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Purity filtration of multidimensional linear systems

Alban Quadrat

Abstract— In this paper, we show how the purity filtration of
a finitely presented module, associated with a multidimensional
linear system, can be explicitly characterized by means of
classical concepts of module theory and homological algebra.
Our approach avoids the use of sophisticated homological
algebra methods such as spectral sequences used in [3], [4], [5],
associated cohomology used in [9], and Spencer cohomology
used in [12], [13]. It allows us to develop efficient imple-
mentations in the PURITYFILTRATION and AbelianSystems

packages. The purity filtration gives an intrinsic classification
of the torsion elements of the module by means of their grades,
and thus a classification of the autonomous elements of the
multidimensional linear system by means of their codimensions.
The results developed here are used in [16] to determine an
equivalent block-triangular linear system of the multidimen-
sional linear system formed by equidimensional diagonal blocks.
This equivalent linear system highly simplifies the computation
of a Monge parametrization of the original linear system.

I. ALGEBRAIC ANALYSIS APPROACH TO LINEAR

SYSTEMS THEORY

In what follows, D will denote a noetherian domain,

namely a ring without zero divisors (namely, d1 d2 = 0 yields

d1 = 0 or d2 = 0) such that every left (resp., right) ideal

of D is finitely generated as a left (resp., right) D-module

[19]. Moreover, Dq×p will denote the set of q × p matrices

with entries in D and Ip the unit of Dp×p.

Example 1.1: If k is a field of characteristic 0 (e.g.,

k = Q, R, C) and k′ = R or C, then An(k) (resp.,

Bn(k), D̂n(k), Dn(k
′)) is the ring of partial differential (PD)

operators in ∂i = ∂
∂xi

, i = 1, . . . , n, with coefficients in

the polynomial ring k[x1, . . . , xn] (resp., the ring of rational

functions k(x1, . . . , xn), the ring of formal power series

kJx1, . . . , xnK, the ring of locally convergent power series

k′{x1, . . . , xn}). These rings are noetherian domains [4].

If R ∈ Dq×p and F is a left D-module, then we can

define the linear system or behaviour:

kerF (R.) = {η ∈ Fp | Rη = 0}.

The algebraic analysis approach to linear systems theory

(see [6], [11], [14], [20], [21] and the references therein) is

based on the following result due to Malgrange.

Theorem 1.1 ([10]): Let M = D1×p/(D1×q R) be the

left D-module finitely presented by the matrix R ∈ Dq×p,

π : D1×p −→ M the canonical projection onto M sending

λ ∈ D1×p to its residue class π(λ) in M , {fj}j=1,...,p the

standard basis of D1×p (i.e., fj is the row vector of length
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p with 1 in jth position and 0 elsewhere), yj = π(fj) for

j = 1, . . . , p, F a left D-module, and homD(M,F) the

abelian group defined by the left D-homomorphisms (i.e.,

left D-linear maps) from M to F . Then, the abelian group

homomorphism χ (i.e., Z-linear map) defined by

χ : homD(M,F) −→ kerF (R.)
φ 7−→ η = (φ(y1) . . . φ(yp))

T ,

is an isomorphism and its inverse χ−1 of χ is defined by

χ−1 : kerF (R.) −→ homD(M,F)
η 7−→ φη,

(1)

where φη is defined by φη(π(λ)) = λ η for all λ ∈ D1×p.

Theorem 1.1 proves that kerF (R.) ∼= homD(M,F),
where ∼= denotes an isomorphism [19]. Hence, the linear

system kerF (R.) can be intrinsically studied by means

of the two left D-modules M and F . If fj is the jth

vector of the standard basis of D1×p, then the left D-

module M = D1×p/(D1×q R) is finitely generated by

{yj = π(fj)}j=1,...,p, namely M =
∑p
j=1Dyj , where

π : D1×p −→M is the left D-homomorphism which sends

λ ∈ D1×p to its residue class π(λ) in M . The generators

yj’s of M satisfy the following relations

p
∑

j=1

Rij yj =

p
∑

j=1

Rij π(fj) = π((Ri1 . . . Rip)) = 0,

for i = 1, . . . , q. Let us now give the main idea of the proof

of Theorem 1.1. If φ ∈ homD(M,F) and ηj = φ(yj) for

j = 1, . . . , p, then, for i = 1, . . . , q, we get:

p
∑

j=1

Rij ηj =

p
∑

j=1

Rij φ(yj) = φ





p
∑

j=1

Rij yj



 = φ(0) = 0.

II. MODULE THEORY AND HOMOLOGICAL ALGEBRA

Since kerF (R.) ∼= homD(M,F), the linear system

kerF (R.) can be studied by means of the properties of the

left D-modules M and F . Let us recall a few definitions.

Definition 2.1 ([19]): Let D be a left noetherian domain

and M a finitely generated left D-module.

1) M is free if there exists r ∈ N = {0, 1, 2, . . .} such

that M ∼= D1×r. Then, r is called the rank of M .

2) M is projective if there exist r ∈ N and a left D-

module N such that M⊕N ∼= D1×r, where ⊕ denotes

the direct sum of left D-modules.

3) M is reflexive if the left D-homomorphism

ε : M −→ homD(homD(M,D), D),
m 7−→ ε(m),



is an isomorphism, where:

∀ m ∈M, ∀ f ∈ homD(M,D), ε(m)(f) = f(m).

4) M is torsion-free if the torsion left D-submodule of M ,

namely t(M) = {m ∈M | ∃ d ∈ D\{0} : dm = 0},
is reduced to 0, i.e., t(M) = 0.

5) M is torsion if t(M) = M , i.e., if every element of

M is a torsion element.

Theorem 2.1 ([19]): A free module is projective, a pro-

jective is reflexive, and a reflexive is torsion-free.

Definition 2.2: 1) A complex of left D-modules

M• . . .
di+2
−−−→Mi+1

di+1
−−−→Mi

di−→Mi−1
di−1
−−−→ . . . ,

(2)

is a sequence of left D-modules Mi and of left D-

homomorphisms di : Mi −→Mi−1 which satisfies:

∀ i ∈ Z, di ◦ di+1 = 0 (⇔ im di+1 ⊆ ker di).

Similarly for a complex of right D-modules.

2) The defect of exactness of (2) at Mi is the left (resp.,

right) D-module defined by:

Hi(M•) , ker di/im di+1.

3) The complex (2) is exact at Mi if Hi(M•) = 0, i.e., if

ker di = im di+1, and exact if ker di = im di+1 for all

i ∈ Z. An exact complex is called an exact sequence.

4) An exact sequence of the form

0 −→M ′ f
−→M

g
−→M ′′ −→ 0, (3)

i.e., f is injective, ker g = im f and g is surjective, is

called a short exact sequence.

5) A finite free resolution of the left D-module M is an

exact sequence of the form

. . .
.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π

−→M −→ 0,
(4)

where, for i ≥ 1, Ri ∈ D
pi×pi−1 and:

.Ri : D1×pi −→ D1×pi−1

λ 7−→ λRi.

6) A finite free resolution of a right D-module N is an

exact sequence of the form

0←− N
κ
←− Dq0 S1.←−− Dq1 S2.←−− Dq2 S3.←−− . . . , (5)

where, for i ≥ 1, Si ∈ D
qi−1×qi and:

Si. : D
qi −→ Dqi−1

η 7−→ Si η.

Example 2.1: If D is a left noetherian domain and M a

finitely generated left D-module, then we have the following

short exact sequence of left D-modules:

0 −→ t(M)
i
−→M

ρ
−→M/t(M) −→ 0. (6)

Let F be a left D-module. Using (4), we can define the

extension abelian groups extiD(M,F)’s for i ≥ 0 as follows.

Up to abelian group isomorphism, they are defined by the

defects of exactness of the following complex

. . .
Ri+1.
←−−− Fpi

Ri.←−− Fpi−1
Ri−1.
←−−−− . . .

. . .
R3.←−− Fp2

R2.←−− Fp1
R1.←−− Fp0 ←− 0,

(7)

where Ri. : Fpi−1 −→ Fpi is defined by (Ri.)(η) = Ri η
for all η ∈ Fpi−1 and for all i ≥ 1, namely:
{

ext0D(M,F) = homD(M,F) ∼= kerF (R1.),

extiD(M,F) ∼= kerF (Ri+1.)/imF (Ri.), i ≥ 1.

The complex (7) is said to be obtained by application of the

contravariant left exact functor homD( · ,F) to the reduced

(truncated) free resolution of M , namely to the complex

obtained by removing M from the finite free resolution (4):

. . .
.R4−−→ D1×p3 .R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 −→ 0.

A classical theorem of homological algebra proves that the

extiD(M,F)’s depend only on the left D-modules M and F
(up to abelian group isomorphism), i.e., they do not depend

on the choice of the finite free resolution (4) of M [19].

Similarly, if D is a right noetherian ring, N a finitely

generated right D-module, and G a right D-module, then,

using the finite free resolution (5) of N , we can define:
{

ext0D(N,G) = homD(N,G) ∼= kerG(.S1),

extiD(N,G) ∼= kerG(.Si+1)/imG(.Si), i ≥ 1.

Theorem 2.2 ([19]): Let (3) be a short exact sequence of

left (resp., right) D-modules and F a left (resp., right) D-

module. Then, the following long exact sequence

0 −→ ext0D(M ′′,F)
g⋆

−→ ext0D(M,F)
f⋆

−−→ ext0D(M ′,F)

κ1

−→ ext1D(M ′′,F) −→ ext1D(M,F) −→ ext1D(M ′,F)

κ2

−→ ext2D(M ′′,F) −→ ext2D(M,F) −→ . . . ,

holds, where f⋆ (resp., g⋆) is defined by f⋆(φ) = φ ◦ f
(resp., g⋆(ψ) = ψ ◦ g) for all φ ∈ homD(M,F) (resp., for

all ψ ∈ homD(M ′′,F)).

Proposition 2.1 ([19]): Let (3) be a short exact sequence

of left (resp., right) D-modules and M a projective left (resp.,

right) D-module. Then, for every left (resp., right) D-module

F , we have exti+1
D (M ′′,F) ∼= extiD(M ′,F) for all i ≥ 1.

If D is a ring, then we can define the concept of left global

dimension lgd(D) (resp., right global dimension rgd(D)) as

the supremum of the minimal length of projective resolutions

of left (resp., right) D-modules [19]. In what follows, we

only need to know that they are two invariants of the ring D
which coincide when D is a noetherian ring [19], and which

is then simply denoted by gld(D).

Example 2.2: If k is a field, then we have

gld(k[x1, . . . , xn]) = n [19]. If k is a field of characteristic

0, k′ = R or C, and D = An(k), Bn(k), D̂n(k) or Dn(k
′),

then gld(D) = n [4], [5], [9].



Theorem 2.3 ([1], [6], [9], [12], [14]): Let D be a

noetherian domain having a finite global dimension

gld(D) = n, M = D1×p/(D1×q R) the left D-module

finitely presented by R ∈ Dq×p, and the so-called Auslander

transpose of M , namely the following right D-module:

N = Dq/(RDp).

1) We have the following left D-isomorphism:

t(M) ∼= ext1D(N,D). (8)

2) M is torsion-free iff ext1D(N,D) = 0.

3) The following long exact sequence of left D-modules

0 −→ ext1D(N,D) −→M
ε
−→ homD(homD(M,D), D)

−→ ext2D(N,D) −→ 0
(9)

holds, where ε is defined in 3 of Definition 2.1.

4) M is reflexive iff extiD(N,D) = 0 for i = 1, 2.

5) M is projective iff extiD(N,D) = 0 for i = 1, . . . , n.

Theorem 2.3 was implemented in the OREMODULES

package [7] for some classes of noncommutative polynomial

rings of functional operators (e.g., PD, shift, difference, time-

delay operators) for which Buchberger’s algorithm termi-

nates for any admissible term order, and which computes a

Gröbner basis [6]. Hence, using the OREMODULES package,

we can effectively check whether or not a finitely presented

left D-module M = D1×p/(D1×q R) admits torsion ele-

ments or is torsion-free, reflexive or projective.

Definition 2.3 ([19]): A left D-module F is injective if

extiD(M,F) = 0 for all left D-modules M and for all i ≥ 1.

Example 2.3: If Ω is an open convex subset of Rn, then

the space C∞(Ω) (resp., D′(Ω), S ′(Ω), A(Ω), O(Ω)) of

smooth functions (resp., distributions/temperate distributions,

real analytic/holomorphic functions) on Ω is an injective

D = k[∂1, . . . , ∂n]-module (k = R or C) [10], [11], [20].

If M is a left D-module admitting the finite free resolution

. . .
.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π

−→M −→ 0,

then, applying the contravariant left exact functor

homD( · ,F) to the previous exact sequence, and using the

fact that extiD( · ,F) = 0 for all i ≥ 1, and Theorem 1.1,

we obtain the following exact sequence of abelian groups:

. . .
.R3←−− Fp2

R2.←−− Fp1
R1.←−− Fp0 ←− homD(M,F)←− 0.

Hence, we get kerF (Ri+1.) = Ri F
pi−1 for all i ≥ 1. We

then say that homD( · ,F) is an exact contravariant functor,

i.e., transforms exact sequences of left D-modules into exact

sequences of abelian groups.

Corollary 2.1 ([6], [14], [21]): Let D be a noetherian

domain having a finite global dimension gld(D) = n, F
an injective left D-module, and M = D1×p/(D1×q R) a

left D-module finitely presented by R ∈ Dq×p. If we set

Q1 = R, p1 = p and p0 = q, then we have:

1) If M is a torsion-free left D-module, then there exists

a matrix Q2 ∈ D
p1×p2 such that the following exact

sequence of abelian groups

Fp0
Q1.
←−− Fp1

Q2.
←−− Fp2

holds, i.e., kerF (Q1.) = Q2 F
p2 . Then, Q2 is called a

parametrization of the linear system kerF (R.).
2) If M is a reflexive left D-module, then there exist

Q2 ∈ Dp1×p2 and Q3 ∈ Dp2×p3 such that the

following exact sequence of abelian groups

Fp0
Q1.
←−− Fp1

Q2.
←−− Fp2

Q3.
←−− Fp3

holds, i.e.:

kerF (Q1.) = Q2 F
p2 , kerF (Q2.) = Q3 F

p3 .

3) If M is a projective left D-module, then there exist n
matrices Qi ∈ D

pi−1×pi for all i = 2, . . . , n+ 1 such

that the following exact sequence

Fp0
Q1.
←−− Fp1

Q2.
←−− . . .

Qn.
←−− Fpn

Qn+1.
←−−−− Fpn+1

(10)

holds, i.e., kerF (Qi.) = Qi+1 F
pi+1 for i = 1, . . . , n.

The matrices Qi’s defined in Theorem 2.1 can be com-

puted by checking when the extiD(N,D)’s vanish [6].

For instance, applying the contravariant left exact functor

homD( · , D) to the beginning of a finite free resolution

0 ←− N
κ
←− Dq R.

←− Dp Q.
←− Dm of the Auslander

transpose N = Dq/(RDp) of M = D1×p/(D1×q R),

we then get the complex D1×q .R
−→ D1×p .Q

−→ D1×m

and ext1D(N,D) ∼= t(M) = kerD(.Q)/imD(.R). Hence,

if t(M) = 0, then the above complex is exact at D1×p

and defines the beginning of a free resolution of the finitely

presented left D-module L = D1×m/(D1×pQ). Then,

applying the exact functor homD( · ,F) to L, we obtain

the exact sequence Fq
R.
←− Fp

Q.
←− Fm, which yields

kerF (R.) = QFm and shows that the linear system

kerF (R.) is parametrized by Q. Using the OREMODULES

package [7], the matrices Qi’s of Corollary 2.1 can be

effectively computed, which constructively solves the so-

called image representation problem of behaviours (see

[6], [14], [12], [20], [21] and the references therein). If

t(M) 6= 0, then the autonomous elements of the linear

system kerF (R.) correspond to the torsion elements of M ,

i.e., t(M) = kerD(.Q)/imD(.R) [6], [14], [12], [20], [21].

If R′ ∈ Dq′×p is a matrix such that kerD(.Q) = D1×q′ R′,

then t(M) = (D1×q′ R′)/(D1×q R), which shows that the

residue class of the rows of R′ in M defines a set of

generators of the torsion left D-module t(M) [6], [14].

Let us now introduce a useful lemma which gives a finite

presentation of a quotient left D-module.

Proposition 2.2 ([8]): Let R ∈ Dq×p and R′ ∈ Dq′×p

be two matrices satisfying D1×q R ⊆ D1×q′ R′, i.e., such

that R = R′′R′ for a certain R′′ ∈ Dq×q′ . Moreover, let



R′
2 ∈ D

r′×q′ be a matrix such that kerD(.R′) = D1×r′ R′
2,

and let π and π′ be respectively the canonical projections:

π : D1×q′ R′ −→ (D1×q′ R′)/(D1×q R),

π′ : D1×q′ −→ D1×q′/(D1×q R′′ +D1×r′ R′
2).

Then, the left D-homomorphism ι defined by

D1×q′/(D1×q R′′ +D1×r′ R′
2)

ι
−→ (D1×q′ R′)/(D1×q R)

π′(λ) 7−→ π(λR′)
(11)

is an isomorphism and its inverse ι−1 is defined by:

(D1×q′ R′)/(D1×q R)
ι−1

−→ D1×q′/(D1×q R′′ +D1×r′ R′
2)

π(λR′) 7−→ π′(λ).

Applying Proposition 2.2 to the quotient left D-module

t(M) = (D1×q′ R′)/(D1×q R), we obtain

t(M) ∼= D1×q′/
(

D1×(q+r′) (R′′T R′T
2 )T

)

, (12)

where R′′ ∈ Dq×q′ and R′
2 ∈ D

r′×q′ are defined by:

R = R′′R′, kerD(.R′) = D1×r′ R′
2.

The third isomorphism theorem in module theory [19] yields:

M/t(M) = [D1×p/(D1×q R)]/[(D1×q′ R′)/(D1×q R)]

∼= D1×p/(D1×q′ R′).
(13)

III. MONGE PARAMETRIZATIONS

According to 1 of Corollary 2.1, a linear system

kerF (R.) ∼= homD(M,F) is parametrizable when the

finitely presented left D-module M = D1×p/(D1×q R) is

torsion-free and F is an injective left D-module. If M has

torsion elements, i.e., t(M) 6= 0, and F is an injective left

D-module, then applying the exact functor homD( · ,F) to

the short exact sequence (6), we get the short exact sequence:

0←− homD(t(M),F)
i⋆

←− homD(M,F)

ρ⋆

←− homD(M/t(M),F)←− 0.

We can then wonder if we can parametrize the linear system

kerF (R.) by means of a more general parametrization than

the one used in Corollary 2.1, i.e., by a parametrization

obtained by glueing a parametrization of the parametrizable

subsystem kerF (R′.) = Q′ Fm ∼= homD(M/t(M),F) of

kerF (R.), where M/t(M) = D1×p/(D1×q′ R′) (see (13)),

with the integration of the (over)determined linear system

kerF ((R′′T R′T
2 )T .) ∼= homD(t(M),F) formed by the

autonomous elements of kerF (R.) (see (12)). This leads us

to the concept of a Monge parametrization [17], [18].

To recall the main results developed in [17], [18], let us

first introduce a few more definitions [19].

Definition 3.1: 1) Let M and N be two left D-

modules. An extension of M by N is a short exact

sequence e of left D-modules of the form:

e : 0 −→ N
f
−→ E

g
−→M −→ 0. (14)

2) Two extensions of M by N

ei : 0 −→ N
fi
−→ Ei

gi
−→M −→ 0, i = 1, 2,

are said to be equivalent, denoted by e1 ∼ e2, if there

exists a left D-isomorphism φ : E1 −→ E2 such that

the commutative exact diagram

0 −→ N
f1
−→ E1

g1
−→ M −→ 0

‖ ↓ φ ‖

0 −→ N
f2
−→ E2

g2
−→ M −→ 0

holds, i.e., such that f2 = φ ◦ f1 and g1 = g2 ◦ φ.

3) Let [e] be the equivalence class of the extension e for

the equivalence relation ∼. The set of all equivalence

classes of extensions of M by N is denoted by

eD(M,N).

Theorem 3.1 ([17], [18]): Let M = D1×p/(D1×q R)
and N = D1×s/(D1×t S) be two finitely presented left D-

modules, and R2 ∈ Dr×q a matrix such that kerD(.R) =
D1×r R2. Then, every equivalence class of extensions of M
by N is defined by the following extension of M by N

e : 0 −→ N
α
−→ E

β
−→M −→ 0, (15)

where the left D-module E is defined by the presentation

D1×(q+t) .Q
−→ D1×(p+s) ̺

−→ E −→ 0, (16)

i.e., E = D1×(p+s)/(D1×(q+t)Q), where

Q =

(

R −A

0 S

)

∈ D(q+t)×(p+s),

A ∈ Ω = {X ∈ Dq×s | ∃ Y ∈ Dr×t : R2X = Y S}, (17)

N
α
−→ E

δ(µ) 7−→ ̺(µ (0 Is)),
E

β
−→ M

̺(λ) 7−→ π(λ (Ip 0)T ),

where π : D1×p −→ M (resp., δ : D1×s −→ N , and

̺ : D1×(p+s) −→ E) is the canonical projection onto M
(resp., N , E). Finally, the equivalence class [e] depends only

on the residue class ǫ(A) of the matrix A in:

Ω/(RDp×s +Dq×t S) ∼= ext1D(M,N). (18)

The next corollary of Theorem 3.1 explains how to deter-

mine ǫ(A) for a given extension of M by N .

Corollary 3.1 ([18]): With the notations of Theorem 3.1,

if we consider the following extension

0 −→ N
u
−→ F

v
−→M −→ 0 (19)

of M = D1×p/(D1×q R) by N = D1×s/(D1×t S), and if

{fj}j=1,...,p is the standard basis of D1×p, yj = π(fj) for

all j = 1, . . . , p, zj ∈ F a pre-image of yj under v, then
∑p
j=1Rij zj ∈ imu for all i = 1, . . . , q, and since u is

injective, there exists a unique ni ∈ N satisfying:

u(ni) =

p
∑

j=1

Rij zj .



If we consider a pre-image ai ∈ D
1×s of ni under δ, i.e.,

ni = δ(ai) for all i = 1, . . . , q, then the extension (19) of M
by N belongs to the same equivalence class of (15), where

the left D-module E is defined by (16) with:

A = (a1 . . . aq)
T ∈ Dq×s.

Equivalently, the following commutative exact diagram

D1×q .R
−→ D1×p π

−→ M −→ 0
↓ φ ↓ ψ ‖

0 −→ N
u
−→ F

v
−→ M −→ 0

holds, where ψ and φ are respectively defined by

ψ : D1×p −→ F
fj 7−→ zj , j = 1, . . . , p,

φ : D1×q −→ N
ei 7−→ ni = δ(ai), i = 1, . . . , q,

and {ei}i=1,...,q is the standard basis of D1×q.

Corollary 3.2 ([17], [18]): With the previous notations,

an extension of M/t(M) by t(M), namely

e : 0 −→ t(M)
α
−→ E

β
−→M/t(M) −→ 0, (20)

can be defined by the finitely presented left D-module

E = D1×(p+q′)/(D1×(q′+q+r′) P ),

where the matrix P is given by

P =







R′ −A

0 R′′

0 R′
2






∈ D(q′+q+r′)×(p+q′), (21)

and the matrix A belongs to the abelian group Ω defined by:

Ω =
{

A ∈ Dq′×q′ | ∃ B ∈ Dr′×(q+r′) : R′
2A = B

(

R′′

R′
2

)}

.

(22)

Moreover, the equivalence classes of the extensions of

M/t(M) by t(M) depend only on the residue classes ǫ(A)
of the matrix A ∈ Ω in the following abelian group:

Ω/

(

R′Dp×q′ +Dq′×(q+r′)

(

R′′

R′
2

))

∼= ext1D(M/t(M), t(M))).

(23)

More precisely, we have the following important results.

Theorem 3.2 ([17], [18]): Let R ∈ Dq×p, R′ ∈ Dq′×p,

R′′ ∈ Dq×q′ , and R′
2 ∈ D

r′×q′ be four matrices satisfying

M = D1×p/(D1×q R), M/t(M) = D1×p/(D1×q′ R′),
R = R′′R′, and kerD(.R′) = D1×r′ R′

2. Moreover, let

E = D1×(p+q′)/(D1×(q′+q+r′) P ) be the left D-module

finitely presented by the matrix P defined by

P =







R′ −Iq′

0 R′′

0 R′
2






∈ D(q′+q+r′)×(p+q′), (24)

and ̺ : D1×(p+q′) −→ E (resp., π : D1×p −→ M ) the

canonical projection onto E (resp., M ). Then, we have:

1) M ∼= E for the following left D-isomorphism:

M −→ E = D1×(p+q′)/(D1×(q′+q+r′) P )

π(λ) 7−→ ̺(λU), U = (Ip 0) ∈ Dp×(p+q′).

2) The following two extensions of M/t(M) by t(M)

0 −→ t(M)
i
−→M

ρ
−→M/t(M) −→ 0,

0 −→ t(M)
α
−→ E

β
−→M/t(M) −→ 0,

belong to the same equivalence class in:

eD(M/t(M), t(M)).

3) For every left D-module F , kerF (R.) ∼= kerF (P.),

i.e., Rη = 0 ⇔











R′ ζ − θ = 0,

R′′ θ = 0,

R′
2 θ = 0,

(25)

for the following invertible transformations:

γ : kerF (P.) −→ kerF (R.)
(

ζ

θ

)

7−→ η = U

(

ζ

θ

)

= ζ,

γ−1 : kerF (R.) −→ kerF (P.)

η 7−→

(

ζ

θ

)

=

(

Ip

R′

)

η.

IV. PURITY FILTRATION

To integrate the (under)determined linear system

kerF (R.), (25) shows that we first have to integrate the

following (over)determined linear system:

kerF
(

(R′′T R′T
2 )T .

)

∼= homD(t(M),F). (26)

Generalizing the ideas developed in Sections II and III, the

goal of this section is to show how we can “zoom” in (26)

and write (26) as a block-triangular linear system whose

diagonal-blocks define equidimensional linear systems. To

do that, we first need to introduce the concept of purity

filtration of the left D-module M [4], [5], [9]. In [16], these

results are used to obtain an equivalent block-triangular linear

system, which is extremely useful for the computation of a

Monge parametrization of the linear system kerF (R.). For

more details, see [16]. The results developed in this section

generalize the ones obtained in [15] for linear 2D systems.

Let M be a finitely generated left D-module. We can

consider the beginning of a finite free resolution of M :

0←−M
π
←− D1×p0 .R1←−− D1×p1 .R2←−− D1×p2 .R3←−− D1×p3 .

Then, the defects of exactness of the following complex

0 −→ Dp0 R1.−−→ Dp1 R2.−−→ Dp2 R3.−−→ Dp3 (27)



are the right D-modules defined by:










ext2D(M,D) ∼= kerD(R3.)/imD(R2.),

ext1D(M,D) ∼= kerD(R2.)/im(R1.),

ext0D(M,D) ∼= kerD(R1.).

(28)

To characterize the right D-modules extiD(M,D)’s,

we need to compare kerD(Ri.) with imD(Ri−1.) =
Ri−1D

pi−2 . For a fixed k from 1 to 3, let us introduce the

notations Rkk = Rk, pkk = pk, p(k−1)k = pk−1, and:

Nkk = cokerD(Rkk.) = Dpkk/(RkkD
p(k−1)k).

Then, for 1 ≤ k ≤ 3, let us consider the beginning of a finite

free resolution of the right D-module Nkk:

. . .
R(k−1)k.
−−−−−→ Dp(k−1)k

Rkk.−−−→ Dpkk
κkk−−→ Nkk −→ 0. (29)

The choice of notations is natural: if we write the 3 long

exact sequences (29) for k = 1, 2, 3 on the same page, where

the kth exact sequence of (29) is written at level k as shown

in Fig. 1, then the free right D-module Dpjk is at position

(j, k) and Rjk arrives at Dpjk with j ≤ k.

Since (27) is a complex of right D-modules, we obtain

Rkk R(k−1)(k−1) = Rk Rk−1 = 0 for all k = 2, 3, and thus

R(k−1)(k−1)D
p(k−2)(k−1) ⊆ kerD(Rkk.) = R(k−1)kD

p(k−2)k ,

i.e., matrices F(k−2)k ∈ D
p(k−2)k×p(k−2)(k−1) exist such that:

∀ k = 1, 2, 3, R(k−1)(k−1) = R(k−1)k F(k−2)k. (30)

Using (30) for k = 1, 2, we obtain

R(k−1)k F(k−2)k R(k−2)(k−1) = R(k−1)(k−1)R(k−2)(k−1) = 0,

which yields

F(k−2)k R(k−2)(k−1)D
p(k−3)(k−1) ⊆ kerD(R(k−1)k.)

= R(k−2)kD
p(k−3)k ,

and there exists F(k−3)k ∈ D
p(k−3)k×p(k−3)(k−1) such that:

F(k−2)k R(k−2)(k−1) = R(k−2)k F(k−3)k. (31)

Similarly, for k = 3, there exists F−13 ∈ D
p−13×p−12 such

that F03R02 = R03 F−13. Therefore, we obtain the com-

mutative diagram of right D-modules (33) whose horizontal

sequences are exact and where:

R00 = 0, N00 = Dp00/0 ∼= Dp00 ,

p00 = p01, p12 = p11, p23 = p22.
(32)

If we denote by Njk the right D-module defined by

Njk = cokerD(Rjk.) = Dpjk/(RjkD
p(j−1)k),

then, using (33), we obtain the commutative diagram (34)

whose horizontal sequences are exact. Moreover, we have

the following short exact sequences:

0 −→ N13 −→ Dp23 −→ N23 −→ 0,

0 −→ N23 −→ Dp33 −→ N33 −→ 0,

0 −→ N12 −→ Dp22 −→ N22 −→ 0,

0 −→ N01 −→ Dp11 −→ N11 −→ 0.

(35)

Now, using (28), we obtain the following characterization

of right D-modules extiD(M,D)’s:






























ext2D(M,D) ∼=kerD(R33.)/imD(R22.)

= (R23D
p13)/(R22D

p12),

ext1D(M,D) ∼=kerD(R22.)/imD(R11.)

= (R12D
p02)/(R11D

p01),

ext0D(M,D) ∼=kerD(R11.)/imD(R00.) = R01D
p−11 .

(36)

Then, using (32), (36) yields the three short exact sequences

(37) of right D-modules. Now, applying the contravariant

exact functor homD( · , D) to the three short exact sequences

of (37) and using Theorem 2.2, we obtain the long exact

sequences shown in Fig. 4.

In what follows, we shall suppose that the ring D satisfies

∀ i ∈ N, extiD(exti+1
D (M,D), D) = 0, (38)

for all left D-modules M . For instance, this condition holds

if D is an Auslander regular ring [5], namely a noetherian

ring with a finite global dimension gld(D) such as, for every

i ∈ N and for every finitely generated left D-module M , any

left D-submodule P of extiD(M,D) satisfies jD(P ) ≥ i,
where the grade jD(P ) of P [4], [5] is defined by:

jD(P ) = min{i ≥ 0 | extiD(P,D) 6= 0}. (39)

For instance, the rings k[x1, . . . , xn], An(k), Bn(k), D̂n(k)
and Dn(k

′) defined in Example 1.1 are Auslander regular

[4], [5]. In particular, using (39), we get:

ext0D(ext1D(M,D), D) = 0, ext1D(ext2D(M,D), D) = 0.

Moreover, ext1D(N00, D) is equal to 0 since N00 = Dp00

is a free, and thus a projective right D-module (see, e.g.,

Corollary 6.58 of [19]). Therefore, the three long exact

sequences in Fig. 4 yield the exact sequences (40). Using

Proposition 2.1, the short exact sequences of (35) then yield:










ext3D(N33, D) ∼= ext2D(N23, D) ∼= ext1D(N13, D),

ext2D(N22, D) ∼= ext1D(N12, D),

ext2D(N11, D) ∼= ext1D(N01, D).

Since N11 = Dp11/(R11D
p01) is the Auslander transpose

of M = D1×p01/(D1×p11 R11), 1 of Theorem 2.3 gives:

t(M) ∼= ext1D(N11, D).

A right D-module analogue of Theorem 1.1 shows that

ext0D(N01, D) ∼= kerD(.R01), and (6) yields:

M/t(M) = D1×p00/ kerD(.R01).

(40) yields the three exact sequences (41). Combining the

long exact sequences (41) with the long exact sequence (9)

and using coker ε = M/t(M) (see 3 of Theorem 2.3), we

obtain the exact diagram (42), where:

coker γ32
∼= im γ22 ⊆ ext2D(ext2D(M,D), D),

coker γ21
∼= im γ11 ⊆ ext1D(ext1D(M,D), D),

coker i = M/t(M) ∼= coker γ10

∼= im γ00 ⊆ ext0D(ext0D(M,D), D).

(43)



Dp−13
R03.−−−→ Dp03 R13.−−−→ Dp13 R23.−−−→ Dp23 R33.−−−→ Dp33 κ33−−→ N33 −→ 0,

Dp−12
R02.−−−→ Dp02 R12.−−−→ Dp12 R22.−−−→ Dp22 κ22−−→ N22 −→ 0,

Dp−11
R01.−−−→ Dp01 R11.−−−→ Dp11 κ11−−→ N11 −→ 0.

Fig. 1. Free resolutions of the Nkk’s

Dp−13
R03.−−−→ Dp03 R13.−−−→ Dp13 R23.−−−→ Dp23 R33.−−−→ Dp33 κ33−−→ N33 −→ 0

↑ F−13. ↑ F03. ↑ F13. ‖

Dp−12
R02.−−−→ Dp02 R12.−−−→ Dp12 R22.−−−→ Dp22 κ22−−→ N22 −→ 0

↑ F−12. ↑ F02. ‖

Dp−11
R01.−−−→ Dp01 R11.−−−→ Dp11 κ11−−→ N11 −→ 0

↑ ‖

0 −→ Dp00 κ00−−→ N00 −→ 0.

(33)

Fig. 2. Commutative diagram with horizontal exact sequences

Dp−13
R03.−−−→ Dp03 R13.−−−→ Dp13 κ13−−→ N13 −→ 0

↑ F−13. ↑ F03. ↑ F13.

Dp−12
R02.−−−→ Dp02 R12.−−−→ Dp12 κ12−−→ N12 −→ 0

↑ F−12. ↑ F02. ‖

Dp−11
R01.−−−→ Dp01 R11.−−−→ Dp11 κ11−−→ N11 −→ 0.

(34)

Fig. 3. Commutative diagram with horizontal exact sequences

0 −→ ext2D(M,D) −→ N22 = Dp23/(R22D
p12) −→ N23 = Dp23/(R23D

p13) −→ 0,

0 −→ ext1D(M,D) −→ N11 = Dp12/(R11D
p01) −→ N12 = Dp12/(R12D

p02) −→ 0,

0 −→ ext0D(M,D) −→ N00 = Dp00 −→ N01 = Dp01/(R01D
p01) −→ 0.

(37)

0 −→ ext0D(N23, D) −→ ext0D(N22, D) −→ ext0D(ext2D(M,D), D)

−→ ext1D(N23, D) −→ ext1D(N22, D) −→ ext1D(ext2D(M,D), D)

−→ ext2D(N23, D) −→ ext2D(N22, D) −→ ext2D(ext2D(M,D), D)

−→ ext3D(N23, D) −→ ext3D(N22, D) −→ . . .

0 −→ ext0D(N12, D) −→ ext0D(N11, D) −→ ext0D(ext1D(M,D), D)

−→ ext1D(N12, D) −→ ext1D(N11, D) −→ ext1D(ext1D(M,D), D)

−→ ext2D(N12, D) −→ ext2D(N11, D) −→ . . .

0 −→ ext0D(N01, D) −→ ext0D(N00, D) −→ ext0D(ext0D(M,D), D)

−→ ext1D(N01, D) −→ ext1D(N00, D).

Fig. 4. Long exact sequences

0 −→ ext2D(N23, D) −→ ext2D(N22, D) −→ ext2D(ext2D(M,D), D),

0 −→ ext1D(N12, D) −→ ext1D(N11, D) −→ ext1D(ext1D(M,D), D),

0 −→ ext0D(N01, D) −→ ext0D(N00, D) −→ ext0D(ext0D(M,D), D) −→ ext1D(N01, D) −→ 0.

(40)

0 −→ ext3D(N33, D)
γ32
−−→ ext2D(N22, D)

γ22
−−→ ext2D(ext2D(M,D), D) −→ coker γ22 −→ 0,

0 −→ ext2D(N22, D)
γ21
−−→ t(M)

γ11
−−→ ext1D(ext1D(M,D), D) −→ coker γ11 −→ 0,

0 −→ ext0D(N01, D)
γ10
−−→ D1×p00

γ00
−−→ ext0D(ext0D(M,D), D) −→ ext2D(N11, D) −→ 0.

(41)



0
↓

0 −→ ext3D(N33, D)
γ32
−−→ ext2D(N22, D) −→ coker γ32 −→ 0

↓ γ21

0 −→ t(M)
i
−→ M

ρ
−→ M/t(M) −→ 0.

↓
coker γ21

↓
0

(42)

We then get the following filtration {Mi}i=0,...,3 of M :

0 ⊆M3 = (γ21 ◦ γ32)(ext3D(N33, D))

⊆M2 = γ21(ext2D(N22, D)) ⊆M1 = t(M) ⊆M0 = M.
(44)

Definition 4.1 ([4], [5]): A finitely generated left D-

module M is called pure or jD(M)-pure if jD(P ) = jD(M)
for all non-zero left D-submodules P of M .

Theorem 4.1 ([4], [5]): Let D an Auslander regular ring

and M a non-zero finitely generated left D-module. Then,

extiD(extiD(M,D), D) is either 0 or an i-pure left D-

module.

Using Theorem 4.1 and (43), coker γ32 is a 2-pure left D-

module, coker γ21 is a 1-pure left D-module and M/t(M)
is a 0-pure left D-module. Moreover, if R3 has full row

rank, namely kerD(.R3) = 0, then N33
∼= ext3D(M,D), and

thus ext3D(N33, D) ∼= ext3D(ext3D(M,D), D) is a 3-pure left

D-module. Using the notations of (44), we then note that

M3
∼= ext3D(ext3D(M,D), D) is a 3-pure left D-module,

M2/M3
∼= coker γ32 is a 2-pure left D-module, M1/M2

∼=
coker γ21 is a 1-pure left D-module and M0/M1

∼= M/t(M)
is a 0-pure left D-module, i.e., the successive quotients

of the terms of the filtration {Mi}i=0,...,3 of M are pure

left D-submodules of M . This filtration {Mi}i=0,...,3 of

M is called the purity filtration of M [5], [9]. Now, if

kerD(.R3) 6= 0, i.e., kerD(.R3) = D1×p4 R4 for a non-

trivial matrix R4 ∈ D
p4×p3 , then we can introduce the right

D-module N44 = Dp44/(R44D
p34), where R44 = R4 and

p44 = p4, compute ext4D(N44, D) and so on. Repeating the

same procedure gld(D) = n times, we finally obtain a purity

filtration {Mi}i=0,...,n of M .

This explicit and rather elementary way for the com-

putation of the purity filtration of a finitely presented left

D-module M does not require sophisticated homological

algebra techniques such as spectral sequences [3], [4], [5],

associated cohomology [9], and Spencer cohomology [12],

[13]. Efficient implementations of this new approach were

recently done by the author in the PURITYFILTRATION

package, built upon OREMODULES [7], and, in collabo-

ration with Barakat (University of Kaiserslautern), in the

AbelianSystems package of the seminal homalg [2],

[3] of GAP4 dedicated to homological algebra computations.

The homalg package also includes the computation of the

purity filtration based on spectral sequences. See [3] for a

constructive study of spectral sequences of bicomplexes.

Finally, the results developed in this paper are used in

[16] to explicitly determine a block-triangular linear system

which is equivalent to kerF (R.). It will allow us to compute

a Monge parametrization of the linear system kerF (R.)
by integrating in cascade inhomogeneous linear systems

defining equidimensional homogeneous linear systems.
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