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Réduction de Serre des systèmes linéaires d’équations aux

dérivées partielles dont les adjoints sont holonomes

Résumé : Etant donné un système fonctionnel linéaire (e.g., système d’équations différentielles
ordinaires, système d’équations aux dérivées partielles, système d’équations différentielles à re-
tard, système d’équations aux différences), la réduction de Serre a pour but de trouver un système
fonctionnel linéaire équivalent contenant moins d’équations et d’inconnues. L’objectif de ce pa-
pier est l’étude de la réduction de Serre des systèmes linéaires sous-déterminés d’équations aux
dérivées partielles à coefficients polynomiaux, séries formelles ou séries localement convergentes,
dont les adjoints sont holonomes au sens de l’analyse algébrique. Nous prouvons que de tels
systèmes peuvent être définis par une seule équation aux dérivées partielles. Dans le cas des
coefficients polynomiaux, nous donnons un algorithme permettant de calculer l’équation corre-
spondante.

Mots-clés : Réduction de Serre, systèmes linéaires sous-déterminés d’équations aux dérivées
partielles, D-modules holonomes, théorie constructive des modules, théorie mathématique des
systèmes, calcul formel.
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1 Introduction

One of the main goals of symbolic computation is the problem of rewriting linear/polynomial/
algebraic/differential systems of equations in such a way that interesting information on the
systems, which does not clearly appear in their original forms, can be easily extracted from
their new forms (e.g., Gaussian elimination, Smith or Jacobson normal forms, Gröbner or Janet
bases, triangular sets, formal integrability).

Serre’s reduction problem aims at simplifying linear functional systems (e.g., ordinary (OD)
or partial differential (PD) equations, time-delay equations, difference equations) in the sense of
finding an equivalent presentation of the linear functional system which contains fewer unknowns
and fewer equations. Serre’s reduction generally helps studying the structural properties of the
linear functional system and it can sometimes be used to compute its closed-form solutions.
This problem also finds applications in numerical analysis. In module theory, Serre’s reduction
is related to the problem of characterizing the minimal number of generators (and relations)
of a module finitely presented by a full row rank matrix. The efficient generation of ideals of
commutative polynomial rings and its interpretation in terms of complete intersection of affine
algebraic varieties of codimension 2 were the reasons for which Serre studied this problem ([30]).

The constructive study of Serre’s reduction problem has recently been initiated in [2, 3].
Despite a precise mathematical characterization of the existence of Serre’s reduction (see Sec-
tion 4), to effectively recognize it and compute its reduced form is quite an issue. Moreover,
as indicated by Serre in [30], this problem is connected to the difficult problem of recognizing
whether or not certain projective or stably free modules are free (e.g., Serre’s conjecture for the
commutative polynomial case, nowadays known as the Quillen-Suslin theorem (see, e.g., [29])).
An important case where Serre’s reduction can be constructively tested is the case of a full
row rank matrix R ∈ Dq×p, where D = k[x1, . . . , xn] and k is a computable field, for which
the D-module Dq/(RDp) is 0-dimensional, namely, is a finite-dimensional k-vector space. In
this case, we can test whether or not two invertible square matrices V and W exist such that
V RW = diag(Ir, S), where diag(A,B) stands for the block-diagonal matrix formed by the two
matrices A and B, and Ir is the r × r identity matrix. In particular, the computation of the
matrices V and W requires the computation of bases of finitely generated free D-modules using
an implementation of the Quillen-Suslin theorem such as can be found in the QuillenSuslin

package for instance ([14]). As explained in [3], the class of controllable linear OD time-delay
systems studied in control theory fits in the above situation, which explained why it was possible
in [2, 3, 9, 26] to exhibit Serre’s reductions for many linear OD time-delay systems studied in
the literature of control theory.

The purpose of this paper is to study Serre’s reduction of underdetermined linear PD sys-
tems. More precisely, we focus on the situation which generalizes the case of a 0-dimensional
D = k[x1, . . . , xn]-module Dq/(RDp), namely, the case where the right D = An(k)-module
Dq/(RDp) is holonomic in the sense of algebraic analysis (see [1, 20] and the references therein),
where An(k) denotes the first (polynomial) Weyl algebra, i.e., the noncommutative ring of PD
operators with polynomial coefficients over a base field k of characteristic 0. In this case, if
p − q ≥ 1, then, combining a classical result in algebraic analysis which asserts that a holo-
nomic module is cyclic (see Section 3) with Stafford’s theorem proving that finitely generated
projective left An(k)-modules are free when their ranks are at least 2 (see Section 2), we prove
in Section 5 that the left D-module M = D1×p/(D1×q R) always admits Serre’s reduction, i.e.,
there exists always a row vector Q ∈ D1×(p−q+1) such that M ∼= D1×(p−q+1)/(DQ). If F is a
left D-module (e.g., F = R[x1, . . . , xn], R(x1, . . . , xn), C∞(Rn), D′(Rn)), then this result shows

RR n° 7486



Serre’s reduction of linear partial differential systems with holonomic adjoints 4

that the solution space kerF (R.) = {η ∈ Fp | Rη = 0} of the linear PD system defined by the
matrix R ∈ Dq×p of PD operators is equivalent to the solution space defined by a sole linear PD
equation kerF (Q.) = {ζ ∈ F (p−q+1) | Qζ = 0}. In particular, the knowledge of kerF (Q.) fully
characterizes kerF (R.) and conversely. In order to compute the matrix Q, we first need to com-
pute a cyclic element for the cyclic right D-module Dq/(RDp) using, for instance, an algorithm
developed in [19], and then compute bases of certain finitely generated free left D-modules using,
for instance, the algorithm obtained in [27] and implemented in the Stafford package ([27]).
Moreover, if q ≥ 3, then we prove that the matrix R is equivalent to diag(Iq−1, Q), i.e., two
square invertible matrices V and W exist such that V RW = diag(Iq−1, Q). The corresponding
algorithms, described in Section 5, are implemented in the Serre package ([9]) built upon the
OreModules package ([6]).

Extensions of the above results are then studied when polynomial coefficients are replaced
by formal power series or locally convergent power series coefficients. Using the recent extension
of Stafford’s theorem to the case of the ring D of OD operators with either formal power series
or locally convergent series coefficients ([28]), we prove that every linear OD equations with
either power series or locally convergent power series coefficients and represented by a full row
rank matrix R ∈ Dq×p, where p− q ≥ 1, can be defined by a row vector Q ∈ D1×(p−q+1), which
yields kerF (R.) ∼= kerF (Q.) for all left D-modules F . Moreover, if q ≥ 3, then the matrix R is
equivalent to the matrix diag(Iq−1, Q). This result is particularly interesting in control theory
where p − q is the number of inputs of the system. We point out that the above results allow
us to avoid singularities which may appear in the Jacobson normal forms of the matrix R (see
[18, 32]). Finally, in Section 4, we explain the connections between Serre’s reduction of first
order linear OD system or linear evolution PD systems with the concepts of observability and
controllability developed in control theory and show how Serre’s reduction extends the concept
of cyclic vectors classically used in the literature of linear OD systems with coefficients in a
differential field (e.g., R(t), RJtK[t−1], R{t}[t−1]) (see, e.g., [4, 10]) to linear OD systems with
coefficients in a differential ring (e.g., R[t], RJtK, R{t}).

This paper is an extension of the results obtained in [8].

2 Algebraic analysis approach to linear systems theory

In this section, we recall the algebraic analysis approach to mathematical systems theory that
will be used in the next sections. Moreover, we introduce the main notations and state a few
results which will be used in what follows.

We shall denote by D1×p (resp., Dq) the left (resp., right) D-module formed by row (resp.,
column) vectors of length p (resp., q) with entries in D and by R ∈ Dq×p a q × p matrix with
entries in D. The general linear group of D of index p, namely,

GLp(D) = {U ∈ Dp×p | ∃ V ∈ Dp×p : U V = V U = Ip},

is the subgroup of the ring Dp×p formed by invertible (unimodular) matrices.

In what follows, we shall use the following notations:

.R : D1×q −→ D1×p,
µ 7−→ µR,

R. : Dp −→ Dq

η 7−→ Rη.

Within algebraic analysis (see, e.g., [1, 5, 20]), a linear functional system (e.g., linear systems
of ODEs or PDEs, OD time-delay equations, difference equations) can be studied by means of
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module theory and homological algebra. More precisely, if D is a noncommutative polynomial
ring of functional operators (e.g., OD or PD operators, time-delay operators, shift operators,
difference operators), R ∈ Dq×p and F a left D-module, then the linear functional system
kerF (R.) , {η ∈ Fp | Rη = 0}, i.e., the abelian group formed by the F-solutions of the linear
system Rη = 0, can be studied by means of the left D-module M , D1×p/(D1×q R) finitely
presented by the matrix R. Indeed, Malgrange’s remark ([21]) asserts the existence of the abelian
group isomorphism

kerF (R.) ∼= homD(M,F), (1)

where homD(M,F) denotes the abelian group (i.e., Z-module) of left D-homomorphisms from
M to F (i.e., maps f : M −→ F satisfying f(d1m1 + d2m2) = d1 f(m1) + d2 f(m2) for all
d1, d2 ∈ D and all m1, m2 ∈M) and ∼= is the equivalence relation of being isomorphic ([29]).

Let us describe the isomorphism (1). To do that, we first give an explicit description of M
in terms of generators and relations. Let π : D1×p −→ M = D1×p/(D1×q R) be the canonical
projection onto M , namely, the left D-homomorphism which sends a row vector of D1×p to its
residue class π(λ) in M , {fj}j=1,...,p the standard basis of D1×p, namely, fj is the row vector
of length p defined by 1 at the jth entry and 0 elsewhere, and yj = π(fj) the residue class
of fj in M for j = 1, . . . , p. Since every element m ∈ M is the residue class of an element
λ = (λ1 . . . λp) ∈ D1×p, then we get

m = π(λ) = π




p∑

j=1

λj fj


 =

p∑

j=1

λj π(fj) =

p∑

j=1

λj yj ,

which shows that {yj}j=1,...,p is a family of generators of the left D-module M . Now, if Ri•

denotes the ith row of R, then Ri• ∈ D1×q R, which yields π(Ri•) = 0 and thus

∀ i = 1, . . . , q, π(Ri•) = π




p∑

j=1

Rij fj


 =

p∑

j=1

Rij π(fj) =

p∑

j=1

Rij yj = 0, (2)

which shows that the set of generators {yj}j=1,...,p of M satisfies the left D-linear relations (2)
and their left D-linear combinations. Therefore, if we set y = (y1 . . . yp)

T ∈ Mp, then (2)
becomes Ry = 0.

Let χ : kerF (R.) −→ homD(M,F) be the Z-homomorphism defined by χ(η) = φη, where
φη(π(λ)) = λ η ∈ F for all λ ∈ D1×p. The Z-homomorphism φη is well-defined since π(λ) = π(λ′)
yields π(λ − λ′) = 0, i.e., λ − λ′ = µR for a certain µ ∈ D1×q, and thus φη(π(λ)) = λ η =
λ′ η + µRη = λ′ η = φη(π(λ′)). Moreover, χ is injective since φη = 0 yields λ η = 0 for all
λ ∈ D1×p, and thus ηj = fj η = 0 for all j = 1, . . . , p, i.e., η = 0. It is also surjective since for
all φ ∈ homD(M,F), η = (φ(y1) . . . φ(yp))

T ∈ Fp satisfies χ(η) = φ and

∀ i = 1, . . . , q,

p∑

j=1

Rij ηj =

p∑

j=1

Rij φ(yj) = φ




p∑

j=1

Rij yj


 = φ(0) = 0,

i.e., η ∈ kerF (R.). Thus, the Z-homomorphism χ is an isomorphism.

Theorem 1 ([21]). Let D be a ring, M = D1×p/(D1×q R) the left D-module finitely presented
by the matrix R ∈ Dq×p, π : D1×p −→ M the canonical projection onto M , {fj}j=1,...,p the
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standard basis of D1×p, yj = π(fj) for j = 1, . . . , p, and F a left D-module. Then, we have the
following Z-isomorphism:

homD(M,F) −→ kerF (R.) = {η ∈ Fp | Rη = 0}

φ 7−→ η = (φ(y1) . . . φ(yp))
T .

(3)

Hence, there is a one-to-one correspondence between the elements of homD(M,F) and the ele-
ments of kerF (R.).

Remark 1. Theorem 1 shows that kerF (R.) can be studied by means of the finitely presented
left D-module M and the left D-module F : M = D1×p/(D1×q R) intrinsically defines the linear
system of equations defined by the matrix R ∈ Dq×p and F is the functional space where we
seek the solutions of the linear functional system.

In what follows, D will denote a noncommutative noetherian domain, namely, a unital ring
satisfying that d d′ is not necessarily equal to d′ d for all d, d′ ∈ D, containing no nontrivial
zero-divisors, i.e., d d′ = 0 yields d = 0 or d′ = 0, and every left (resp., right) ideal of D is
finitely generated, i.e., can be generated by a finite family of elements of D as a left (resp.,
right) D-module (see, e.g., [29]).

A differential ring (A, {δ1, . . . , δn}) is a commutative ring A equipped with n commuting
derivations δi : A −→ A for i = 1, . . . , n, namely, maps satisfying:

∀ i, j = 1, . . . , n, ∀ a1, a2 ∈ A,





δi ◦ δj = δj ◦ δi,

δi(a1 + a2) = δi(a1) + δi(a2),

δi(a1 a2) = δi(a1) a2 + a1 δi(a2).

If we take a1 = a2 = 1, then the above equality yields δi(1) = 2 δi(1), i.e., δi(1) = 0. If A
is a field and a ∈ A \ {0}, then δi(a) a

−1 + a δi(a
−1) = δi(a a

−1) = δi(1) = 0, which yields
δi(a

−1) = −a−2 δi(a) and A is then called a differential field.

In what follows, we shall mainly focus on the differential ring
(
A,
{

∂
∂x1

, . . . , ∂
∂xn

})
, where

A = k[x1, . . . , xn], kJx1, . . . , xnK (i.e., the ring of formal power series at 0 with coefficients in k),
where k is a field of characteristic 0 (e.g., Q, R, C), k{x1, . . . , xn} where k = R or C (i.e., the
ring of locally convergent power series at 0 or equivalently, the ring of germs of real analytic or
holomorphic functions at 0) or on the differential fields A = k and k(x1, . . . , xn), where k is a
field.

The ring D = A〈∂1, . . . , ∂n〉 of PD operators in ∂1, . . . , ∂n with coefficients in the differential
ring (A, {δ1, . . . , δn}) is the noncommutative polynomial ring in the ∂i’s with coefficients in the
ring A satisfying:

∀ i, j = 1, . . . , n, ∀ a ∈ A, ∂i ∂j = ∂j ∂i, ∂i a = a ∂i + δi(a).

An element d ∈ D can be written as d =
∑

0≤|ν|≤r aν ∂
ν , where ν = (ν1 . . . νn)T ∈ Nn,

|ν| = ν1 + · · ·+ νn, ∂ν = ∂ν1

1 . . . ∂νn

n and aν ∈ A. If n = 1, then we shall simply use the notations
δ = d

dt
instead of δ1, ∂ instead of ∂1 and k[t], k(t), kJtK and k{t} instead of k[x1], k(x1), kJx1K

and k{x1}.

The first (polynomial) and the second (rational) Weyl algebra are defined by:

An(k) , k[x1, . . . , xn]〈∂1, . . . , ∂n〉, Bn(k) , k(x1, . . . , xn)〈∂1, . . . , ∂n〉.

RR n° 7486
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The ring D = A〈∂1, . . . , ∂n〉, where A = k, k[x1, . . . , xn], k(x1, . . . , xn) or kJx1, . . . , xnK, and k is
a field, or k{x1, . . . , xn}, where k = R or C, is a noetherian domain (see, e.g., [23]).

Let us recall a few definitions of module theory.

Definition 1 ([17, 29]). Let D be a left noetherian domain and M a finitely generated left
D-module, namely, M can be generated by a finite family of elements of M as a left D-module.

1. M is free if there exists r ∈ N = {0, 1, . . .} such that M ∼= D1×r. Then, r is called the rank
of the free left D-module M and is denoted by rankD(M).

2. M is stably free if there exist r, s ∈ N such that M ⊕D1×s ∼= D1×r. Then, r − s is called
the rank of the stably free left D-module M .

3. M is projective if there exist r ∈ N and a left D-module N such that M ⊕ N ∼= D1×r,
where ⊕ denotes the direct sum of left D-modules.

4. M is torsion-free if the torsion left D-submodule of M , namely,

t(M) = {m ∈M | ∃ d ∈ D \ {0} : dm = 0},

is reduced to 0, i.e., if t(M) = 0. The elements of t(M) are called the torsion elements.

5. M is torsion if t(M) = M , i.e., if every element of M is a torsion element.

6. M is cyclic if there exists m ∈M such that M = Dm , {dm | d ∈ D}.

A free module is clearly stably free (take s = 0 in 2 of Definition 1), a stably free module is
projective (take P = D1×s in 3 of Definition 1) and a projective module is torsion-free (since it
can be embedded into a free, and thus, into a torsion-free module).

The converses of the previous results are generally not true. However, some of them hold in
the following interesting situations for mathematical systems theory ([17, 23, 28, 29]).

Theorem 2. 1. If D is a principal left ideal domain, namely, every left ideal of the domain
D is principal (e.g., the ring A〈∂〉 of OD operators with coefficients in a differential field A
such as A = k, k(t) and kJtK[t−1], where k is a field of characteristic 0 (e.g., k = Q, R, C),
or k{t}[t−1], where k = R or C), then every finitely generated torsion-free left D-module
is free.

2. If D = k[x1, . . . , xn] is a commutative polynomial ring with coefficients in a field k, then
every finitely generated projective D-module is free (Quillen-Suslin theorem).

3. If D is the Weyl algebra An(k) or Bn(k), where k is a field of characteristic 0, then every
finitely generated projective left D-module is stably free and every finitely generated stably
free left D-module of rank at least 2 is free (Stafford’s theorem).

4. If D = A〈∂〉 is the ring of OD operators with coefficients in a differential ring A = kJtK,
where k is a field of characteristic 0, or k{t}, where k = R or C, then every finitely
generated projective left D-module is stably free and every finitely generated stably free left
D-module of rank at least 2 is free.

If the matrix R has full row rank, namely, kerD(.R) , {µ ∈ D1×q |µR = 0} = 0, i.e., the
rows of R are left D-linearly independent, then the next proposition characterizes when the left
D-module M = D1×p/(D1×q R) is a stably free or free module.

RR n° 7486
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Theorem 3 (see, e.g., [14, 27]). Let D be a noetherian domain, R ∈ Dq×p a full row rank
matrix, i.e., kerD(.R) = 0, and the finitely presented left D-module M = D1×p/(D1×q R).

1. M is a projective left D-module iff M is a stably free left D-module.

2. M is a stably free left D-module of rank p − q iff R admits a right inverses, namely, iff
there exists a matrix S ∈ Dp×q satisfying RS = Iq.

3. M is a free left D-module of rank p− q iff there exists U ∈ GLp(D) such that:

RU = (Iq 0).

If U = (S Q), where S ∈ Dp×q and Q ∈ Dp×(p−q), then we have

ψ : M −→ D1×(p−q)

π(λ) 7−→ λQ,
ψ−1 : D1×(p−q) −→ M

µ 7−→ π(µT ),

where the matrix T ∈ D(p−q)×p is defined by:

U−1 =

(
R

T

)
∈ Dp×p.

In particular, M ∼= D1×pQ = D1×(p−q). The matrix Q is then called an injective
parametrization of M . Finally, {π(Ti•)}i=1,...,p−q is a basis of the free left D-module M of
rank p− q.

The Quillen-Suslin theorem (resp., the Stafford’s theorem) has recently been implemented
in the QuillenSuslin package ([14]) (resp., Stafford package ([27])). Hence, we can com-
pute bases and injective parametrizations of finitely generated free left D-modules, where D =
k[x1, . . . , xn] and k = Q or Fp (p is a prime number), An(Q) or Bn(Q).

3 Holonomic D-modules

In this section, we consider the ring D = A〈∂1, . . . , ∂n〉 of PD operators with coefficients in
the differential ring A = k, k[x1, . . . , xn], k(x1, . . . , xn) or kJx1, . . . , xnK, where k is a field of
characteristic 0, or k{x1, . . . , xn}, where k = R or C. The purpose of this section is to recall two
important results on the so-called holonomic D-modules, namely, the forthcoming Theorems 4
and 5, which will play a central role in Section 5.

The ring D is endowed with the order filtration defined by:

∀ r ∈ N, Dr =





∑

0≤|α|≤r

aα ∂
α | aα ∈ A



 .

We can check that the filtration properties hold, namely:

1. ∀ r, s ∈ N, r ≤ s ⇒ Dr ⊆ Ds.

2. D =
⋃

r∈N
Dr.

3. ∀ r, s ∈ N: Dr Ds ⊆ Dr+s.

RR n° 7486
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The ring D is called a filtered ring and an element of Dr has a degree less than or equal to
r. We can easily check that D0 = A and Dr is a finitely generated A-module.

If d1, d2 ∈ D, then we can define the bracket of d1 and d2 by [d1, d2] , d1 d2−d2 d1. If d1 ∈ Dr

and d2 ∈ Ds, then d1 d2 and d2 d1 belong to Dr+s since Dr Ds ⊆ Dr+s and DsDr ⊆ Dr+s, and
we can check that [d1, d2] ∈ Dr+s−1, i.e., [Dr, Ds] ⊆ Dr+s−1.

Let us now introduce the following A-module

gr(D) =
⊕

r∈N

Dr/Dr−1,

where we have set D−1 = 0. If πr : Dr −→ Dr/Dr−1 is the canonical projection for all r ∈ N,
then the A-module gr(D) inherits a ring structure defined by

∀ d1 ∈ Dr, ∀ d2 ∈ Ds,

{
πr(d1) + πs(d2) , πt(d1 + d2) ∈ Dt/Dt−1,

πr(d1)πs(d2) , πr+s(d1 d2) ∈ Dr+s/Dr+s−1,

where t = max(r, s). The ring gr(D) is called the graded ring associated with the order filtration
of D.

Let χi , π1(∂i) ∈ D1/D0 for all i = 1, . . . , n. Then, π1([∂i, ∂j ]) = 0 and π1([∂i, a]) = 0 for
all a ∈ A and all i, j = 1, . . . , n since [∂i, ∂j ] = 0 and [∂i, a] ∈ D0, which shows that

gr(D) = A[χ1, . . . , χn]

is the commutative polynomial ring in χ1, . . . , χn with coefficients in the commutative noetherian
ring A.

We can now extend the concepts of filtered and graded rings to modules.

Definition 2 ([1, 11, 20]). Let M be a finitely generated left D = A〈∂1, . . . , ∂n〉-module.

1. A filtration of M is a sequence {Mq}q∈N of A-submodules of M (with the convention that
M−1 = 0) such that:

(a) ∀ q, r ∈ N, q ≤ r ⇒ Mq ⊆Mr.

(b) M =
⋃

q∈N
Mq.

(c) ∀ q, r ∈ N: Dr Mq ⊆Mq+r.

The left D-module M is then called a filtered module

2. The associated graded gr(D)-module gr(M) is defined by:

(a) gr(M) =
⊕

q∈N
Mq/Mq−1.

(b) For every d ∈ Dr and every m ∈Mq, we set

πr(d)σq(m) , σq+r(dm) ∈Mq+r/Mq+r−1,

where σq : Mq −→Mq/Mq−1 is the canonical projection for all q ∈ N.

3. A filtration {Mq}q∈N is called a good filtration if one of the two following equivalent con-
ditions is satisfied:
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(a) Mq is a finitely generated A-module for all q ∈ N and there exists p ∈ N such that
Dr Mp = Mp+r for all r ∈ N.

(b) gr(M) =
⊕

q∈N
Mq/Mq−1 is a finitely generated gr(D)-module.

Example 1. Let M be a finitely generated left D-module defined by a family of generators
{y1, . . . , yp}. Then, the filtration Mq =

∑p
i=1Dq yi is a good filtration of M since

gr(M) =

p∑

i=1

gr(D) yi,

which proves that gr(M) is a finitely generated left gr(D)-module.

If M is a finitely generated left D = A〈∂1, . . . , ∂n〉-module, then gr(M) is a finitely generated
module over the commutative polynomial ring gr(D) = A[χ1, . . . , χn]. Hence, we are back to
the realm of commutative algebra. Based on techniques of algebraic geometry and commutative
algebra, one can then use invariants of gr(M) (e.g., dimension, multiplicity) to characterize the
left D-module M (see, e.g., [1, 11, 20]).

Definition 3 ([13]). A proper prime ideal of a commutative ring A is an ideal p ( A which
satisfies that a b ∈ p implies a ∈ p or b ∈ p. Endowed with the Zariski topology defined by the
Zariski-closed sets V (I) = {p ∈ spec(A) | I ⊆ p}, where I is an ideal of A, the set of all the
proper prime ideals of A, denoted by spec(A), is a topological space.

We can now introduce the concept of a characteristic variety of a differential module.

Proposition 1 ([1, 11, 20]). Let M be a finitely generated left D = A〈∂1, . . . , ∂n〉-module and
G = gr(M) the associated graded gr(D) = A[χ1, . . . , χn]-module for a good filtration of M .
Then, the characteristic ideal I(M) of M is the ideal of the commutative polynomial ring gr(D)
defined by:

I(M) =
√

ann(G) , {a ∈ gr(D) | ∃ n ∈ N : anG = 0}.

It does not depend on the good filtration of M . The characteristic variety of M is then the subset
of spec(gr(D)) defined by:

charD(M) = {p ∈ spec(gr(D)) |
√

ann(G) ⊆ p}.

According to Example 1, every finitely generated left D = A〈∂1, . . . , ∂n〉-module M admits
a good filtration and thus a characteristic variety.

The dimension of the left D-module M can be defined as the geometric dimension of the
characteristic variety charD(M) of M .

Definition 4 ([1, 11, 20]). Let M be a finitely generated left D = A〈∂1, . . . , ∂n〉-module. Then,
the dimension of M is the supremum of the lengths of the chains p0 ⊂ p1 ⊂ p2 ⊂ . . . ⊂ pd

of distinct proper prime ideals in the commutative ring gr(D)/I(M) = A[χ1, . . . , χn]/I(M). If
M = 0, then we set dimD(M) = −1.

In what follows, we shall simply write dim(D) instead of dimD(D).

Example 2 ([1, 11, 20]). We have

dim(k[x1, . . . , xn]) = n, dim(Bn(k′)) = n, dim(A〈∂1, . . . , ∂n〉) = 2n,

where k is a field, k′ is a field of characteristic 0 and A = k[x1, . . . , xn], kJx1, . . . , xnK, where k
is a field of characteristic 0, or k{x1, . . . , xn}, where k = R or C.
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Example 3. Let us consider the linear PD system:
{

Φ1 = (∂4 − x3 ∂2 − 1) y = 0,

Φ2 = (∂3 − x4 ∂1) y = 0.
(4)

We can check that (4) is not formally integrable since

(∂4 − x3 ∂2 − 1) Φ2 + (x4 ∂1 − ∂3) Φ1 = (∂2 − ∂1) y = 0

is a new non-trivial first order PD equation which does not appear in (4). Adding this new
equation to (4), then we can check that the new linear PD system defined by





(∂4 − x3 ∂2 − 1) y = 0,

(∂3 − x4 ∂1) y = 0,

(∂2 − ∂1) y = 0,

(5)

is formally integrable and involutive (see, e.g., [25] and the references therein). Therefore, using
the Cartan-Kähler-Janet’s theorem (see, e.g., [25]), there exists a formal power series (locally
convergent power series) solution of (5) in a neighbourhood of the point a = (a1, a2, a3, a4) ∈ R4

which satisfies an appropriate set of initial conditions which can be determined (see, e.g., [25]).

Using (5), the characteristic variety of the left D = A4(C)-module M = D/(D1×2R) finitely
presented by R = (∂4 − x3 ∂2 − 1 ∂3 − x4 ∂1)

T is defined by the ideal

I(M) = (χ4 − x3 χ2, χ3 − x4 χ1, χ2 − χ1)

of gr(D) = C[x1, x2, x3, x4, χ1, χ2, χ3, χ4]. The characteristic variety charD(M) of M is then the
affine algebraic variety of C8 defined by the ideal I(M) of gr(D):

charD(M) = {(x1, x2, x3, x4, χ1, χ1, x4 χ1, x3 χ1) | χ1, xi ∈ C, i = 1, . . . , 4}.

The Krull dimension of charD(M) is then 5, i.e., dimD(M) = 5.

Definition 5 ([1, 11, 20]). Let M be a non-zero finitely generated left D = A〈∂1, . . . , ∂n〉-
module. If dimD(M) = n then M is called a holonomic left D-module.

Example 4. The time-varying OD equation t ẏ − y = 0 defines the holonomic left D = A1(C)-
module M = D/D (t ∂ − 1). Indeed, the characteristic variety charD(M) of M is defined by the
characteristic ideal I(M) = (t χ) of the commutative polynomial ring gr(D) = C[t, χ], which
implies that charD(M) = {(t, 0) | t ∈ C} ∪ {(0, χ) |χ ∈ C} is a 1-dimensional affine algebraic
variety of C2, and thus dimD(M) = 1.

The next two theorems will play important roles in Section 5.

Theorem 4 ([1, 11, 20]). If D = A〈∂〉 is the ring of OD operators with coefficients in A = k[t],
kJtK, where k is a field of characteristic 0, or k{t}, where k = R or C, then a left (resp., right)
D-module M is holonomic iff M is a torsion left (resp., right) D-module.

Theorem 5 ([1, 11, 20]). If A = k[x1, . . . , xn], kJx1, . . . , xnK, where k is a field of characteristic
0, or k{x1, . . . , xn}, where k = R or C, then a holonomic left D = A〈∂1, . . . , ∂n〉-module M is
cyclic, i.e., M can be generated by one element as a left D-module. More precisely, if {yj}j=1,...,p

is a set of generators of the holonomic left D-module M , then there exist d2, . . . , dp ∈ D such
that M is generated by z = y1 + d2 y2 + · · · + dp yp. Similar results hold for holonomic right
D-modules.
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Remark 2. For D = An(k), where k is a computable field of characteristic 0 (e.g., k = Q), a
constructive algorithm for the computation of a cyclic element of a finitely presented holonomic
left D-module M is given in [19]. The corresponding algorithm is implemented in the package
Serre ([9]) built upon OreModules ([6]).

4 Serre’s reduction of linear systems

In this section, we study when a finitely presented left (resp., right)D-moduleM = D1×p/(D1×q R)
(resp., N = Dq/(RDp)) can be generated by less than p (resp., q) generators. Then, we recall
recent results on Serre’s reduction ([30]) obtained in [2, 3]. They will be used in Section 5 to
study Serre’s reduction of the class of linear PD systems with holonomic Auslander transposes
or adjoints.

If R ∈ Dq×p and {fj}j=1,...,p is the standard basis of D1×p, then the beginning of Section 2
shows that {yj = π(fj)}j=1,...,p is a family of generators of the finitely presented left D-module
M = D1×p/(D1×q R), where π : D1×p −→M is the canonical projection. Moreover, {yj}j=1,...,p

satisfies the relations Ry = 0, where y = (y1 . . . yp)
T .

Let us first investigate when the left D-module M = D1×p/(D1×q R) can be generated by
less generators than p. Let 0 ≤ r ≤ p− 1 and Λ ∈ D(p−r)×p be such that

P ,

(
R

Λ

)
∈ D(q+p−r)×p

admits a left inverse S = (S1 S2) ∈ Dp×(q+p−r), where S1 ∈ Dp×q and S2 ∈ Dp×(p−r). We note
that this result always holds if we take Λ = Ip, which shows that the interesting case starts with
r ≥ 1. By hypothesis, we have D1×(q+p−r) P = D1×p, which yields

M = D1×p/(D1×q R) = (D1×(q+p−r) P )/(D1×q R), (6)

and shows that {zk = π(Λk•) =
∑p

j=1 Λkj yj}k=1,...,p−r is a family of generators of M . Let us
give another way to understand this result. The identity S1R+ S2 Λ = Ip yields

y = S1 (Ry) + S2 (Λ y) = S2 (Λ y),

which shows that z , Λ y ∈ M (p−r) satisfies y = S2 z, i.e., {zk =
∑p

j=1 Λkj yj}k=1,...,p−r is a

family of generators of M . In particular, if r = p − 1, then Λ ∈ D1×p and M is generated by
π(Λ), i.e., M = Dπ(Λ) is a cyclic left D-module.

Moreover, let Q = (Q1 Q2) ∈ Ds×(q+p−r), where Q1 ∈ Ds×q and Q2 ∈ Ds×(p−r), be a
matrix such that kerD(.P ) = D1×sQ. Using the identity R = (Iq 0)P , Lemma 3.1 of [7] then
yields

M = (D1×(q+p−r) P )/(D1×q R) ∼= D1×(q+p−r)/

(
D1×(q+s)

(
Iq 0

Q1 Q2

))

∼= L , D1×(p−r)/(D1×sQ2),

where the left D-isomorphism φ : M −→ L is defined by φ(π(µP )) = σ(µ2) for all µ = (µ1 µ2),
where µ1 ∈ D1×q, µ2 ∈ D1×(p−r) and σ : D1×(p−r) −→ L is the canonical projection, and
φ−1 : L −→M is defined by φ−1(σ(µ2)) = π(µ2 Λ) for all µ2 ∈ D1×(p−r). If {gk}k=1,...,p−r is the
standard basis of D1×(p−r), then the generators {vk = σ(gk)}k=1,...,p−r of the left D-module L
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satisfy the relations Q2 v = 0, where v = (v1 . . . vp−r)
T . We also have φ−1(vk) = π(gk Λ) =

π(Λk•) = zk, i.e., φ(zk) = vk for all k = 1, . . . , p − r, which shows that, up to isomorphism, M
can be generated by p− r elements satisfying s relations. Finally, we can interpret this result by
noticing that Q2 z = 0 generates the compatibility conditions of the following inhomogeneous
linear system: {

Ry = 0,

Λ y = z.

Conversely, let us suppose that the left D-module M = D1×p/(D1×q R) can be generated
by a family of p− r generators {zk = π(Λk•) =

∑p
j=1 Λkj yj}k=1,...,p−r for a certain r satisfying

0 ≤ r ≤ p − 1 and a certain matrix Λ ∈ D(p−r)×p. Then, there exists a matrix U ∈ Dp×(p−r)

such that yj =
∑p−r

k=1 Ujk zk for all j = 1, . . . , p, which yields (Ip − U Λ) y = 0, and thus
there exists a matrix V ∈ Dp×q such that Ip = U Λ + V R, which proves that the matrix
P , (RT ΛT )T ∈ D(q+p−r)×p admits a left inverse.

Lemma 1. The finitely presented left D-module M = D1×p/(D1×q R) can be generated by
p − r elements, where r satisfies 0 ≤ r ≤ p − 1, iff there exists Λ ∈ D(p−r)×p such that
P = (RT ΛT )T ∈ D(q+p−r)×p admits a left inverse. Then, {π(Λk•)}k=1,...,p−r is a family
of generators of M , where π : D1×p −→M is the standard projection onto M .

Let us illustrate Lemma 1 with the class of linear time-varying first order OD systems. Let
D = A〈∂〉 be the ring of OD operators with coefficients in a noetherian differential integral
domain

(
A, d

dt

)
, F ∈ An×n, R = ∂ In − F ∈ Dn×n. Using Lemma 1, the finitely presented left

D-module M = D1×n/(D1×nR) can be generated by p , n−r elements {π(Hk•)}k=1,...,p, where
0 ≤ r ≤ n− 1 and H ∈ Dp×n, iff P = ((∂ In − F )T HT )T admits a left inverse, i.e., iff the left
D-module E , D1×n/(D1×(n+p) P ) is reduced to 0. In terms of generators and relations, the
left D-module E is generated by {xi}i=1,...,n which satisfies the relations:

{
∂ x− F x = 0,

H x = 0.
(7)

Since ∂ x = F x and F ∈ An×n, without loss of generality, we can take H ∈ Ap×n. Pre-
multiplying the second equation of (7) by ∂ and taking into account the first equation of (7),
we obtain H ∂ x+ Ḣ x = 0 and thus (H F + Ḣ)x = 0. We can now repeat the same operations
with this new zero-order equation and so on. We obtain:

(7) ⇔

{
∂ x− F x = 0,

Hi x = 0, ∀ i ∈ N,

where the matrices Hi’s are inductively defined by:

{
H0 = H,

Hi+1 = Hi F + Ḣi.
(8)

Let Lj ,
∑j

i=0A
1×pHi be the A-submodule of the left A-module A1×n generated by the Hi’s

for i = 1, . . . , j. Since Lj ⊆ Lj+1 for all j ∈ N, the sequence (Lj)j∈N of A-submodules of the
noetherian A-module A1×n stabilizes, namely, there exists s ∈ N such that:

∀ j ∈ N, Ls+j = Ls =
s∑

i=0

A1×pHi.
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Therefore, we get:

(7) ⇔





∂ x− F x = 0,

H0 x = 0,

...
Hs x = 0.

If Ls = A1×n, i.e., if (HT
0 . . . HT

s )T admits a left inverse, then (7) yields x = 0, i.e.,
E = D1×n/(D1×(n+p) P ) = 0, which shows that P admits a left inverse, and thus M is generated
by {π(Hk•)}k=1,...,p by Lemma 1.

Conversely, let us suppose that there exists a left inverse (X Y ) of the matrix P , where
X ∈ Dn×n and Y ∈ Dn×p, i.e., X (∂ In − F ) + Y H = In. Using (8), we have:

∀ i ∈ N, ∂ Hi = Hi ∂ + Ḣi = Hi ∂ +Hi+1 −Hi F = Hi (∂ In − F ) +Hi+1.

Moreover, we have:

∀ i ∈ N, ∂2Hi = ∂ (∂ Hi) = ∂ (Hi (∂ In − F ) +Hi+1) = (∂ Hi) (∂ In − F ) + ∂ Hi+1

= (Hi (∂ In − F ) +Hi+1) (∂ In − F ) +Hi+1 (∂ In − F ) +Hi+2

= Hi (∂ In − F )2 + 2Hi+1 (∂ In − F ) +Hi+2.

More generally, we can inductively prove:

∀ i ∈ N, ∀ l ∈ N, ∂lHi =

l∑

j=0

l!

j! (l − j)!
Hi+j (∂ In − F )l−j . (9)

If Y =
∑d

l=0Cl ∂
l, where Cl ∈ An×p, then using H0 = H and (9) with i = 0, we obtain

∀ l ∈ N, Y H =

d∑

l=0

Cl ∂
lH =

d∑

l=0

l∑

j=0

l!

j! (l − j)!
ClHj (∂ In − F )l−j

=

d∑

l=0

ClHl + Z (∂ In − F ),

for a certain matrix Z, which implies that X (∂ In − F ) + Y H = In is equivalent to:

(X + Z) (∂ In − F ) +

d∑

l=0

ClHl = In. (10)

Since each entry of the matrix ∂ In − F has degree 1 in ∂, the identity (10) can only hold when
X = −Z, which yields

∑s
l=0ClHl = In and shows that the existence of a left inverse of P

implies the existence of a left inverse of the matrix (HT
0 . . . HT

s )T .

Corollary 1. Let
(
A, d

dt

)
be a noetherian differential integral domain, F ∈ An×n, D = A〈∂〉

the ring of OD operators with coefficients in A and R = ∂ In − F ∈ Dn×n. Then, the finitely
presented left D-module M = D1×n/(D1×nR) can be generated by p elements {π(Hk•)}k=1,...,p,
where H ∈ Ap×n, iff the matrix P = (RT HT )T admits a left inverse, i.e., iff there exists s ∈ N

such that the matrix (HT
0 . . . HT

s )T admits a left inverse, where the matrices Hi’s are defined
by (8).
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If we want to check whether or not the leftD-moduleM can be generated by {π(Hk•)}k=1,...,p,
then we first have to saturate (7) (formal integrability of (7)), namely, find s ∈ N such that
Ls+j = Ls for all j ∈ N, and then test whether or not the matrix (HT

0 . . . HT
s )T admits a left

inverse. For instance, if A = k{t}, where k = R or C, then the last step can be achieved by
checking whether or not rankR(HT

0 . . . HT
s )T (0) is equal to n (an element a of the local ring A

is an invertible iff a /∈ (t), i.e., a(0) 6= 0).

In control theory (see, e.g., [15, 31]), the state x of ẋ = F x is said to be observable from the
output y , H x if x can be expressed by means of y and its derivatives, which means that the
matrix P = ((∂ In − F )T HT )T admits a left inverse. Using the above results, x is observable
by y = H x iff M = D1×n/(D1×nR) can be generated by {yk = π(Hk•) =

∑n
j=1Hkj xj}k=1,...,p,

namely, M =
∑p

k=1Dyk. Moreover, in control theory, the sequence of matrices Hi’s is called
the observability distribution and the condition that there exists s ∈ N such that the matrix
(HT

0 . . . HT
s )T admits a left inverse is the observability condition. Hence, the search for a

generating set of M can be interpreted as the search for outputs y = H x of the linear system
ẋ = F x such that x is observable. Finally, if A = k[t] or kJtK, where k is a field of characteristic
0, or A = k{t}, where k = R or C, then Theorem 5 shows that the state x of ẋ = F x can
always be observed by a single output y = H x, where H ∈ A1×n is a certain matrix which can
be computed by means of Algorithm 3 of [19] in the case of A = k(t), where k is a computable
field of characteristic 0 (see Remark 2).

If A is now a differential field (e.g., A = k{t}[t−1], where k = R or C), then, in the lit-
erature of linear OD systems, the vector H ∈ A1×n is called a cyclic vector of ẋ = F x if
det(HT

0 . . . HT
n−1)

T 6= 0, where the row vectors Hi’s are defined by (8). In particular, if
A = k(t), where k is a field of characteristic 0, then a cyclic vector always exists for ẋ = F x,
where F ∈ An×n ([4, 10]).

Finally, if d
dt

is a trivial derivation of A, i.e., d
dt
a = ȧ = 0 for all a ∈ A (e.g., A = R),

then (8) yields Hi = H F i for all i ∈ N, and the Cayley-Hamilton theorem (see, e.g., [29])
for a commutative ring A then shows that Fn =

∑n−1
i=0 ai F

i for certain ai ∈ A, and thus
Ln−1+i = Ln−1 for all i ∈ N, i.e., we can take s = n− 1.

Let us state a right module analogue of Lemma 1: the right D-module N = Dq/(RDp) can
be generated by {τ(Λ•i)}i=1,...,q−r, where Λ ∈ Dq×(q−r) and Λ•i denotes the ith column of Λ, iff
P , (R − Λ) admits a right inverse, i.e., iff the right D-module Dq/(P D(p+q−r)) = 0. If R
has full row rank, then 2 of Theorem 3 shows that the left D-module E , D1×(p+q−r)/(D1×q P )
is stably free iff P admits a right inverse. Moreover, the right D-module N depends only on M
since we can easily prove that N is equal to ext1D(M,D) (up to isomorphism) (see, e.g., [29]).
The right D-module N is called the Auslander transpose of M (see, e.g., [5]). These results are
particular instances of the following result.

Theorem 6 ([2, 3]). Let D be a noetherian domain, R ∈ Dq×p a full row rank matrix, i.e.,
kerD(.R) = 0, 0 ≤ r ≤ q − 1, Λ ∈ Dq×(q−r), P = (R − Λ) and M = D1×p/(D1×q R) (resp.,
E = D1×(p+q−r)/(D1×q P )) the left D-module finitely presented by R (resp., P ) which defines
the following short exact sequence

0 −→ D1×(q−r) α
−→ E

β
−→M −→ 0,

namely, α is injective, β is surjective and kerβ = imα. Then, the following results are equiva-
lent:

1. The left D-module E is stably free of rank p− r.
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2. The matrix P = (R −Λ) ∈ Dq×(p+q−r) admits a right inverse, i.e., there exists a matrix
S ∈ D(p+q−r)×q such that P S = Iq.

3. Dq/
(
P D(p+q−r)

)
= 0.

4. {τ(Λ•i)}i=1,...,q−r generates the right D-module ext1D(M,D) = Dq/(RDp), where the right
D-homomorphism τ : Dq −→ Dq/(RDp) is the canonical projection and Λ•i is the ith

column of the matrix Λ.

Finally, the previous results depend only on the residue class ρ(Λ) of Λ ∈ Dq×(q−r) in the
following right D-module

ext1D

(
M,D1×(q−r)

)
, Dq×(q−r)/

(
RDp×(q−r)

)
, (11)

i.e., they depend only on the following row vector:

(τ(Λ•1) . . . τ(Λ•(q−r))) ∈ ext1D(M,D)1×(q−r).

A main point of the above result is that the equivalences of Theorem 6 depend only on the
residue class ρ(Λ) of Λ in ext1D

(
M,D1×(q−r)

)
, i.e., the matrix Λ , Λ+RX can be taken instead

of Λ for all X ∈ Dp×(q−r).

Remark 3. If we take r = q − 1, i.e., Λ ∈ Dq, then Theorem 6 shows that the left D-module
E = D1×(p+1)/(D1×q P ), where P = (R − Λ) ∈ Dq×(p+1), is stably free of rank p − q + 1 iff
τ(Λ) generates the right D-module ext1D(M,D) = Dq/(RDp+1), i.e., iff ext1D(M,D) is a cyclic
right D-module. This result was first pointed out by [30].

Remark 4. If the ring D admits an involution θ, namely, a map θ : D −→ D satisfying

∀ d1, d2 ∈ D, θ(d1 + d2) = θ(d1) + θ(d2), θ(d1 d2) = θ(d2) θ(d1), θ2 = idD,

then (R −Λ) admits a right inverse iff (R̃ − Λ̃)T admits a left inverse, where R̃ , (θ(Rij))
T

and Λ̃ , (θ(Λij))
T (see [5]). Hence, the right D-module N = Dq/(RDp) can be gener-

ated by {τ(Λ•i)}i=1,...,q−r iff the left D-module Ñ , D1×q/(D1×p R̃) can be generated by{
κ
(
Λ̃i•

)}

i=1,...,q−r
, where κ : D1×q −→ Ñ is the canonical projection. For instance, if D is a

commutative ring, then θ = idD is an involution of D, and an involution θ of D = A〈∂1, . . . , ∂n〉
is defined by:

∀ a ∈ A, θ(a) = a, ∀ i = 1, . . . , n, θ(∂i) = −∂i.

The matrix R̃ is called the formal adjoint of R and the left D-module Ñ = D1×q/(D1×p R̃) is
adjoint of the left D-module M = D1×p/(D1×q R).

Let D = A〈∂〉 be the ring of OD operators with coefficients in a noetherian differential
integral domain

(
A, d

dt

)
, F ∈ An×n, G ∈ An×m, R = ∂ In − F and M = D1×n/(D1×nR).

Theorem 6 then shows that the right D-module ext1D(M,D) = Dn/(RDn) is generated by
{τ(G•i)}i=1,...,m, where τ : Dn −→ Dn/(RDn) is the canonical projection onto ext1D(M,D), iff
the matrix P , (∂ In − F −G) ∈ Dn×(n+m) admits a right inverse, i.e., iff the left D-module
E = D1×(n+m)/(D1×n P ) is stably free. Using the involution θ of D defined by θ(a) = a for all
a ∈ A and θ(∂) = −∂, Remark 4 shows that P admits a right inverse iff P̃ = −(∂ In+F T GT )T

admits a left inverse, i.e., iff the left D-module Ẽ = D1×n/(D1×(n+m) (−P̃ )) defined by
{
∂ x = −F T x

GT x = 0,
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is reduced to 0. Using the results obtained in the beginning of the section, the right D-module
ext1D(M,D) = Dn/(RDn) is generated by {τ(G•i)}i=1,...,m iff the increasing sequence

Lj =

j∑

i=0

A1×mHi

of A-submodules of the noetherian A-module A1×n satisfies Ls = A1×n for a certain s ∈ N,
where the matrices Hi’s are defined by

{
H0 = GT ,

Hi+1 = Hi F
T − Ḣi, ∀ i ∈ N,

i.e., iff the matrix (HT
0 . . . HT

s )T admits a left inverse, and thus iff the matrix (G0 . . . Gs)
admits a right inverse, where the matrices Gi’s are defined by:

{
G0 = G,

Gi+1 = F Gi − Ġi, ∀ i ∈ N.
(12)

Corollary 2. Let
(
A, d

dt

)
be a noetherian differential integral domain, F ∈ An×n, D = A〈∂〉 the

ring of OD operators with coefficients in A and R = ∂ In−F ∈ Dn×n. The finitely presented right
D-module N = Dn/(RDn) can be generated by m elements {π(G•k)}k=1,...,m, where H ∈ An×m,
iff the matrix P = (R G) admits a right inverse, i.e., iff there exists s ∈ N such that the matrix
(G0 . . . Gs) admits a right inverse, where the matrices Gi’s are defined by (12).

In control theory (see [15, 31]), a linear OD system

ẋ = F x+Gu (13)

is called controllable on [t0, t1] if for every x1 ∈ Rn, there exists an essentially bounded function
u : [t0, t1] −→ Rm such that x(t1) = x1, where x satisfies (13) with the initial condition x(t0) = 0.
The sequence of matrices Gi’s is called the controllability distribution and the condition that
there exists s ∈ N such that the matrix (G0 . . . Gs) admits a right inverse is the controllability
condition.

If d
dt

is a trivial derivation of A, i.e., d
dt
a = ȧ = 0 for all a ∈ A, then (12) yields Gi+1 = F i+1G

for all i ∈ N. Using the Cayley-Hamilton theorem, the controllability condition becomes the
existence of a right inverse of the following matrix:

Ω , (G F G F 2G . . . Fn−1G) ∈ An×n m. (14)

Example 5. Let us consider the trivial derivation ∂
∂t

of A = Q〈∂x〉 = Q[∂x], the commutative
polynomial ring D = A〈∂t〉 = Q[∂x, ∂t] of PD operators in ∂t and ∂x,

F =

(
0 ∂x + 1

∂2
x 0

)
∈ A2×2,

R = ∂t I2 −F ∈ D2×2 and the D-module M = D1×2/(D1×2R), then N = D2/(RD2) is a cyclic
D-module iff there exists G ∈ A2 such that the matrix P = (R −G) admits a right inverse by
Theorem 6. Then, we get:

Ω =

(
G1 (∂x + 1)G2

G2 ∂2
xG1

)
.
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Since detΩ = (∂xG1)
2− (∂x +1)G2

2 is a polynomial in ∂x of degree at least 1, Ω is not invertible
in A, which proves that the D-module N is not cyclic. Now, if we consider

F ′ =

(
0 1

∂2
x (∂x + 1) 0

)
∈ A2×2, (15)

R′ = ∂t I2 − F ′ ∈ D2×2 and M ′ = D1×2/(D1×2R′), then

Ω′ =

(
G1 G2

G2 ∂2
x (∂x + 1)G1

)
,

and thus det Ω′ = ∂2
x (∂x + 1)G1 −G2

2, which shows that N ′ = D2/(R′D2) is a cyclic D-module
generated by τ((0 1)T ). Finally, since N = ext1D(M,D) and N ′ = ext1D(M ′, D), we obtain
that M and M ′ are not isomorphic D-modules.

Let us give a necessary and sufficient condition for the existence of Serre’s reduction.

Theorem 7 ([2, 3]). Let D be a noetherian domain, R ∈ Dq×p a full row rank matrix, i.e.,
kerD(.R) = 0, 0 ≤ r ≤ q−1 and Λ ∈ Dq×(q−r) such that there exists U ∈ GLp+q−r(D) satisfying
(R − Λ)U = (Iq 0). If

U =

(
S1 Q1

S2 Q2

)
, (16)

where S1 ∈ Dp×q, S2 ∈ D(q−r)×q, Q1 ∈ Dp×(p−r) and Q2 ∈ D(q−r)×(p−r), and if we introduce
the left D-module L = D1×(p−r)/(D1×(q−r)Q2) finitely presented by the full row rank matrix Q2,
i.e., defined by the following short exact sequence

0 −→ D1×(q−r) .Q2

−−→ D1×(p−r) κ
−→ L −→ 0, (17)

then we have:
M = D1×p/(D1×q R) ∼= L = D1×(p−r)/(D1×(q−r)Q2). (18)

Conversely, if M is isomorphic to a left D-module L defined by the short exact sequence (17),
then there exist two matrices Λ ∈ Dq×(q−r) and U ∈ GLp+q−r(D) satisfying:

(R − Λ)U = (Iq 0).

Corollary 3 ([2, 3]). With the notations of Theorem 7, the left D-isomorphism (18) obtained
in Theorem 7 is defined by

M = D1×p/(D1×q R)
ϕ

−→ L = D1×(p−r)/(D1×(q−r)Q2)
π(λ) 7−→ κ(λQ1),

and its inverse ϕ−1 : L −→M is defined by ϕ−1(κ(µ)) = π(µT1), where

U−1 =

(
R −Λ

T1 −T2

)
∈ GLp+q−r(D),

T1 ∈ D(p−r)×p and T2 ∈ D(p−r)×(q−r). These results depend only on the residue class ρ(Λ) of
Λ ∈ Dq×(q−r) in the right D-module ext1D

(
M,D1×(q−r)

)
defined by (11).

RR n° 7486



Serre’s reduction of linear partial differential systems with holonomic adjoints 19

A straightforward consequence of Corollary 3 is the following result.

Corollary 4 ([2, 3]). Let F be a left D-module and:

kerF (R.) = {η ∈ Fp | Rη = 0}, kerF (Q2.) = {ζ ∈ F (p−r) | Q2 ζ = 0}.

Then, we have kerF (R.) ∼= kerF (Q2.) and, more precisely:

kerF (R.) = Q1 kerF (Q2.), kerF (Q2.) = T1 kerF (R.).

Corollary 5 ([2, 3]). Let R ∈ Dq×p be a full row rank matrix and Λ ∈ Dq×(q−r) such that
P = (R − Λ) admits a right inverse over D. Then, Theorem 7 holds when D satisfies one of
the following properties:

1. D is a principal left ideal domain (e.g., the ring A〈∂〉 of OD operators with coefficients in
a differential field A such as k or k(t), where k is a field),

2. D = k[x1, . . . , xn] is a commutative polynomial ring over a field k,

3. D is An(k) or Bn(k), where k is a field of characteristic 0, and p− r ≥ 2.

4. D = A〈∂〉 is the ring of OD operators, where A = kJtK and k is a field of characteristic 0,
or k{t} and k = R or C, and p− r ≥ 2.

Example 6. Let us consider again Example 5. If the matrix P = (∂ In − F − G) admits a
right inverse, then the left D = A〈∂〉-module E = D1×(n+m)/(D1×n P ) is stably free by 2 of
Theorem 3.

1. If A is a differential field (e.g., A = R, R(t), R{t}[t−1]), then 1 of Corollary 5 shows that
there exists a matrix Q2 ∈ Dm×m such that:

M = D1×n/(D1×n (∂ In − F )) ∼= L , D1×m/(D1×mQ2). (19)

2. If A = k[t] or kJtK, where k is a field of characteristic 0, or k{t}, where k = R or C,
and n ≥ m ≥ 2, then there exists a matrix Q2 ∈ Dm×m such that (19) holds by 4 of
Corollary 5.

3. If d
dt

is a trivial derivation of the differential ring A = k[x1, . . . , xn], where k is a field,
then 2 of Corollary 5 that there exists a matrix Q2 ∈ Dm×m such that (19) holds. For
instance, if we consider again the D = A[∂t] = Q[∂x, ∂t]-module M ′ = D1×2/(D1×2R′),
where R′ = ∂t I2 − F ′ and F ′ is defined by (15), then, in Example 5, we proved that
the D-module ext1D(M ′, D) = N ′ = D2/(R′D2) was cyclic and generated by τ((0 1)T ).
Using 2 of Theorem 2, we obtain that the stably free D-module E = D1×3/(D1×2 P ),
where P = (R′ − Λ) and Λ = (0 1)T , is free of rank 1. Using a constructive proof of
the Quillen-Suslin theorem implemented in the QuillenSuslin package ([14]), we obtain:




∂t −1 0

−∂2
x (∂x + 1) ∂t −1

1 0 0







0 0 1

−1 0 ∂t

−∂t −1 ∂2
t − ∂x (∂2

x + 1)


 = I3. (20)

Thus, we get M ∼= D/(DQ2), where Q2 = ∂2
t − ∂x (∂2

x + 1). Moreover, if we consider the
D-module F = C∞(R2) or D′(R2), then:

kerF (R′.) =

(
1

∂t

)
kerF (Q2.), kerF (Q2.) = (1 0) kerF (R′.).
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Example 7. Let D = A[∂] be a commutative polynomial ring in ∂ with coefficients in a
commutative ring A, F ∈ An×n, R = ∂ In−F ∈ Dn×n andM = D1×n/(D1×nR). Let us suppose
that there exists G ∈ An such that the finitely presented D-module E = D1×(n+1)/(D1×n P ) is
free, where P = (∂ In−F −G). For i = 1, . . . , n+1, let mi , det P̂i be the determinant of the
n× n submatrix of P obtained by removing the ith column of P (e.g., mn+1 = det(∂ In − F )).
Since P admits a right inverse, we can prove that there exist d1, . . . , dn+1 ∈ D such that∑n+1

i=1 dimi = 1 (see, e.g., [14]). If T1 = (−1)n (d1 − d2 d3 . . . (−1)n+1 dn) and T2 = −dn+1,
then developing the determinant of the following matrix

(
∂ In − F −G

T1 −T2

)
∈ D(n+1)×(n+1)

along its last row using Laplace’s formula, we get that its determinant is 1, i.e., the above
unimodular matrix corresponds to the matrix U−1 defined in Corollary 3. Moreover, we have
Q2 = det(∂ In − F ) and Q1 = (−1)n (m1 −m2 m3 . . . (−1)n+1mn)T . For more details, see
[14]. For instance, if we consider again the end of Example 6, we get m1 = 1, m2 = −∂t and
m3 = det(∂ I2 − F ′) = ∂2

t − ∂2
x (∂x + 1), d1 = 1, d2 = 0 and d3 = 0, and we find again (20).

Corollary 6 ([2, 3]). With the notations of Theorem 7 and Corollary 3, if Λ ∈ Dq×(q−r) admits a
left inverse Γ ∈ D(q−r)×q, i.e., Γ Λ = Iq−r, then Q1 admits the left inverse T1−T2 ΓR ∈ D(p−r)×p

and the left D-module kerD(.Q1) is stably free of rank r.

Moreover, if the left D-module kerD(.Q1) is free of rank r, then there exists Q3 ∈ Dp×r

such that W = (Q3 Q1) ∈ GLp(D). If we write W−1 = (Y T
3 Y T

1 )T , where Y3 ∈ Dr×p and
Y1 ∈ D(p−r)×p, then the matrix X = (RQ3 Λ) is unimodular, i.e., X ∈ GLq(D) and:

V = X−1 =

(
Y3 S1

Q2 Y1 S1 − S2

)
.

The matrix R is then equivalent to the matrix X diag(Ir, Q2)W
−1, i.e.:

V RW =

(
Ir 0

0 Q2

)
.

Finally, the left D-module kerD(.Q1) is free when D satisfies 1 or 2 of Corollary 5 or if
D = An(k) or Bn(k), where k is a field of characteristic 0, and r ≥ 2 or if D = A〈∂〉 is the ring
of OD operators with coefficients in A = kJtK, where k a field of characteristic 0, or in A = k{t}
and k = R or C, and r ≥ 2.

Example 8. Let us consider a model of a two reflector antenna studied in [16, 24] which is
defined by the linear differential time-delay system kerF (R.), where

R =




∂ −K1 0 0 0 0 0 0 0

0 ∂ +
K2

Te
0 0 0 0 −

Kp

Te
δ −

Kc

Te
δ −

Kc

Te
δ

0 0 ∂ −K1 0 0 0 0 0

0 0 0 ∂ +
K2

Te
0 0 −

Kc

Te
δ −

Kp

Te
δ −

Kc

Te
δ

0 0 0 0 ∂ −K1 0 0 0

0 0 0 0 0 ∂ +
K2

Te
−
Kc

Te
δ −

Kc

Te
δ −

Kp

Te
δ




,

RR n° 7486



Serre’s reduction of linear partial differential systems with holonomic adjoints 21

S =




0 0 0 0 0 0

−
1

K1

0 0 0 0 0

0 0 0 0 0 0

0 0 −
1

K1

0 0 0

0 0 0 0 0 0

0 0 0 0 −
1

K1

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−
Te +K2

K1 Te

∂ −1 0 0 0 0

0 0 −
Te +K2

K1 Te

∂ −1 0 0

0 0 0 0 −
Te +K2

K1 Te

∂ −1




Figure 1: MatriX S

and ∂ y(t) = ẏ(t), δ y(t) = y(t− 1) for all y ∈ F = C∞(R), and K1, K2, Kc, Ke, Kp and Te are
constant parameters. Let D = Q(K1,K2,Kc,Ke, Te) [∂, δ] be the commutative polynomial ring
of OD time-delay operators and M = D1×9/(D1×6R) the D-module finitely presented by R. If
we introduce the following matrix

Λ =




0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1




T

∈ D6×3,

then the matrix S ∈ D12×6 defined in Figure 1 is a right inverse of P = (R − Λ) ∈ D6×12.
Hence, the D-module E = D1×12/(D1×6 P ) is projective, and thus free by the Quillen-Suslin
theorem. Using the packages QuillenSuslin ([14]), we can compute a basis and an injective
parametrization of E. We get that the matrix Q ∈ D12×6 given in Figure 2 defines an injective
parametrization of E, i.e., kerD(.Q) = D1×6 P ∼= D1×6. Using Theorem 7 and Corollary 4, we
obtain that M ∼= L = D1×6/(D1×3Q2), where Q2 is the matrix defined by the last three rows
of Q, and thus kerF (R.) ∼= kerF (Q2.), i.e.:





Te ζ̈1(t) +K2 ζ̇1(t) + (Kp + 2Kc) (Kc −Kp) ζ2(t− 1) = 0,

Te ζ̈3(t) +K2 ζ̇3(t) + (Kp + 2Kc) (Kc −Kp) ζ4(t− 1) = 0,

Te ζ̈5(t) +K2 ζ̇5(t) + (Kp + 2Kc) (Kc −Kp) ζ6(t− 1) = 0.

We note that the equations of the previous system are uncoupled, i.e.:

M ∼= [D1×2/(D ((Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ)]
3. (21)
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Q =




K1 Te 0 0

Te ∂ 0 0

0 0 K1 Te

0 0 Te ∂

0 0 0

0 0 0

0 Te (Kp +Kc) 0

0 −Kc Te 0

0 −Kc Te 0

(Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ 0

0 0 (Te ∂ +K2) ∂

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 K1 Te 0

0 Te ∂ 0

−Kc Te 0 −Kc Te

Te (Kp +Kc) 0 −Kc Te

−Kc Te 0 Te (Kp +Kc)

0 0 0

(Kp + 2Kc) (Kc −Kp) δ 0 0

0 (Te ∂ +K2) ∂ (2Kc +Kp) (Kc −Kp) δ




Figure 2: Matrix Q
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W = (Q3 Q1) =


0 0 0 K1 Te 0 0

−K−1

1
0 0 Te ∂ 0 0

0 0 0 0 0 K1 Te

0 −K−1

1
0 0 0 Te ∂

0 0 0 0 0 0

0 0 −K−1

1
0 0 0

0 0 0 0 Te (Kp +Kc) 0

0 0 0 0 −Kc Te 0

0 0 0 0 −Kc Te 0

0 0 0

0 0 0

0 0 0

0 0 0

0 K1 Te 0

0 Te ∂ 0

−Kc Te 0 −Kc Te

Te (Kp +Kc) 0 −Kc Te

−Kc Te 0 Te (Kp +Kc)




Figure 3: Matrix W

We note that Λ admits a left inverse Γ over D defined by:

Γ =




0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


 .

Hence, let us compute V ∈ GL6(D) and W ∈ GL9(D) such that V RW = diag(I3, Q2). The
D-module kerD(.Q1) is a stably free and thus a free D-module of rank 3 by the Quillen-Suslin
theorem. This last result can be checked again by computing the D-module kerD(.Q1): we have
kerD(.Q1) = D1×3 F ∼= D1×3, where the matrix F is defined by:

F =




∂ −K1 0 0 0 0 0 0 0

0 0 ∂ −K1 0 0 0 0 0

0 0 0 0 ∂ −K1 0 0 0


 ∈ D3×9.

Computing a right inverse of F , we obtain that the matrix Q3 ∈ D9×3 defined by

Q3 = −
1

K1




0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0




T

is such that the matrix W defined in Figure 3 is unimodular, i.e., W ∈ GL9(D). Forming
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the matrix X = (RQ3 Λ) ∈ D6×6, namely,

X =




1 0 0 0 0 0

−
Te ∂ +K2

K1 Te
0 0 1 0 0

0 1 0 0 0 0

0 −
Te ∂ +K2

K1 Te
0 0 1 0

0 0 1 0 0 0

0 0 −
Te ∂ +K2

K1 Te
0 0 1




,

then X ∈ GL6(D). Its inverse is defined by

V = X−1 =




1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

Te ∂ +K2

K1 Te
1 0 0 0 0

0 0
Te ∂ +K2

K1 Te
1 0 0

0 0 0 0
Te ∂ +K2

K1 Te
1




,

and R = V RW has finally the form diag(I3, Q2):

R = V RW =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 (Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ 0 0

0 0 (Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ




.

Finally, theD-module L = D1×2/(D ((Te ∂ +K2) ∂ (Kp + 2Kc) (Kc −Kp) δ) is clearly torsion-
free and δ-free ([24]) and, using (21), so is M ∼= N3.

Example 9. Let us consider again the PD linear system defined by R′ = ∂t I2 − F ′, where
F ′ is given by (15). In Example 6, we showed that we could take Λ = (0 1)T . Since Λ
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admits the left inverse Γ = (0 1) and D = Q[∂x, ∂t] is a commutative polynomial ring over
the field Q, Corollary 5 shows that R′ is equivalent to the diagonal matrix diag(1, Q2), where
Q2 = ∂2

t − ∂x (∂2
x + 1). Let us compute two matrices V, W ∈ GL2(D) such that V R′W =

diag(1, Q2). We have kerD(.Q1) = DK, where K = (∂t − 1), and K admits the right inverse
Q3 = (0 − 1)T . Hence, if we introduce the following matrices

W = (Q3 Q1) =

(
0 1

−1 ∂t

)
∈ GL2(D), X = (R′Q3 Λ) =

(
1 0

−∂t 1

)
∈ GL2(D),

then the matrix R′ is equivalent to the following diagonal matrix:

X−1R′W =

(
1 0

0 ∂2
t − ∂x (∂2

x + 1)

)
.

As explained in [3], the existence of Serre’s reduction can be constructively checked when
ext1D(M,D) = Dq/(RD) is a 0-dimensional D = k[x1, . . . , xn]-module (k a computable field),
namely, when Dq/(RD) is a finite-dimensional k-vector space. The purpose of Section 5 is to
study the corresponding case when D = An(k) or A〈∂1, . . . , ∂n〉, where A = kJx1, . . . , xnK and
k a field of characteristic 0, or A = k{x1, . . . , xn} and k = R or C, i.e., the case where the right
D-module Dq/(RD) is holonomic. Let us give a simple example in the commutative case.

Example 10. Let us consider the wind tunnel model studied in [22] which is described by an
OD time-delay linear system defined by the following matrix

R =




∂ + a k a δ 0 0

0 ∂ −1 0

0 ω2 ∂ + 2 ζ ω −ω2


 ,

where ∂ y(t) = ẏ(t) is the differential operator and δ y(t) = y(t−1) is the time-delay operator and
ζ, k, ω and a are constant parameters of the system. We note that the functional operators ∂ and
δ commute since (∂ ◦ δ) y(t) = (ẏ)(t− 1) = (δ ◦ ∂) y(t). Hence, we can consider the commutative
polynomial ring D = Q(ζ, k, ω, a)[∂, δ] of differential time-delay operators with coefficients in
the field Q(ζ, k, ω, a), where we simply denote the composition of two functional operators by
the standard product (e.g., ∂ ◦ δ is written as ∂ δ). Now, if we introduce the finitely presented
D-module M = D1×4/(D1×3R), then ext1D(M,D) = D3/(RD4) and we can easily check by
means of Gröbner basis techniques that ext1D(M,D) is a Q(ζ, k, ω, a)-vector space of dimension
1 and τ((1 0 0)T ) is a basis, where τ : D3 −→ ext1D(M,D) is the canonical projection. If we
consider the column vector Λ = (1 0 0)T , then the matrix P = (R −Λ) ∈ D3×5 admits the
right inverse

S =




0 0 0

0 0 0

0 −1 0

0 −ω−2 (∂ + 2 ζ ω) −ω2

−1 0 0



,

which shows that τ((1 0 0)T ) generates the cyclic D-module ext1D(M,D). Therefore, using
Remark 3, E = D1×5/(D1×3 P ) is a stably free, and thus, a free D-module of rank 2 by the
Quillen-Suslin theorem (see 2 of Theorem 2). Using a constructive version of the Quillen-Suslin
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theorem implemented in the QuillenSuslin package ([14]), we obtain that the matrixQ ∈ D5×2

defined by

Q =




1 0

0 ω2

0 ω2 ∂

0 ∂2 + 2 ζ ω ∂ + ω2

∂ + a ω2 k a δ




is an injective parametrization of the free D-module E, i.e., U = (S Q) ∈ GL5(D) is such that
P U = (I3 0). Theorem 7 then shows that M ∼= D1×2/(DQ2), where Q2 = (∂+ a ω2 k a δ) is
the last row of the matrix Q.

We note that Γ = (1 0 0) is a left inverse of Λ, which shows by Corollary 6 that kerD(.Q1)
is a free D-module of 1, where Q1 is the matrix formed by the four first rows of Q. In particular,
we can check that kerD(.Q1) = D1×2K, where the full row rank matrix K is defined by:

K =

(
0 ω2 ∂ + 2 ζ ω −ω2

0 ∂ −1 0

)
.

Computing a right inverse of K, we get that the matrix

Q3 =




0 0

0 0

0 −1

−ω2 −ω2 (∂ + 2 ζ ω)




is such that W = (Q3 Q1) ∈ GL4(D) and:

X = (RQ3 Λ) =




0 0 1

0 1 0

1 0 0


 ∈ GL3(D), V = X−1 = X.

Corollary 6 shows that the matrix R is equivalent to the following block-diagonal matrix

V RW =




1 0 0 0

0 1 0 0

0 0 ∂ + aω2 k a δ


 ,

which proves that the wind tunnel model can be defined by an OD time-delay equation:





ẋ1(t) + a x1(t) + k a x2(t− 1) = 0,

ẋ2(t) − x3(t) = 0,

ẋ3(t) + ω2 x2(t) + 2 ζ ω x3(t) − ω2 u(t) = 0,

⇔ ẏ(t) + aω2 y(t) + k a v(t− 1) = 0.

For more sophisticated examples, see [3, 9, 26].
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5 Serre’s reduction of partial differential linear systems based

on holonomy

We are now in position to state the main result of this paper.

Theorem 8. Let D = A〈∂1, . . . , ∂n〉 be the ring of PD operators with coefficients in the ring
A = k[x1, . . . , xn] or kJx1, . . . , xnK, where k is a field of characteristic 0, or k{x1, . . . , xn} and
k = R or C, R ∈ Dq×p a full row rank matrix and M = D1×p/(D1×q R) the left D-module
finitely presented by R. If ext1D(M,D) = Dq/(RDp) is a holonomic right D-module, then
Theorem 6 holds and we can choose a column vector Λ ∈ Dq which admits a left inverse over
and is such that τ(Λ) generates the right D-module Dq/(RDp), where τ : Dq −→ Dq/(RDp) is
the canonical projection onto ext1D(M,D). If A = k[x1, . . . , xn] and p− q ≥ 1, then Theorem 7
and Corollaries 3 and 4 hold, i.e., M ∼= L = D1×(p−q+1)/(DQ2), for a certain row vector
Q2 ∈ D1×(p−q+1). Finally, if q ≥ 3, then Corollary 6 holds, i.e., the matrix R is equivalent to
diag(Iq−1, Q2).

Proof. Since by hypothesis, ext1D(M,D) is a holonomic right D-module, Theorem 5 proves that
ext1D(M,D) is cyclic and it can be generated by τ(Λ), where Λ = (1 d2 . . . dq)

T , for certain di’s in
D. Using Remark 3, we obtain that E = D1×(p+1)/(D1×q P ), where P = (R −Λ) ∈ Dq×(p+1),
is stably free of rank p + 1 − q. If A = k[x1, . . . , xn], i.e., D = An(k), and p + 1 − q ≥ 2, i.e.,
p − q ≥ 1, then 3 of Theorem 2 shows that E is a free left D-module of rank p + 1 − q, and
using 3 of Theorem 3, Theorem 7 holds. Moreover, Γ = (1 0 . . . 0) is a left inverse of Λ, and
thus Corollary 6 holds. Finally, if r = q − 1 ≥ 2, i.e., q ≥ 3, then the stably free left D-module
kerD(.Q1) of rank r is free by Stafford’s theorem (see 3 of Theorem 2) and Corollary 6 proves
that R is equivalent to diag(Iq−1, Q2) for a certain row vector Q2 ∈ D1×(p−q+1).

In the case of D = An(k), where k is a field of characteristic 0, we can use [19] and [27] to
obtain the following algorithm implemented in the Serre package ([9]).

Algorithm 1. • Input: A full row rank matrix R ∈ Dq×p such that p − q ≥ 1 and the
right D = An(k)-module N , Dq/(RDp) is holonomic (k a field of characteristic 0).

• Output: A matrix Q2 ∈ D1×(p−q+1) such that M ∼= D1×(p−q+1)/(DQ2). Moreover, if
q ≥ 3, then two more matrices V ∈ GLq(D) and W ∈ GLp(D) are returned such that:

V RW = diag(Iq−1, Q2).

1. Use Algorithm 3 of [19] to compute a column vector Λ = (1 d2 . . . dq)
T such that

N , Dq/(RDp) = D τ(Λ), where τ : Dq −→ N is the canonical projection onto N , i.e.
such that N = (P Dp+1)/(RDp), where P = (R − Λ) ∈ Dq×(p+1).

2. Using Algorithm 3 of [27], compute two matrices

{
Q = (QT

1 QT
2 )T ∈ D(p+1)×(p−q+1),

T = (T1 T2) ∈ D(p−q+1)×(p+1)

where Q1 ∈ Dp×(p−q+1), Q2 ∈ D1×(p−q+1), T1 ∈ D(p−q+1)×p and T2 ∈ D(p−q+1)×1, such
that kerD(.Q) = D1×q P and T Q = Ip−q+1.

3. If q ≤ 2, then return the matrix Q2.
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4. Else, compute a matrix K ∈ Dr×p such that kerD(.Q1) = D1×r K.

5. Compute a matrix L ∈ Ds×r such that kerD(.K) = D1×s L.

6. If L = 0, i.e., kerD(.K) = 0, then r = q − 1.

(a) Compute a right inverse Q3 ∈ Dp×(q−1) of the matrix K ∈ D(q−1)×p.

(b) Form the matrices X = (RQ3 Λ) ∈ GLq(D) and W = (Q3 Q1) ∈ GLp(D).

(c) Compute V = X−1.

(d) Return the matrices Q2, V and W .

7. Else, i.e., L 6= 0, then:

(a) Using Algorithm 4 of [27], compute F ∈ Dr×(q−1) and G ∈ D(q−1)×r such that
kerD(.F ) = D1×s L and GF = Iq−1.

(b) Form the full row rank matrix GK ∈ D(q−1)×p.

(c) Compute a right inverse Q3 ∈ Dp×(q−1) of the matrix GK ∈ D(q−1)×q.

(d) Form the matrices X = (RQ3 Λ) ∈ GLq(D) and W = (Q3 Q1) ∈ GLp(D).

(e) Compute V = X−1.

(f) Return the matrices Q2, V and W .

Example 11. Let us consider the commutative polynomial ring D = Q [∂x, ∂y] of PD operators
and the D-module M = D1×3/(D1×2R) finitely presented by R defined by:

R =

(
∂x ∂y 0

0 ∂x ∂y

)
∈ D2×3. (22)

The matrix R defines the equation Rσ = 0 of the equilibrium of the stress tensor in R2:
{
∂x σ

11 + ∂y σ
12 = 0,

∂x σ
12 + ∂y σ

22 = 0.
(23)

We can check that ext1D(M,D) = D2/
(
RD3

)
is a Q-vector space of dimension 3 and a basis of

ext1D(M,D) is defined by τ((1 0)T ), τ((0 1)T ) and τ((0 ∂x)T ), where τ : D2 −→ D2/(RD3)
is the canonical projection. Hence, without loss of generality, we can assume that Λ has the
form Λ = (a b + c ∂x)T , where a, b and c are three arbitrary constants. Considering the new
ring D′ = Q[a, b, c] [∂x, ∂y], P = (R − Λ) and the D′-module E = D′1×4/(D′1×2 P ), then,
using Gröbner basis techniques, we can check that the matrix P does not admit a right inverse
with entries in D′. According to Theorem 3, we obtain that the A-module E is not a stably
free D′-module, which proves that (23) cannot be defined by a sole PD equation with constant
coefficients, and the minimal number of generators µ(M) of the D-module M is 3.

Let M ′ = B1×3/(B1×2R) be the left B = A2(Q)-module finitely presented by R. The
right B-module ext1B(M ′, B) = B2/(RB3) is holonomic and thus cyclic by Proposition 5. The
element τ(Λ) of ext1B(M ′, B), where Λ = (1 x)T , generates ext1B(M ′, B) since the matrix
P = (R − Λ) ∈ B2×4 admits the following right inverse:

T =




−x 1

−x2 x

−x3 x2

−x (x ∂y + ∂x) − 2 ∂x + x ∂y


 .
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The left B-module E′ = B1×4/(B1×2 P ) is then stably free of rank 2 (see Remark 3), i.e., free
by Stafford’s theorem (see 3 of Theorem 2). Using the Stafford package ([27]), an injective
parametrization of E′ is defined by

Q =




∂y ∂x

x ∂y x ∂x − 1

x2 ∂y − 1 x ∂x − x

(∂x + x ∂y) ∂y (∂x + x ∂y) ∂x − ∂y


 ,

which yields M ′ ∼= B1×2/(B ((∂x + x ∂y) ∂y (∂x + x ∂y) ∂x − ∂y)).

Since Γ = (1 0) is a left inverse of Λ, using Corollary 6, we obtain the following unimodular
matrices:

W =




−1 ∂y ∂x

−x x ∂y x ∂x − 1

−x2 x2 ∂y − 1 x (x ∂x − 1)


 , W−1 =




x ∂x x ∂y − ∂x −∂y

0 x −1

x −1 0


 ,

X =

(
−(∂x + x ∂y) 1

−x (∂x + x ∂y) − 1 x

)
, V = X−1 =

(
x −1

x2 ∂y + x ∂x + 2 −(∂x + x ∂y)

)
.

Then, the matrix R defined by (22) is equivalent to the following block-diagonal matrix

V RW =

(
1 0 0

0 (∂x + x ∂y) ∂y (∂x + x ∂y) ∂x − ∂y

)
,

which proves that (23) is equivalent to the following PD equation

(∂x + x ∂y) ∂y τ2 + (∂x + x ∂y) ∂x τ3 − ∂y τ3 = 0,

under the following invertible transformations:





σ11 = ∂y τ2 + ∂x τ3,

σ12 = x ∂y τ2 + x ∂x τ3 − τ3,

σ22 = x2 ∂y τ2 − τ2 + x2 ∂x τ3 − x τ3,





τ1 = x (∂x σ
11 + ∂y σ

12) − (∂x σ
12 + ∂y σ

22) = 0,

τ2 = xσ12 − σ22,

τ3 = xσ11 − σ12.

We note that we have lost the symmetry of (23). It would be interesting to get a more symmetric
equivalent PD equation by considering another cyclic vector of ext1E(M ′, E).

If D is a noetherian domain and M = D1×p/(D1×q R) a left D-module finitely presented by
a full row rank matrix R, then we can prove that the right D-module ext1D(M,D) = Dq/(RDp)
is torsion ([5]). Then, using Theorem 4 and 4 of Corollary 5, we obtain the following corollary
of Theorem 8.

Corollary 7. Let D = A〈∂〉 be the ring of OD operators with coefficients in A = k[t] or kJtK
and k is a field of characteristic 0, or A = k{t} and k = R or C, R ∈ Dq×p a full row rank
matrix and M = D1×p/(D1×q R) the left D-module finitely presented by R. Then, Theorem 6
holds and Λ ∈ Dq can be chosen so that it admits a left inverse over D and τ(Λ) generates
the right D-module ext1D(M,D) = Dq/(RDp). Moreover, if p − q ≥ 1, then Theorem 7 and
Corollaries 3 and 4 hold. Finally, if q ≥ 3, then Corollary 6 holds.
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Corollary 7 shows that every analytic linear OD system defined by a full row rank matrix with
at least one column more than rows is isomorphic to an analytic linear OD equation. Moreover,
if the system has at least 3 equations, then the system is equivalent to a sole OD equation. These
results are particularly meaningful in control theory. For instance, if we consider the analytic
linear OD system

ẋ = F x+Gu, (24)

where F ∈ An×n and G ∈ An×m, where A = k[t] or kJtK and k is a field of characteristic
0, or A = k{t} and k = R or C, then we get M = D1×(n+m)/(D1×nR), where D = A〈∂〉
and R = (∂ In − F − G) ∈ Dn×(n+m). In particular, we have p = n + m, q = n and
rankD(M) = p− q = m. Therefore, if m ≥ 1, i.e., if the dimension of the input vector u of (24)
is at least 1, i.e., F 6= 0, then M ∼= D1×(m+1)/(DQ2) for a certain row vector Q2 ∈ D1×(m+1).
Moreover, if n ≥ 3, i.e., if the dimension of the state vector x of (24) is at least 3, then (24) is
equivalent to the linear analytic OD equation Q2 ζ = 0.

Since the rings D = B1(k), kJtK[t
−1]〈∂〉, where k is a field of characteristic 0, or k{t}[t−1]〈∂〉,

where k = R or C, are simple principal left ideal domains (see, e.g., [1, 20]), using the concept
of Jacobson normal form, namely, a generalization of the Smith normal form to principal left or
right ideal domains (see, e.g., [12, 18, 32]), for every matrix R ∈ Dq×p, there exist V ∈ GLq(D),
W ∈ GLp(D) and d ∈ D such that

V RW = diag(1, . . . , 1, d, 0, . . . , 0),

i.e., R is equivalent to the diagonal matrix R = diag(1, . . . , 1, d, 0, . . . , 0), for a certain d ∈ D.
In particular, if R has full row rank, then R is equivalent to diag(1, . . . , 1, d).

Now, if D = A1(k), kJtK〈∂〉, where k is a field of characteristic 0, or k{t}〈∂〉, where k = R

or C, and R ∈ Dq×p, then the Jacobson normal form of R can be computed by considering the
injection of D into the simple principal left ideal domain D′, where D′ is respectively B1(k),
kJtK[t−1]〈∂〉 and k{t}[t−1]〈∂〉. Therefore, there exist V ∈ GLq(D

′), W ∈ GLp(D
′) and e ∈ D′

such that V RW = diag(1, . . . , 1, e, 0, . . . , 0). However, singularities may have been introduced
in e, V and W . Corollary 7 shows that there always exist three matrices Q2 ∈ D1×(p−q+1),
X ∈ GLq(D) and Y ∈ GLp(D) such that X RY = diag(Iq−1, Q2). Since the entries of Q2, X,
Y , X−1 and Y −1 belong to D, no singularity can appear.

Example 12. Let M = D1×4/(D1×3R) be the left D = A1(Q)-module finitely presented by
the following matrix:

R =




t ∂ + 2 0 ∂ ∂

∂ + t2 0 ∂2 + 1 t

t2 (∂2 − 1) + 2 t ∂ −t ∂ t ∂ t ∂2 − t


 ∈ D3×4. (25)

Using Algorithm 3 of [19], we obtain that the column vector Λ = (0 0 1)T is such that the
matrix P = (R − Λ) admits the following right inverse:

S =




∂2 + 1 −∂ −∂ −t (∂2 + 1) 0

−∂ 1 1 t ∂ 0

0 0 0 0 −1




T

.

In other words, the right D-module ext1D(M,D) = D3/(RD4) is cyclic and is generated by τ(Λ),
and thus the left D-module E = D1×5/(D1×3 P ) is stably free of rank 2, i.e., is free of rank 2
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by Stafford’s theorem (see 3 of Theorem 2). Computing an injective parametrization of E by
means of the Stafford package, we obtain that the matrix Q = (QT

1 QT
2 )T ∈ D5×2, where

Q1 =




∂3 + (1 − t) ∂ − 1 0

−∂2 − ∂ + t 1

−∂2 + t 0

−t ∂3 + t (t− 1) ∂ + t− 1 0


 , Q2 = (t − t ∂) ,

satisfies kerD(.Q) = D1×3 P and T Q = I2, where:

T =

(
−t 0 0 −1 0

1 1 ∂ − 1 0 0

)
.

Thus, we get M ∼= D1×2/(DQ2). Moreover, since Λ admits the left inverse Γ = (0 0 1), R is
equivalent to diag(I2, Q2). More precisely, we have kerD(.Q1) = D1×2K, where

K =

(
t ∂ + 2 0 ∂ ∂

∂ + t2 0 ∂2 + 1 t

)
,

and the right inverse Q3 of K, defined by

Q3 =

(
∂2 + 1 0 −∂ −t (∂2 + 1)

−∂ 0 1 t ∂

)T

,

is such that W = (Q3 Q1) ∈ GL4(D). Then, we have:

X = (RQ3 Λ) =




1 0 0

0 1 0

−t ∂2 t ∂ 1


 , V = X−1 =




1 0 0

0 1 0

t ∂2 −t ∂ 1


 .

We obtain that the matrix R is equivalent to the following block-diagonal matrix:

V RW =




1 0 0 0

0 1 0 0

0 0 t −t ∂


 .

If we compute a Jacobson normal form J of the matrix R, then we get

J = Y RZ =




1 0 0 0

0 1 0 0

0 0 1 0


 ,

for certain matrices Y and Z containing large entries in B1(Q), i.e., Y ∈ GL3(B1(Q)) and
Z ∈ GL4(B1(Q)). Finally, we note that the left D-module L = D1×2/(DQ2) admits the non-
trivial torsion element z = z1−∂ z2, where z1 = κ((1 0)) and z2 = κ((0 1)) are the generators
of L satisfying t (z1 − ∂ z2) = 0, whereas the left D′ , B1(Q)-module D′1×2/(D′Q2) is free of
rank 1.
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