo-DSTE approach is adopted in this work which maps the different combinations of 

uncertain parameters into some selected summary measures (mean, quantiles, etc.) of the quantities of 

interest (e.g., unavailability and cost) [23]. Then, a description of the uncertainty on these values is provided 

in terms of Belief and Plausibility measures. Notice that in this work the issue of establishing an optimal 

maintenance policy is not addressed. In fact, this requires the availability of logic, mathematical and 

computational models to perform the additional step of selecting the optimal policy from the point of view of 

the identified performance indicators, while fulfilling constraints such as those regarding safety and 

regulatory requirements. In practice, this multi-objective optimization problem has to be faced in a situation 

in which some constraints and/or the objective functions are affected by uncertainty. To effectively tackle 

this problem, a number of approaches have been already propounded in the literature considering different 

framework for uncertainty representation: probability distributions in [12], [17], [24], fuzzy sets in [29] and 

[42], and plausibility and belief functions in [30]. This problem is not considered in this work. 

The remainder of the paper is organized as follows: the main features of the DSTE framework are briefly 

recalled in Section 2; Section 3 describes the method to represent and propagate the uncertainties focusing on 



the representation of the information elicited from the experts. The method is illustrated in Section 4 with 

reference to the practical case study investigated in [4], concerning a check valve of a turbo-pump lubricating 

system in a Nuclear Power Plant With the final goal of investigating the potential of this technique for 

maintenance performance assessment. Section 4 also briefly recalls the case study investigated in [4] with 

the results obtained in the case in which the epistemic uncertainty on the parameters are neglected. An 

overall comparison of the method here investigated with that proposed in [4] is provided in Section 5. Some 

conclusions are given in the last Section. 

2 Basics of DSTE  

DSTE (also called Theory of Belief Functions) provides a formal structure to process information which 

is at the same time of random and imprecise nature [8]. In this Section, we provide some basics of this theory 

to help the understanding of the method proposed in the paper. For further theoretical details, the interested 

reader may refer to [7], [19], [23], [38], [45], [46]. 

Assume X is a variable, then DSTE involves the specification of a triplet (S, I, m) ([23]), where S (called 

‘sample space’) is the domain of X; I is a collection of non-empty subsets of S (referred to as ‘focal 

elements’), and m (Basic Probability Assignment, BPA) is a mapping function from the power set of S into 

the unit interval such that 
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The value of the BPA for any set A represents the portion of all relevant and available evidence that 

supports the claim that the true value of X lies in A, but to no particular subset of A. That is, the value m(A) 

pertains to the set A only, and makes no additional claims about any part of A. This entails that if any 

additional evidence on a subset B of A is available, then it must be represented by another BPA, i.e., m(B) 

[19]. 

BPA is analogous to the probability mass function (pmf), which assigns probability masses to a discrete 

number of points on the real axis. Unlike a pmf, the focal elements of a Dempster-Shafer structure may be 

intervals overlapping one another, and this is the fundamental difference that distinguishes Dempster-Shafer 

theory from traditional probability theory [19]. 

Given a set A included in S, there are two measures, called Belief and Plausibility, that are obtained from 

m as [45]:  
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The belief of A  is quantified as the sum of the probability masses assigned to all sets enclosed by it; hence, 

it is a lower bound representing the amount of belief that directly supports the fact that the true value of X 

lies in A. The plausibility of A  is, instead, the sum of the probability masses assigned to all sets whose 

intersection with the proposition is not empty; hence, it is the mass associated to the possibility that the true 

value of X is included in A [19], [45]. 

In Dempster’s view [13], BPA encodes the probability family P( ) = { ,  measurable ( )}P A Bel A P A
 
 

{ ,  measurable ( ) ( )}P A P A Pl A . Then,  

( )
( ) inf ( )

P
Bel A P A

P  and ( )
( ) sup ( )

P
Pl A P A

P        5. 

This entails also that the pair [Bel(A),Pl(A)] can be interpreted as lower and upper probabilities. That is, 

( ), ( ) ( ) ( )P Bel A P A Pl AP  [20]. On this basis, we can define the upper ( )F x  and lower ( )F x  

cumulative distribution functions such that , ( ) ( ) ( )x S F x F x F x , with ( ) (] , ])F x Bel x  and 

( ) (] , ])F x Pl x  (i.e., the generic set A in Equations 3.- 5. assumes here the form of ] , ]x ). For the 

sake of brevity, in the present work these Plausibility and Belief functions are called distributions and are 

indicated with abuse of notation by ( )Pl x
 
and ( )Bel x , respectively. 

3 Uncertainty setting 

Let us consider a model Z=g(Y), where Z=( oZZ ,...,1 ) is the vector containing the O output variables of 

interest, and g  is a function that models how Z depends on the k uncertain variables jY , k,1,2,j  , 

of vector Y; the uncertainty on these variables is characterized by known probability distributions 

);( jj

Y
yF j θ , k,1,2,j  , where },...,{ ,1, jMjjj

θ , are the vectors containing the jM  hyper-

parameters of the corresponding probability distributions. Also these parameters are uncertain and the 

information to characterize them is drawn from experts. This framework of analysis where the aleatory and 

epistemic components of the uncertainty are separated into two hierarchical levels is often referred to as 

‘level 2’ approach or setting [31]. This makes the present study different from other works of the literature, 

in which DSTE is embraced to treat epistemic uncertainty directly entering system reliability (e.g., [41]), i.e., 

with no stochastic variables. 

In the problem of assessing the performance of a maintenance policy, g is the model of the life of the 

component of interest, which encodes random variables ( , 1, ,jY j k ) such as the failure time, the repair 

time, the time of transition from a degradation state to another, etc. The output vector Z encompasses the 

variables oZZ ,...,1

 that are usually considered when assessing the performance of the given maintenance 

policy, e.g., portion of the mission time in which the component is unavailable, cost, etc. In this work, we are 

interested in some measures Ξ =
Q,...,ΞΞ1

 such as mean, quantiles, etc., representative of the random 

variables Z.  

Information elicited from the experts is used to estimate the hyper-parameters j
θ , j=1,…,k of the model 

g, such as the failure rate of an exponential distribution describing the component failure time. The 

uncertainty affecting the hyper-parameters is represented and propagated by means of the method discussed 

in the following.  



For the sake of clarity, the uncertainty treatment is described by ways of a simple case study concerning 

a non-repairable, binary component (i.e., at any time its state can be either working or failed, and once failed 

the component cannot be repaired), whose Time To Failure (TTF) is Weibull-distributed. In this example, 

there is k=1 uncertain variable , i.e., Y=( 1Y )=(TTF), described by the Cumulative Distribution Function 

(CDF) 

b

a

ttf

TTF ebattfF 1),;( , with 21M  uncertain parameters },{1 baθ , which are the shape 

and scale parameters of the Weibull distribution, respectively. Since this uncertain setting comprises only 

one random variable, there is no need to specify that we are referring to it. This allows to simplify the 

notation, by removing the first superscript from the symbols of both variables and parameters that pertain to 

a specific random variable, e.g., θ  is used instead of j
θ , and 

p
 instead of 

pj,
. The output is the portion 

D of the mission time T=10
5
h in which the component is in the down state, whereas Ξ contains the value of 

the mean and the 95
th
 percentile of D (i.e., O=1 and Q=2). Notice that the first quantity is the component 

average unavailability over the mission time.  

The function g that links TTF to D is given by: 

otherwise

TTTFif
T

TTFT

TTFgD

0

)(
       

6. 

Then, D is also a random variable, whose range of variability is the interval [0,1], and whose distribution, for 

given values of a and b, is: 

b

a

d)T(

D ed))T(P(TTFd)
T

TTFT
P(d)P(D(d)F

1

1     7. 

where d represents the generic value taken by the variable D. Figure 1 shows the shape of this function for 

a=1855h and b=7.5, jointly with the values of its mean (circle on the abscissas axis) and 95
th
 percentile 

(asterisks on the abscissas axis): the component is unavailable at least for 97% of the mission time.  

3.1 Information elicited from experts 

Let us consider a generic uncertain parameter ; a number e  of experts are asked to provide the 

intervals [ , ]
i i i

I , ei ,...,1  that are believed to contain the true value of . The assignments are made on 

the basis of the experts’ experience and independently from one another.  

With reference to the simple case study of the non-repairable and binary component with Weibull-

distributed TTF, there are two uncertain parameters a1
 and b2

. Let us assume that three experts 

provide estimations of a and three experts estimations of b. In this respect, notice that the method proposed 

in this work does not require that the same number of experts are involved in the elicitation of the different 

parameters. In fact, it allows addressing the more general situation in which the number of experts for each 

parameter is different; this entails also that the experts are different. Thus, for the sake of generality, we 

assume that the experts knowledgeable about the first parameter are different from those skilled in estimating 

the second parameter. Nonetheless, the approach illustrated in this work is capable of addressing the situation 

where each expert estimates both parameters; this requires simple modifications in some parts of the 

algorithm we are going to show. 



Each of the experts is asked to provide the interval he/she believes containing the true value of the 

uncertain parameter. Let us suppose that the gathered information is that summarized in Table 1: the interval 

provided by the i-th expert for the p-th parameter of the random variable is identified by its lower and upper 

bounds p

i
 and p

i , respectively.  

For the sake of clarity, we remind that in the uncertain settings with k random variables kYY ,...,1 , the 

notation has to indicate the random variable which the parameters are associated to. Thus, the number of 

experts involved in the quantification of the p–th parameter 
pj ,

 
of the j-th random variable

jY  is indicated 

by 
pje ,

 and the interval 
pj

iI ,
provided by the i-th expert is identified by its lower and upper bounds 

pj

i

,  and 

pj

i

,
, respectively. 

3.2 Uncertainty representation 

According to the procedure proposed in [23], the evidence space ( S , I , m ) defining the generic 

uncertain parameter  is defined by assuming that the sets iI , ei ,...,1  constitute its focal elements. More 

precisely, S  is defined as the domain of the parameter, whereas the set of focal elements results 

},...,1,{ eiII i
. Since the BPA assigned to a focal element Ii represents the portion of all available 

evidence that supports the claim that the true value of the parameter lies in the interval Ii  (Section 2), 

assuming in this case to have available e independent and equally credible sources of information, i.e. the e 

experts, the BPA associated to the focal element iI  is assumed to be the fraction of the sources that specified 

that focal element:  

m =Kr( iI )/ e            8. 

where Kr( iI ) is the number of experts that specified the set iI . Thus, if all the experts provide different 

intervals Ii, i=1,…,e the BPA assignment will be 1/e. In order to further investigate the uncertainty 

representation provided by this method, let us consider a simplified case where there are two experts 

providing overlapping intervals I1 =[a1,b1] and I2=[a2,b2] with a1<b1<a2<b2. Applying Eqs. (3) and (4), one 

gets that the probability that the parameter true value lies in I1 ∩ I2=[a2,b1] is between Bel (I1 ∩ I2)= 0 and 

Pl(I1 ∩ I2)=1. Since for expert 1 the parameter true value can be in the interval [a1,a2], (i.e., before the 

intersection), and for expert 2 the parameter true value can be in the interval [b1,b2], (i.e., after the 

intersection), we do not have any direct evidence that the true value of the parameter belongs to the 

intersection and thus Bel (I1 ∩ I2)= 0. On the other hand, since both experts do not exclude that the parameter 

true value lies in I1 ∩ I2, the plausibility of such interval is 1. 

With reference to the simple example illustrated above (binary, non-repairable component with Weibull-

distributed TTF), we have assumed that three experts ( 321 ee ) provide the intervals they suppose 

containing the scale and shape parameters of the Weibull distribution (Figure 2 (a) and (c)). These intervals 

form the set of focal elements },,{ 1

3

1

2

1

1

1 IIII  with associated BPA 3/1)()()( 1

3

11

2

11

1

1 ImImIm  for 

the scale parameter, and },,{ 2

3

2

2

2

1

2 IIII  with associated BPA 3/1)()()( 2

3

22

2

22

1

2 ImImIm , for the 

shape parameter. Such assignments determine the corresponding Plausibility (most left) and Belief 

distributions (most right) Pl( a ) and Bel( a ), Pl( b ) and Bel( b ), reported in Figure 2 (b) and (d), 

respectively.  



Again, when the uncertainty setting comprises k random variables, the notation needs to be changed. The 

evidence spaces are indicated as (
pjS ,

, pjI , ,
pjm ,

), and are defined by assuming that the sets 
pj

iI ,
, 

pjei ,,...,1  constitute the focal elements. Thus, 
pjS ,

 is the domain of the p-th parameter, whereas the set of 

focal elements },...,1,{ ,,, pjpj

i

pj eiII . Finally, the BPA associated to a particular focal element 
pj

iI ,
 is 

given by:  

pjm ,
=Kr(

pj

iI ,
)/

pje ,
          9. 

In the case in which the experts are asked to estimate all the jM  parameters of the j-th random variable,

1,...,j k , then we consider the focal sets 
jI  (defined as the jM -dimensional intervals 

1 2
... j

j j j

M
I I I ) 

provided by the experts, which are associated to the probability masses given by: 

jm =Kr(
jI )/ je            10. 

3.3 Uncertainty propagation 

The model g depends on a number Nu of parameters affected by epistemic uncertainties, where 
k

j

jMNu
1

; for convenience, these parameters are organized in the vector 

kMkkMM ,1,,21,2,11,1 ,...,,...,,...,,,...,
21

. Hence, g maps points of a Nu-dimensional space into a O-

dimensional space; this entails that the first step to propagate the uncertainty is to build an evidence space on 

such Nu-dimensional space. According to [23], the evidence space ( S , I, mI) characterizing the uncertainty 

in this multi-dimensional space of  is constructed on the basis of the mono-dimensional evidence spaces of 

the single parameters of . Specifically, Sθ is the set containing the points ],...,[ ,1,1 kMk
 that belong to 

the Cartesian product of the sample spaces of the Nu uncertain parameters, that is: 

}....],...,[|{ ,1,1,1,1 kk MkMk SS ; the set of focal elements is 

1,1 , , ,{ .... | ; , }
kk M i j i jI E I I I S i j . Under the assumption that the parameters of θ are stochastically 

independent, mI is defined in analogy to the case of probability spaces, where the probability of the 

combination of events pertaining to different spaces is given by the product of the probabilities of the single 

events; that is:  

, 1,1 ,

, , 1,1 ,

1,... ,

1,...

( ) ....

(E)

0

k

j p kk M

j

j p j p k M

i i i
j k

I p M

m I if E I I I

m

otherwise       

11. 

being },...,1{ ,, pjpj ei . Notice that the independence assumption adopted in this case, usually referred to as 

‘random set independence’ [10], comes from the assumption that the experts providing estimations of a 

parameter, are different from those of any other parameter. This assumption has been used in [23] with 

respect to the mean and standard deviation of a lognormal distribution. Generally speaking, Equation 11. 

cannot be applied to cases in which different forms of independence hold between the parameters; other 

formula have been proposed to address these different situations [10], [46], [40]. In particular, when the 

experts are asked to provide all the jM  parameters related to the j-th random variable, thus introducing 

correlations among them, then the set of focal elements becomes 
1{ | .... }kI E E I I , and the associated 

probability masses are given by: 



1

1,...

( ) ....
(E)

0

j j k

j kI

m I if E I I I
m

otherwise
       

12. 

The universe S  of the evidence space is given by the Cartesian product of the six intervals provided 

by the experts; I is made up of 3*3=9 sets: 
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The BPA, 
Im , assigns to each of these sets the quantity 

9

1

3

1

3

1
, which is the product of the probability 

masses 
1m  and 

2m
 
assigned to the intervals.  

The methodology to propagate the uncertainties from θ to Ξ consists of the following steps [23]: 

1. Define a probability distribution d on SI to be used for generating a sample ],...,[ ,1,1 kMk
 of θ. 

One way is to define the distributions )( ,, pjpjd  for sampling in each 
pjS ,

, kj ,...,1  
and 

jMp ,...,1 ; assuming independence between the parameters, the distribution )(d  for sampling 

 is then defined as 

jMp

kj

pjpjdd

,...,1

,...1

,, )()( . The construction of the distributions )( ,, pjpjd  is 

based on the assumption that the sets pj

iI ,  contained in pjI , , can be treated as discrete outcomes 

with probabilities )()( ,,, pj

i

pjpj

i ImIP . Conditional on its occurrence, a uniform distribution 

)( ,

,

pj

pj

iU  over pj

iI ,  is considered. Then, the density function associated with (
pjS , , pjI , , pjm ,

), is 

given by: 

)()()( ,

1

,,,,,

,

pj
e

i

pj

i

pj

i

pjpjpj

pj

UImd         13. 

where 
pjpj S ,,
, with the convention that 0)( ,, pjpj

iU  if 
pj

i

pj I ,,
. In turn, the distribution 

pjd ,
 is, for every value 

pj, , the weighted mean of the values of the uniform distributions 

)( ,, pjpj

iU , where the weights 
pjm ,

 are the number of experts that agree on including the value 

pj ,
 among the possible values of the ill-known parameter 

pj ,
. 

With reference to the example of the binary, non-repairable component with Weibull-distributed 

TTF, a probability mass of 1/9 is assigned to each of the nine elements of the set I; in the simplified 

notation with no reference to the random variable, the uniform distributions )( pp

iU , for p=1, 2 

and pei ,..,1  are given by: 

 

 

 

otherwise

I
U

p

i

p

p

i
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i

pp
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where 
p

i  and 
p

i
 are the lower and upper bounds, respectively, of the interval 

p

iI , reported in Table 

1. Then, for example, the probability density function (pdf) )( 11d  of the first parameter is given 

by: 
1 2

1 1 1 1 1 1

1

1 1 1 1

2 1 3
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if I I I

if I 1 1 1

2 3
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1 3 2
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3 1 2
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3 3

[1840,1870]

1 1 1 1
0.0139 ( ) \ [1870,1880]

3 3( ) ( )

1 1
0.0055 \ ( ) [1880,1890]

3 ( )

0

I I

if I I I

if I I I

otherwise  

where the symbol ‘\’ indicates the set of all elements belonging to the set on the left but not to that 

on the right. Figure 3 shows the pdfs corresponding to both shape and scale parameters of the 

Weibull distribution. For visualization, these are reported in different scales.

 

Notice that in practical applications, the actual definition of the distribution is unimportant in the 

sense that the procedure will converge towards correct estimations of the uncertainty on the variables 

of interest as the sample size increases without bound, although the rate of convergence may be 

significantly affected by the choice of the sampling distribution [23]. 

2. Generate a random or Latin hypercube sample from the Nu-dimensional space θ, coherently with the 

distribution defined in the previous step 1. This is done by sampling, for each kj ,...,1 , two 

uniform random numbers r1 and r2 from [0,1[; the first number r1, is used to select a set pj

iI ,  with 

probability )( ,, pj

i

pj Im , whereas r2 is used to select, via inverse transform method [32], a value 
pj,
 

in consistency with the definition of the density function pj

iU , . Notice that in the case in which the 

experts provide all the parameters related to a random variable, this step consists in sampling first the 

multi-dimensional interval 
jI  (with a probability 

jm ) and then a point from it. 

3. Each sample of θ gives rise to a probability space characterizing the aleatory uncertainty in the 

output Z. In practice, once the values of the parameters in θ have been fixed, one can perform a 

standard MC propagation of the uncertainty affecting the stochastic variables , 1, ,jY j k  in order 

to obtain the uncertainty on the output variables oZ , o=1,…O. This requires simulating the model 

behavior a large number NT of times. Since probability spaces are too complex to be considered 

graphically or numerically as single, distinct entities, various summary measures (e.g., mean, 

percentiles, etc.) that can be derived from the definition of a probability space are often used to lump 

the information of the space. Such measures are computed in this step and form the output vector 

Ξ=(
Q,...,ΞΞ1

). 

In regard to the reference example, the sample θ=[1855,7.5] defines the Weibull distribution plotted 

in Figure 1. The values of its mean and 95
th
 percentile (also plotted in the Figure) are considered 

representative of the entire distribution.  



4. Repeat steps 2-3 a large number NS of times. Notice that NS must be large enough to assure that at 

least one point is sampled in each of the focal elements E of the multi-dimensional space S . In 

particular, in the reference example NS=10000. This allows giving full account to the imprecision in 

the parameters. 

5. Estimate the Plausibility and Belief distributions ( )q

qPl  and ( )q

qBel  of the q  components of 

Ξ, q=1,...,Q. This is done by identifying for every q  the set 

1( ) { : (] , ]) }q q qINV E I E , that is, we first search the points ],...,[ ,1,1 kMk  

of the multi-dimensional space S  which determine probability spaces whose measure q  (e.g., 

mean) falls in the interval ],] q . Then, we identify the subsets E of I which these points belong 

to. On this basis, the Plausibility and Belief distributions are given by:  

( )

( ) ( )q

q

q

I

E INV

Pl m E           14. 

and  

( ) 1 ( )q

q c qBel Pl          15. 

being 
( )

( ) ( )q

q

c q

I

E INV

Pl m E  the Plausibility of the interval [,] q , (i.e., the complement of 

],] q ) and the set 
1INV( ) { : (] , [) }q q qΞ E I E

.
 

Finally, notice that both distributions ( )q

qPl  and ( )q

qBel  reach one in correspondence of high 

values of q  (i.e., Equations 14. and 15. must sum to 1 as q  approaches the upper limit of its UoD). 

With respect to the binary, non-repairable component with Weibull-distributed TTF, the Plausibility 

and Belief distributions of both mean and 95
th
 percentile of D are reported in Figure 4. The first step of 

the Plausibility function of the 95
th
 percentile of D falls in correspondence of d=0.9853, and is of 1/9. 

The two samples out of NT=10000 of uncertain parameters that lead to Weibull distributions whose 

95
th
 percentile is smaller than d are reported in Table 2. These points belong to the focal set E

7
 . The 

fact that there are only two samples from this set is due to the small probability mass associated to the 

interval [1880,1890] (i.e., the value of the pdf is small and the interval is short, Figure 3, left). The 

next 1/9 step of the Plausibility distribution is in correspondence of d=0.9854; the set of points θ 

leading to distributions with 95
th
 percentile smaller than d comprises 35 points belonging to both E

7
 

and E
1
. Finally, at d= 0.991, )( 2INV  encodes points belonging to all focal sets, and the Plausibility 

distribution reaches 1 (Equation 11). In this respect, notice that if the number NT of sampled 

combinations of parameters is low, then Equations 14. and 15. do not sum to 1. 

A final consideration deals with the representation of the uncertainty provided by the DSTE-based method. 

Namely, the Plausibility and Belief distributions encode both epistemic and aleatory uncertainty; the former 

is due to the uncertainty in the parameters of the model, the second to the stochastic behaviour of the 

component. However, it should be borne in mind that these functions are affected by the estimation error of 

the MC method, which can be reduced by increasing the number of simulations ([32], [34]). To wit, Figure 5 

shows 10 different couples of the Plausibility and Belief distributions of the mean of D, in correspondence of 

NT=1e3 (left) and NT=1e5 (right). In the former case, the curves appear more sensitive to the particular 

simulation than in the latter case. This stems from the reduction of the MC method estimation error when the 



number of simulations increases, which leads to more stable values of the mean of D and ultimately to 

shapes of the distributions more precisely defined. Moreover, the larger variability of the mean values of D 

due to MC estimation error, which may lead to both overestimations and underestimations of the mean, 

reflects into more spread out cumulative distributions (Figure 5, left).  

4 Case Study 

In this Section, the case study considered in [4] is briefly reported; it is derived from [48] and concerns 

the degradation and maintenance of a check valve of a turbo-pump lubricating system in a Nuclear Power 

Plant. This component is affected by one principal degradation mechanism, i.e., fatigue, and only one failure 

mode, i.e., rupture. The degradation process is modelled as a discrete-state, continuous-time stochastic 

process which evolves among the following three degradation levels (Figure 6): 

1. ‘Good’: a component in this state is new or almost new (no crack is detectable by maintenance 

operators). 

2. ‘Medium’: if the component is in this degradation level, then it is convenient to replace it. 

3. ‘Bad’: a component in this degradation state is very likely to experience a failure in few working 

hours. 

The choice of describing the degradation process by means of a small number of levels, or degradation 

‘macro-states’, is driven by industrial practice: experts usually adopt a discrete and qualitative classification 

of the degradation states based on qualitative interpretations of symptoms.  

The probability density functions (pdfs) of the transition times are Weibull distributions, with scale 

parameters ηij and shape parameters βij for the transitions from state i towards state j (i, j  {1, 2, 3}, and i<j). 

The Weibull distribution is commonly applied in fracture mechanics, especially under the weakest-link 

assumption[36].  

A further state, ‘Failed’, can be reached from every degradation state upon the occurrence of a shock 

event. The exponential distribution with constant failure rate λj describes the failure behaviour of the 

component while it is in state j, for every j=1, 2, 3. The choice of assigning a constant failure rate to every 

degradation state is driven by industrial practice: experts are familiar with this setting and comfortable with 

providing information about the failure rates values.  

A Condition Based Maintenance (CBM) policy is applied to the component, which is composed by the 

following tasks: 

 Inspections: these actions, aimed at detecting the degradation state of the component, are considered to 

last 5h for a cost of 50€. They are the only scheduled actions.  

 CBM actions: Preventive Maintenance (PM) actions which are dependent on the result of an inspection 

action. More precisely, if the component is found to be in state ‘Good’, no action is performed, whereas if 

the degradation state is ‘Medium’ or ‘Bad’, then the component is replaced and, consequently, the 

degradation state is taken back to ‘Good’. Both these replacement actions are supposed to take 25h and 

cost 500€, each.  

 Corrective Maintenance (CM) actions. The corrective action, performed after a component failure, is 

assumed to be the replacement of the component. Due to the fact that this event is unscheduled, this 

action brings an additional duration of 75h and an additional cost of 3500€, with respect to the 

replacement after an inspection, leading to a total duration of 100h and to a total cost of 4000€. In 

particular, the additional time may be caused by the supplementary time needed for performing the 



procedure of replacement after failure or to the time elapsed between the occurrence of the failure and the 

start of the replacement actions. 

The Inspection Interval (II), which is the time span between two successive planned inspections, is the 

only decision variable considered in this case study; optimization is then directed to the search for the value 

of the II that minimizes the costs and maximizes the availability of the component. 

4.1 Maintenance policy performance assessment in case of no epistemic 

uncertainty on the parameters 

The results of the considered case study, obtained in [4] in the unrealistic situation in which the parameters 

of the model are not affected by epistemic uncertainty, are briefly reminded. Table 3 reports the values of 

these parameters, which have been taken from [48].  

Figure 8 shows the values of the unavailability of the component over time, with the related 68.3% 

confidence intervals, obtained by applying the MC method with 5*10
4
 trials; the length Dt of the bins 

partitioning the time horizon is 500h, and II = 2000h. Notice that the 68.3% confidence intervals are so 

narrow that they seems to reduce to points. This is due to the combination of small variability of the mean 

unavailability in this study and the large number of MC simulations performed. The ordinate of Figure 8 

reports the average unavailability corresponding to the bins [Dt*i, Dt*(i+1)[, for i=0,1,…,T/Dt-1, which are 

associated to the points Dt*(i+1) in abscissa. Namely, when the MC method is applied, a statistics of the 

portion of bin in which the component is unavailable is collected in every bin. This statistics describes how 

the portion of downtime is influenced by the aleatory variability associated to the stochastic model of the 

component behavior. For example, Figure 7 shows the distribution of the portion d of the bin [2000h,2500h[ 

in which the component is unavailable, when the uncertain parameters take the nominal values of Table 3. 

The collected values of d in every bin are then averaged to get the estimation of the mean unavailability in 

the bin (the values reported in Figure 8). However, the MC method provides just an estimation of the true 

distribution and thus of its mean; these are affected by an error that can be reduced by increasing the number 

of MC simulations. According to the central limit theorem [34], the estimation error on the mean value of the 

unavailability distribution is described by a normal distribution, which tends to a crisp value in its mean as 

the number of MC simulation increases. When the standard deviation of this normal distribution is added and 

subtracted to the estimated mean value, then the 68.3% confidence value is determined [32]. 

The CDF in Figure 7 has two main steps, which can be interpreted by considering a population of identical 

components:  

1. At d=0.01, due to the components still working at the end of the previous bin, which are inspected 

at t=2000h and found in degradation state Good. These components, which constitute almost 17% 

of the entire population, overtake maintenance actions that last 5h (= 1% of Dt). 

2. At d=0.05, due to the components that are found in degradation state Medium or Bad, and thus 

require maintenance actions that take 25h; these make the component unavailable for 5% of Dt. 

Obviously, there are other contributions to D, which are related to: 

 replacement actions of the components failed in the previous bin, and re-set into operation in the 

current bin; these components cause the smoothly increasing behavior of the CDF between d=0.05 

and d=0.2; 



 unavailability due to maintenance actions on components that have failed in the first bin ([0h, 500h[) 

and are thus inspected between 2000h and 2500h;  

 unavailability due to the failure of the components that have already experienced one or more 

failures in the previous bins. 

Notice that the downtime in the bin is always smaller than 20% of its length; this is due to the fact that 

none of the components of the considered population has experienced more than one failure in the same bin, 

and the duration of a replacement action is the 20% of the bin. 

An oscillation between four main levels of mean bin unavailability can be recognized in Figure 8(a); this 

behavior can be explained by looking at Figure 8(b), which breaks up the total unavailability into its different 

constituents: unavailability due to the inspection of the component while it is in degradation state Good, 

unavailability due to the preventive replacements if it is found in states Medium or Bad at inspection, and 

unavailability due to the corrective maintenance actions that are performed upon failure. 

By considering a population of components of the same type, the comparison of Figure 8(a) and Figure 8(b) 

shows that the first increase of unavailability, at t=2000h, is mainly due to the corrective maintenance actions 

that replace the components failed within the time interval [1500h,2000h[. In this respect, notice that at 

t=1861h, about 63% of the components have already entered in degradation state Medium (by definition, the 

scale parameter η12 of the Weibull distribution is coincident with the 63.21
th
≈63

rd
 percentile), and a small 

number of components have even experienced a further transition towards the state Bad. The values of the 

failure rates associated to these latter states (10
-4

h
-1

and 10
-2

h
-1

, respectively), which are larger than that 

associated to the Good state (10
-6

h
-1

), explain the increase in the number of components that fail in the 

interval [1500h,2000h[. 

The unavailability in Figure 8(a) reaches the maximum at t=2500h, which refers to the bin [2000h,2500h[; 

the sources of unavailability in this bin have been discussed above.  

In the successive bins, there is an increase of the number of components whose inspection and failure 

times are shifted with respect to the ‘crowd’ (i.e., the large number of components experiencing the same 

behavior), and this leads to more and more smoothed peaks due to replacement of components in Medium 

degradation state and larger and larger unavailability in the bins that follow these peaks due to the 

replacement of components both failed and in Medium degradation state. The unavailability due to 

replacement of components in Bad state and inspections in state Good remains small. 

Figure 9 shows the mean unavailability of the component in the mission time, with the related 68.3% 

confidence interval, for different values of the II. Initially, there is a decreasing behavior that reaches a 

minimum in correspondence of II=1000h/1500h; after this point, the unavailability starts rapidly increasing. 

This is the result of two conflicting trends: on one side, the more frequent are the inspections the larger is the 

probability to find the component in degradation states Medium and Bad: this prevents the component to fail 

and thus saves the corresponding large time to replacement. On the other side, frequent replacements are 

ineffective, since the component life is not completely exploited in this case. The minimum at II=1500h 

represents the optimal balance between these two tendencies. 

Figure 10 shows the maintenance costs associated to different choices of the II, which have a shape 

similar to that of the mean unavailability.  



4.2 Representation and propagation of epistemic uncertainties 

The aim of this Section is to apply the method illustrated in Section 3 to the case study described above, 

when the parameters of the distributions that model the transitions of the component among the four states of 

Figure 6 are ill-known, and their evaluation comes (with imprecision) from teams of experts. To sum up, the 

uncertainty situation is the following:  

 there are k=5 uncertain variables, which define the 5 transition times reported in Table 4; 

 the distributions associated to the variables are known, and depend on the set of the uncertain 

parameters 
j
, 5,...,1j  reported in Table 4. In turn, there are Nu=7 uncertain parameters, 

which are the shape and scale parameters of the two Weibull distributions and the failure rates 

pertaining to the three degradation levels (see Table 5). 

However, the uncertainty on the third failure rate is not considered. In fact, a sensitivity analysis carried 

out in [4] has showed that the output of the model does not appreciably change when the value of the third 

failure rate ranges in a wide interval, whereas accounting for a further uncertain parameter strongly increases 

the computational effort. Namely, in the considered case study there are 3 intervals for each of the 7 

uncertain parameters; this entails that the number of focal sets of the evidence space (SX, I, mI) is B=3
7
=2187.  

Thus, if the random sampling method is applied at point 3) of the procedure in Section 3.3, then a number of 

samples NS larger than B (e.g., NS = 15000 ≈ 6, 7 times B) must be drawn to be reasonably sure to get at least 

one point in every focal set. On the contrary, neglecting the uncertainty on the third failure rate strongly 

reduces the number of samples (B=729) and the computational time, with a small impact on the estimation of 

the value of Z. 

With regards to the choice of the number of samples NS, notice that the larger NS the larger the number of 

output mean unavailability values Ξ, and thus the higher the precision in the identified pair of distributions 

[Bel, Pl]. Therefore, setting Ns requires to find an optimal trade off between the precision of the distributions 

and the need of reducing the computational time. Such optimization will be the subject of future work. 

Notice also that the simulation of a single MC history (step 3 of the procedure in Section 3.3) requires that 

the model g encodes a number of random variables k>>5, since the history corresponding to a given sample 

of these 5 times in general do not cover the entire time horizon T. For example (Figure 11(a)), if the first 

transition is from state 1 to state ‘Failed’ and occurs at t=2000h, then the interval time between 

t=2000h+100h (the time instant at the end of the replacement action that starts after the failure) and T 

remains not investigated. This problem can be overcome by thinking of g as a function that depends on a 

number K of 5-ple, and not just on 5 variables; the number K that allows to cover the entire mission time is 

also a random variable, since it depends on the sampled times, which produce histories of different lengths. 

However, this is not a problem in practice: the number K can be chosen such that it is reasonably sure that 

the sampled times simulate histories of duration larger than the time horizon T. Then, the analysis focuses 

only on the interval [0, T] (Figure 11(b)).  

On the other side, once the combination of uncertain parameters relevant to the first 5-ple has been sampled, 

it remains the same for the entire duration of the history (i.e., all the K 5-ple of samples are drawn from the 

same probability distributions). This is equivalent to assuming that the components considered in the 

different simulations have the same stochastic behavior, which is exactly described by the 5 distributions of 

the transitions among the four states of Figure 6, although their parameters are not exactly known (see 

also[36] ). 



The output vector Z is made up of portions of downtime in each of the Nbin bins partitioning the time axis and 

in the mission time, and the cost associated to the given maintenance policy; thus O=2+ Nbin. The summary 

measures Ξ of Z we are interested in, are the mean values; thus, also Q=2+ Nbin. Notice that the mean value 

of the portion of downtime over a given period represents the average unavailability over the period, i.e., a 

quantity with a direct interpretation for maintenance decision makers. 

4.2.1 Information elicited from experts 

In this work, it is supposed that for every uncertain parameter, the same number 3,pje  of experts are 

involved in the elicitation phase. Each of the experts provides the extreme values of the interval he/she 

believes containing the true value of the uncertain parameter he/she is asked to estimate. These are reported 

in Table 5, for every 5,...,1j  and jMp ,...,1 . For example, with reference to the fourth row of Table 5, 

the cells of the most right two columns tell us that the third expert involved in the elicitation of the scale 

parameter of the Weibull distribution that describes the transition from degradation state Good to Medium 

believes that almost the 63% of the components experience such transition at a time instant in the interval 

[1720h,2000h]. The other two experts involved in the elicitation of η12 are less vague and provide smaller 

intervals [1815h,1908h] and [1843h,1880h], respectively. Notice that, for the sake of simplicity, for every 

uncertain parameter, in this case study the intervals provided by the experts are assumed nested (i.e., 
pj

i

pj

i II ,

1

,  for every 5,...,1j , jMp ,...,1  and 2,1i ). Finally, the uncertainty on the failure rate 

corresponding to the degradation state ‘Bad’ has been not accounted for, given that it has been assumed 

exactly known. 

Finally, notice that for every uncertain parameter, the value considered in Section 4.1 is the middle point of 

the corresponding intervals provided by the expert. 

4.2.2 Description of the epistemic uncertainties 

The information elicited from the experts has been used to build, for every uncertain parameter 
pj,

, 

5,...,1j  and jMp ,...,1 , an evidence space ( pjS ,
, pjI , ,

pjm , ). The sample space 
pjS ,

 is the union of 

the three intervals provided by the experts, which in this case is coincident with the largest interval provided 

by the third expert, whereas the set of focal elements pjI ,
 is made up of these three intervals. Finally, the 

BPA assigns to every interval the same mass value 
3

11
)(

,

,,

pj

pj

i

pj

e
Im . 

4.2.3 Uncertainty propagation 

The uncertainty propagation procedure described in Section 3.3 has been applied to the considered case 

study. Figure 12 shows the obtained Plausibility and Belief distributions of the unavailability over the 

different bins in which the mission time has been divided. In the first bins (i.e., from t=500h to t=1500h), the 

Plausibility and Belief distributions are very close to each other and reach 1 in correspondence of a value of 

the mean unavailability very close (or even equal) to 0; this tells us that in those bins, the mean unavailability 

remains very small for any combination of the values of the uncertain parameters ranging in the intervals 

provided by the experts. 

The situation is different at t=2000h, where both Plausibility and Belief distributions are shifted towards 

higher values of the unavailability. This is due to the increase of the number of components that experience a 

failure in the bin [1500h,2000h[, due to components’ transitions towards degradation states Medium and 

Bad, as explained above (see Figure 8). Notice also that the ‘distance’ between the Plausibility and Belief 



distributions is quite large, if compared to those of the first bins. This is due to the fact that the behaviour of 

the components is heavily influenced by the particular combination of the uncertain parameters. For 

example, considering that the scale parameter represents the 63
rd

 percentile, a combination of the values 

12
720h and 

23
690h leads to simulated histories in which it is very likely that the components 

experience a failure before t=2000h, with the consequent unavailability; on the contrary, the combination 

12
2000h and 

23
800h results in histories in which more rarely there is a failure in the bin 

[1500h,2000h[. 

In the next bin, t=2500h, the distributions are even more shifted toward the right part of the 

unavailability axis, which is in agreement with the behaviour of the unavailability in the case with no 

uncertainty on the model parameters (see Figure 8). In the successive bins (Figure 12) the Plausibility and 

Belief distributions follow the ‘cycle’ of the first bins; for example, the curves relevant to the bin 

[1500h,2000h[ are similar to the corresponding ones in the bin [3500h,4000h[; the differences between the 

Plausibility distributions and the Belief distributions pertaining to ‘similar’ bins are due to the increase in the 

number of components that experience a life different from that of the ‘crowd’, as explained in Section 4.1. 

In an effort to render more concise the information presented by the distributions in Figure 12, Figure 13 

shows, for every bin, the intervals bounded by the values of the median of the Plausibility and Belief 

distributions of the average unavailability in the bins. That is, the extremes of the intervals constitute the 

lower and upper bounds, respectively, of the 50th percentile of the average unavailability in the bins. For 

comparison, the estimations of the average unavailability over the bins found in Section 4.1 are also provided 

in Figure 13. 

Figure 14 and Figure 15 report the Plausibility and Belief distributions of the mean unavailability and 

cost over the mission time, respectively, corresponding to three different values of the II, i.e. II=1000h, 

II=1500h and II=2000h. In particular, the small amount of uncertainty on the values of both unavailability 

and costs, when the component is inspected every 1000h, derives from the fact that the ‘crowd’ remains very 

compact in this case. From these Figures, it clearly appears that when the maintenance optimization problem 

is faced in presence of uncertainty, the identification of the best maintenance policy is not a trivial problem. 

For example, establishing whether the performance corresponding to II=1500h is better than that associated 

to II=2000h is an open issue which needs to be addressed. 

5 Comparison with the FRVs-based method  

In this Section, the method proposed in this work to represent and propagate uncertainties is firstly 

compared to that considered in [4], based on the concept of FRVs. First of all, we consider how demanding 

these methods are with respect to the elicitation of the information from experts. With regards to the hybrid 

MC-DSTE method discussed in this work, each expert is asked to provide just an interval, which he/she 

believes the true value of the ill-known parameter belongs to. In particular, different teams of experts can be 

involved in the elicitation of the information about different parameters, which allows to exploit the diverse 

skills that may be needed for estimating them. On the contrary, in the FRVs-based method applied in [4] it is 

required that a single expert is knowledgeable, at least qualitatively, on all uncertain parameters and, what is 

more, is familiar with the statistical meaning of confidence levels when providing the weighted families from 

which the possibility distributions are built: this may be very difficult in practice. However, the FRVs-based 

method can be also applied when the expert gives just one interval per parameter; in this case, the 

information is equivalent to that given for the hybrid MC-DSTE method in case of only one expert per 

parameter, and both methods can be applied based on the same information. Furthermore, if the possibility 

distributions are transformed into evidence spaces using one of the techniques proposed in the literature to 



this aim (e.g.,[16]), then the FRV-based method can be used also with the information provided for the MC-

DSTE method. 

To conclude the considerations about the elicitation of the information from experts, notice that in this 

case study, independently on the applied method, the experts are supposed to be able to provide information 

on the parameters of both the Weibull and exponential distributions, and this may be very difficult in 

practice. In fact, as pointed out in [4], while it is plausible that an expert is able to estimate the time until 

which almost the 65% of the components have experienced a transition (i.e., the scale parameter of the 

Weibull distribution), it seems very unlikely that he/she knows the shape parameters of these distributions 

(which are the slopes of the Weibull probability plots). Also the estimation of the mean time to failure of the 

components in a given degradation state (i.e., the inverse of the failure rate) may not be easy; in fact, failure 

from the first degradation state is usually a rare event, whose frequency is difficult to estimate even in a 

qualitative way, whereas the lack of precise knowledge of the time instants in which the components transit 

towards the other degradation states affects the evaluation of the mean times to failure associated to these 

states; that is, if the time instant since one has to start to count is unknown, then the resulting measure of the 

time to failure is biased, especially if the component is rarely inspected. Moreover, both the assumptions that 

the transitions between the degradation states are Weibull-distributed and that in a given degradation level 

the failure times are exponentially distributed, may not hold. But this is not the matter of this work. 

From the point of view of the output, the two methods provide different kinds of information. Namely, 

the hybrid MC-DSTE method first collects in every bin partitioning the time axis a statistics of the 

unavailability of the component, which is associated to a certain combination of the uncertain parameters and 

thus to a certain probability mass, and then summarizes this statistics by its mean value (or another measure 

such as median, 95
th
 percentile, etc.); this is assumed to suffice to describe the whole informational content 

of the collected data. On the contrary, the method of FRVs considers the entire range of values taken by the 

unavailability in the bins, and on this basis identifies the lower and upper probability distributions. Given this 

difference, a comparison between the results does not make any sense. 

As pointed out in [4], one of the main shortcomings of the FRV-based method is that the results 

provided (i.e., the entire range of values of downtime over a period) are difficult to be understood. On the 

contrary, the MC-DSTE based method provides an estimation of the mean unavailability (i.e., a quantity 

which the maintenance decision makers are familiar with) over the period of interest. This seems to be an 

advantage of the MC-DSTE based method with respect to the FRV-based one. 

A drawback of both methods lies in the very large memory demand and computational times required, 

which ensue from the complexity of the algorithm. In fact, this requires that a number NT of MC trials are 

simulated to capture the aleatory uncertainty of the system for each of the NS samples from the Nu-

dimensional space of the uncertain parameters (i.e., NS*NT simulations). Moreover, the mapping between the 

output and the Nu-dimensional space (step 5 of the procedure in Section 3.3) is burdensome. 

Table 6 reports the computational times of the method in case of NT=2000 and NS=10000 combinations 

of values of the uncertain parameters. These are similar to those relevant to the FRV-based method ([4]). 

Notice that the choice of the number of combinations, which heavily influences the computational time, 

should be driven by the number Nu of uncertain parameters considered in the model and by the number of 

nested intervals used to describe their uncertainty. However, being Matlab an interpretative language, a tool 

developed in other environments may be more performing; on the other side, the application of the latin 

hypercube sampling technique at point 3) of the procedure in Section 3.3 or a technique that forces the 

sampling in the regions in which a more refined investigation is required, could be considered to increase the 

efficiency of the computation. These issues will be tackled in future works.  



6 Conclusions 

Uncertainty affects the parameters of the models used to assess the performance of a given maintenance 

policy. An incorrect treatment of such uncertainty may lead to serious bias of the outcome of the analysis, 

possibly non-conservatively. The method investigated in this work offers an effective tool to give due 

account to the uncertainties on the parameters of the maintenance model of the component of interest. 

Compared with another method already investigated by the authors, it seems less demanding from the point 

of view of the information to be elicited from experts, and provides results that are more understandable for 

maintenance practitioners. 

The methodology has been applied to a case study concerning the degradation model of a check valve 

of a turbo-pump lubricating system in a Nuclear Power Plant. The study has shown that neglecting 

uncertainty may drive the maintenance decision maker towards incorrect conclusions. In this case, if the 

unavailability computation were performed without taking into account the uncertainty on the input 

parameters, the decision maker would set the inspection intervals between maintenance actions to the value 

of II=1000h, whereas a proper consideration of the uncertainties suggests that, on the basis of the available 

knowledge, this choice for the maintenance inspection interval is not better than other intervals such as 

II=1500h. 

To conclude, some interesting issues remain open: 

 The information provided by both methods in general does not allow to make a decision in a 

simple way. Thus, how to exploit these results from the decision maker point of view remains 

an open issue, which needs to be addressed in future works. 

 The computational time can be very large. For its reduction, two research directions have been 

identified: development of methods to select and disregard the parameters whose uncertainties 

weakly affect the output of the model, and techniques to  choose the optimal sample numbers 

Ns, which conciliates the demand for precision in the results and the need for small 

computational times. 
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Figure Captions 
 

Figure 1: CDF of D, for a=1855h and b=7.5 

Figure 2: intervals provided by experts on the scale parameter (a) and shape parameter (c) of the Weibull distribution, and the 

corresponding Plausibility and Belief distributions (b) and (d) 

Figure 3: sampling distributions for the scale and shape parameters of the Weibull distribution 

Figure 4: Plausibility and Belief distributions of the mean (right) and 95
th

 percentile (left) of D 

Figure 5: reduction of the estimation error due to MC method when the number of simulations increase 

Figure 6: degradation modeling 

Figure 7: probability density function of the portion of downtime in the bin [2000h,2500h[  

Figure 8: estimated component unavailability over the bins partitioning the mission time with the corresponding 68.3% 

confidence intervals (a); identification of the different sources of unavailability (b) 

Figure 9: mean unavailability corresponding to different Inspection Intervals 

Figure 10: mean costs corresponding to different Inspection Intervals 

Figure 11:Two examples of simulated histories: the number of random variables does not suffice to cover the entire time horizon 

T (a); number K allows to simulate histories longer than T (b). 

Figure 12: Plausibility and Belief distributions of the mean values of the unavailability over time, from DSTE-based method 

Figure 13: lower and upper bounds of the median of the average unavailability over the bins 

Figure 14: Plausibility and Belief distributions of the mean unavailability over the time horizon, for different values of the control 

variable II 

Figure 15: Plausibility and Belief distributions of the mean cost over the time horizon, for different values of the control variable 

II 
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Tables  

Parameters 

Expert Knowledge 

Expert 1 Expert 2 Expert 3 

min max Min max min max 

a  
1

1
=1840 1

1 =1880 
1

2
=1820 1

2 =1870 
1

3
=1830 1

3 =1890 

b  
2

1
=7 2

1 =12 
2

2
=2 2

2 =4 
2

3
=5 2

3 =9 

Table 1: uncertainty ranges for the parameters provided by independent sources 



 

sample A b 

1 1889.6 11.97 

2 1887.3 11.89 

Table 2: samples drawn from S, which belong to the focal set E
1
 

 

Parameters Nominal Values 

12  1861h 

12  8 

23  743h 

23  8 

1  10
-6

h
-1 

2  10
-4

h
-1 

3  10
-2

h
-1 

Table 3: Parameters of the probability distributions 

 

Random 

Variables 

Uncertain 

Parameters  
Description 

1Y  21111 ,, ,θθθ  Transition time from degradation level ‘Good’ to ‘Medium’  

2Y  22122 ,, ,θθθ  Transition time from degradation level ‘Medium’ to ‘Bad’ 

3Y  133 ,θθ  Transition time from degradation level ‘Good’ to ‘Failed’ 

4Y  144 ,θθ  Transition time from degradation level ‘Medium’ to ‘Failed’ 

5Y  155 ,θθ  Transition time from degradation level ‘Bad’ to ‘Failed’ 

Table 4: tailoring of the general model to the considered case study 

 

Parameters 

Expert Knowledge 

Expert 1 Expert 2 Expert 3 

min max Min max min max 

1,1
 

η12 
1843 1880 1815 1908 1720 2001 

2,1
 

β12 
7.92 8.08 7.8 8.2 7.4 8.6 

1,2
 

η23 
735 750 725 762 687 800 

2,2
 

β23 
7.92 8.08 7.8 8.2 7.4 8.6 

1,3
 
λ1 

9.9e-7 1.01e-6 9.75e-7 1.03e-6 9.25e-7 1.075e-6 

1,4
 

λ2 
0.99e-4 1.01e-4 9.75e-5 1.03e-4 9.25e-5 1.075e-4 

1,5
 
λ3 

1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 

Table 5: uncertainty ranges for the parameters provided by three independent sources 



 

Parameters Values 

Number of MC trials 2000 

Number of combinations of uncertain parameters  8000 

CPU time (Intel Core 2 duo, 3.17 GHz, 2GB RAM) ≈30h 

Table 6: DSTE-based method parameters 

 


