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We investigate how the shape of a heat source may enhance global heat transfer at short time.
An experiment is described that allows to obtain a direct visualization of heat propagation from a
prefractal radiator. We show, both experimentally and numerically, that irregularly-shaped passive
coolers rapidly dissipate at short times, but their efficiency decreases with time. The de Gennes’
scaling argument is shown to be only a large scale approximation which is not sufficient to de-
scribe adequately the temperature distribution close to the irregular frontier. This work shows that
radiators with irregular surfaces permits increased cooling of pulsed heat sources.

PACS numbers: 05.60.-k, 44.05.+e, 66.10.C-

Propagation of heat as well as particle diffusion are of
direct interest in every-day life, chemical industry, life
sciences, and pollution spreading. In electronics or civil
engineering, one needs to improve the cooling of micro-
processors and to build efficient radiators for housing.
Empirically, a large surface is known to dissipate more
so that irregularly-shaped metallic radiators are placed
onto microprocessors in order to remove heat. But this
is the result of both conduction and convection. In this
letter, we present an experimental, theoretical and nu-
merical study of purely diffusive heat transfer that aims
at revealing the role of the shape of the radiator.

This question has been intensively investigated in a
steady state regime in which the diffusive transfer to-
wards a boundary is governed by Laplace equation. In
this case, a general mathematical result known as the
Makarov’s theorem states that, in 2D, the information
dimension of the harmonic measure (which describes the
distribution of particles arrived onto the boundary) is
strictly equal to 1 for any simply connected set, whatever
the complexity of its boundary [1]. In physical terms, this
means that, contrary to intuition, regular and irregular
boundaries work similarly in steady state regime [2–4].

In this letter, we report the first experimental observa-
tion that regular and irregular boundaries behave differ-
ently in the transitory (or time-dependent) regime. We
show that the role of irregular boundaries is important
and provide quantitative explanations based on theory
and numerical simulations. Note that transitory diffu-
sion from an irregular surface has been already stud-
ied in the context of impedance spectroscopy in electro-
chemistry [5, 6], NMR relaxation in porous media [7, 8],
Brownian motion near fractal surfaces [9] and heat trans-
fer [10]. Rigorous short-time asymptotics have been re-

ported for diffusive transfer at fractal boundaries [11–17].
We present a direct experimental visualization of heat

propagation from a “fractal” radiator in 2D.
Fractals are complex shapes that contain a large va-

riety of geometrical feature sizes [18], and it has been
already shown that deterministic and random shapes ex-
hibiting the same fractal dimensions, behave similarly
[19].

We check, for the first time, the validity of the de
Gennes’ scaling argument [20] which is often used to un-
derstand heat propagation and diffusion from an irreg-
ular surface [5, 7, 21]. Relying on experimental results
and numerical solutions of the underlying Fourier equa-
tion, we conclude that this argument can only be a large
scale approximation which is not sufficient to describe
temperature distribution close to the irregular frontier.

The heat propagation in 2D has been studied ex-
perimentally using liquid crystal temperature imaging
[22, 23]. The heat source is constituted by a highly con-
ductive, 4mm thick, aluminum sheet (Fig 1a). A complex
perforation has been laser machined through this plate
to obtain the third generation of the quadratic von Koch
snowflake of fractal dimension 3/2. The aluminum heat
source is heated around Ts ≈ 40◦C. It is then put on the
liquid crystal plate (at temperature T0 ≈ 20◦C) which
was set on a Styrofoam block with very small heat con-
ductivity. This constitutes, to a good approximation, a
2D heat propagation system. A video camera monitors
the time evolution of the temperature distribution by fol-
lowing the displacement of the visible isotherm lines im-
aged by their color (Fig. 1(b)-(f)). The entire film can
be seen on www... At each time t, one can extract by a
thresholding procedure an isotherm curve rt of a given
color (at temperature T ). Since a quantitative measure
of the heat Q(t) transferred from the source from time
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FIG. 1: (Color online) Experimental visualization of heat
propagation in 2D. (a) Schematic representation the experi-
mental set-up. A 4mm thick aluminum plate profiled follow-
ing a fractal pattern is put above a liquid crystal film itself
put above a thermally insulating Styrofoam layer. The heat
source large heat capacity and large thermal conductivity as-
sure the uniformity of the source temperature; (b)-(f) Motion
of the isocolor/isothermal line as a function of time (at 5, 10,
20, 40 and 46 seconds, respectively). The differents lenghts
of the white arrows in (e) illustrates the confinement effect
discussed in the text. The white bar presents a length scale
of 1 cm.

0 to t is not directly accessible, one has to resort to an
approximation. The first guess is that Q(t) is approxi-
mated by the surface area ST (t) between the prefractal
source and the isotherm curve rt:

Q(t) ≃ cδ(Ts − T0)ST (t), (1)

where Ts − T0 is the temperature drop between the heat
source and the domain, c the film specific heat and δ its
thickness. The estimation of ST (t) from the experimental
images is shown in Fig. 2a on which one observes succes-
sive power laws. In order to explain this behavior and
to check the validity of the approximation (1), we recall
the theoretical background, the currently admitted scal-
ing argument and present direct numerical simulations of
heat propagation.

In the experiment, due to the very large contrast be-
tween the thermal diffusivities of aluminum and the liq-
uid crystal film, the temperature over the aluminum
sheet and at its frontier Γ can be considered as con-
stant (Ts), imposing a Dirichlet boundary condition on
the heat source. The temperature distribution T (r, t)
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FIG. 2: (Color online) Time evolution of the heat Q(t) trans-
ferred from the source. (a) Evolution of the area ST (t) of the
layer delimited by the visualized isotherm: experiment (cir-
cles) and numerical simulations (solid line) of the layer corre-
sponding to the isotherm level θ = 0.9 (a.u.), best fit for the
experimental curve, see text). Short-time asymptotic (4) and
intermediate asymptotic (5) slopes are shown by dashes and
dash-dotted lines. (b) Numerical computation of Q(t) (solid
blue line) and of the three areas S0.1(t), S0.5(t), S0.9(t) (sym-
bols), all computed. The curves ST (t) are shifted along the
horizontal axis by factors 5, 1 (no shift) and 0.11, respectively.
As explained in the text, these shifts account for the coeffi-
cient β(T ) whose dependence on the chosen isotherm level is
unknown for the prefractal boundary. The thermal response
Q0(t)/Q0(∞) of the square initiator of the same area is shown
by solid black line (see Supplementary Materials for details).
Note that Q(t) and ST (t) are divided by their maximum val-
ues to be comparable.

over the domain (denoted as Ω) is thus the solution of
the following problem [24, 25]:

∂

∂t
T (r, t) − K∆T (r, t) = 0 (r ∈ Ω),

T (r, t) = Ts (r ∈ Γ),

T (r, t = 0) = T0,

(2)

where ∆ is the 2D Laplace operator and K the liquid
crystal thermal diffusivity (of order 0.1 cm2s−1). The



amount of heat Q(t) transferred into Ω is simply:

Q(t) = cδ

∫

Ω

dr (T (r, t) − T0). (3)

The fact that Eqs. (2) also describe particle diffusion
suggests a random walk interpretation of the conduction
experiment. In this representation, a source (here the
constant temperature Ts at radiator) is maintained at
a given concentration. Its boundary emits diffusive ran-
dom walkers that invade progressively the initially empty
medium Ω. These walkers form a diffusion layer whose
area can be tentatively used as a proxy for the transferred
heat according to Eq. (1).

de Gennes suggested to replace this area by that of the
so-called “Minkowski sausage”[27] of average width lD(t)
taken of order

√
Kt [20]. The transferred heat is then re-

lated, through Eq. (1), to the area M(t) of the Minkowski
sausage, ST (t) ≃ M(t), so that the heat diffusion prob-
lem is replaced by a purely geometrical computation of
the area M(t).

In this frame, a qualitative picture of heat propagation
can be drawn from the comparison between the width
lD(t) and the relevant geometrical length-scales: the size
l of the smallest geometrical detail of the interface (the
smaller cut-off) and the size of the larger cutoff L of
the boundary. For a prefractal boundary as that of the
experiment, three different regimes can be expected:

(i) At very short times, the diffusion width is much
smaller than the smallest cut-off l and the whole interface
transfers heat (or particles) almost uniformly. The area
of the Minkowski sausage is then close to

M(t) ≃ Lp

√
Kt, (4)

where Lp is the total perimeter of the boundary which
scales as Lp ∝ l(L/l)df for a surface of Minkowski di-
mension df .

(ii) When the diffusion width lD becomes comparable
to l, the scaling of the Minkowski sausage behaves differ-
ently. For self-similar boundaries, the Minkowski sausage

area scales with its width lD as l
d−df

D , from which [20]:

M(t) ∝ Ld
(

Kt/L2
)(d−df)/2

. (5)

In our case with df = 3/2 and d = 2, the transfered heat
is expected to follow a t0.25 power law. This intermediate
regime lasts up to the time when the diffusion length
reaches the larger cut-off L of the interface.

(iii) From this time, the heat transfer saturates since
the domain is bounded.

Those scaling arguments should provide an explana-
tion for the experimental power laws shown on Fig. 2.
And indeed there is a regime where the surface ST (t) fol-
lows a power law with an exponent close to 0.25 but it
is followed by a regime with an exponent larger that 0.5.

We show now that the de Gennes argument is not suffi-
cient to interpret the experiment because it neglects the
role of confinement which might play an important role
depending on the isotherm under consideration. Keeping
in mind the exact correspondence with random walkers,
one has to take care that the concentration of particles
reaching a given point is formed by particles emitted by
the several faces surrounding this point. This behavior
is indicated by the white arrows in Fig. 1(e), in which
the isotherm emerging from a salient wedge is clearly
much closer to the surface than the same isotherm in
a confined region. In other words, the assumption of
an approximately uniform diffusion layer which could be
characterized by an average width lD, is not valid for our
experiment. As a consequence, the two areas, M(t) (fixed
by the geometrical width lD of the Minkowski sausage)
and ST (t) (set by the isotherm of a given temperature
T ), are not equivalent.

An exact example illustrating this fact is given in the
Supplementary Materials, where we derive the short-time
asymptotic behavior of the transferred heat and the area
ST (t) for a spherical domain. In two dimensions, we get

Q(t) ≃ cδ(Ts − T0)
2√
π

Lp

√
Kt,

ST (t) ≃ 2β(T )Lp

√
Kt,

(6)

where Lp = 2πR. The factor β(T ) is given, for spherical
domains, by β = erfc−1(θ), where θ = (T −T0)/(Ts−T0)
is the relative temperature of the isotherm under con-
sideration (erfc−1(z) is the inverse complementary error
function). Although both quantities in Eq. (6) are pro-
portional to Lp

√
Kt, the quantity associated with the

isotherm (i.e, cδ(Ts−T0)ST (t)) differs from the real heat
quantity that has diffused. This is due to the value of
β which can be very small if θ is close to one, a situa-
tion corresponding to the experiment. In particular, the
curves shown on Fig. 2 can only be compared up to a
shift along x or y axis which represents a multiplication
by β on logarithmic scale.

In general, the approximation (1) is expected to be
more accurate for isotherms with small difference T −T0

because nearly all the heat will be found inside the layer.
In fact, representing Ω as Ω> ∪ Ω< (with Ω≶ = {r ∈
Ω : T (r, t) ≶ T }), the integral in Eq. (3) splits in two
parts which can be approximated at short times as

Q(t) ≈ cδ(Ts − T )Vol(Ω>) + cδ(T − T0)Vol(Ω<),

where the first term is close to cδ(Ts − T0)ST (t) for T
close to T0, while the second term can be neglected in
that case. In the opposite situation, which is relevant for
the experiment, the approximation (1) fails.

We illustrate this idea by solving numerically Eqs. (2)
for the third generation of the quadratic Von Koch curve
shown on Fig. 3. The solution was obtained by the



FIG. 3: (Color online) Three temperature zones at t = 0.1 s:
θ(r, t) > 0.9 (yellow), 0.1 < θ(r, t) < 0.9 (white) and θ(r, t) <
0.1 (blue). The frontiers between successive zones are the
isotherm at θ = 0.9 (a.u.) and θ = 0.1 (a.u.) which are

compared to the Minkowski sausage of width
√

Kt (shown by
the thick solid line), at t = 0.1 s.

quadratic Lagrange finite differences method in the mod-
ule “PDE, Coefficient Form” of COMSOL Multiphysics.
The time-dependent solver for a symmetric linear sys-
tem “Spooles” was used. For these simulations, we set:
Ts = 1 (a.u.), T0 = 0, K = 0.01 (a.u.) and L = 1
(a.u.) (L is the base of the snowflake curve). Once the
solution T (r, t) = θ(r, t) is found, the isotherm curve rt

was computed by solving T (rt, t) = T with a chosen T
and then the surface area ST (t) between the isotherm and
the boundary was calculated by a thresholding procedure
(as for experimental images). Figure 3 shows that, at a
given time, the zones defined by the isotherms depend
strongly on their temperature. The relative positions of
isotherms at a given time illustrate the role of confine-
ment, observed in the experiment (Fig. 1e).

The total transferred heat Q(t) is also obtained by in-
tegrating the solution T (r, t) over Ω. The results are
summarized in Fig. 2b which shows the normalized
transferred heat, Q(t)/Q(∞), and the normalized sur-
face areas, ST (t)/Stot, for three choices of the isotherm
temperature θ: 0.1, 0.5 and 0.9 (a.u.), together with
the transferred heat into a square of the same surface.
The normalization ensures that all the curves approach
the same saturation level. Several comments are in or-
der: (i) The heat transferred by the irregular radiator is
larger than that by the square. (ii) The normalized trans-

ferred heat (solid curve) indeed exhibits the three scal-
ing regimes discussed above: short-time behavior ∝ t0.5,
intermediate behavior ∝ t0.25 and finally saturation.
The asymptotics are shown by dashed and dash-dotted
curves, respectively. (iii) Three normalized surface areas
(circles, squares and triangles) have been shifted along
the horizontal axis by factors 5, 1 and 0.11 in order make
them follow the solid curve. These shifts (on logarith-
mic scale) are equivalent to the choice of the appropriate
values for the coefficient β(T ). As expected, the curve
with θ = 0.1 shows the best agreement with the solid
curve for the transfered heat, while that with θ = 0.9 ex-
hibits a strong deviation at long times. (iv) Deviations
at short times can be attributed to an inaccurate compu-
tation of the surface area ST (t) by the thresholding pro-
cedure. Although this computation could be improved
for isotherms obtained from numerical simulations, the
thresholding procedure remains unavoidable for experi-
mental images. In order to be able to compare numer-
ical and experimental images, we used the same image
processing in both cases. (v) The surface area ST (t) es-
timated from experimental images is also shown on Fig.
2a. This curve closely follow the numerical curve with
T = 0.9. The agreement between numerical simulations
and the experiment can be considered as good. This con-
sideration is reinforced by the fact that taking care of the
scale of temperature (40 to 18 centigrade) the value 0.9
correspond to a temperature of 37.8 centigrade while the
isotherm color (yellow) is calibrated for 37 centigrade.
(vi) The experiment does not allow a good determina-
tion of the short-time regime because the heat propaga-
tion was faster than the time to set the camera so that
the earlier times could not be monitored.

In summary, the heat transfer in an irregularly-shaped
domain with a prefractal geometry has been studied ex-
perimentally and numerically. The temperature evolu-
tion has been visualized experimentally by monitoring
isocolor/isothermal lines. The area of a diffusion layer
between the irregular heat source and a chosen isother-
mal line has been computed by thresholding the sequence
of recorded images. We have shown that the de Gennes’
suggestion to describe the diffusion layer by a Minkowski
sausage and to use its area as a proxy of the total amount
of heat transferred up to time t applies only to tempera-
tures far from that of the heat source. For temperatures
close to the heat source, confinement effects play an im-
portant role so that the temperature spatial distribution
is very different from a Minkowski layer.

We have then shown in a particular prefractal case that
irregular morphology significantly speeds up heat trans-
fer. The ideas and concepts developed in this study ap-
ply to any irregular shape, fractal or not. This suggests
that irregular or fractal shapes can be used to increase
heat removal from pulsed heat sources in electronics and
microelectronic devices. Depending on temperature, the
phenomenon may or may not be described by the con-



cept of a Minkowski layer. More generally, these results
apply to all physical phenomena governed by the Fourier
equation, such as particle diffusion, spin diffusion and
diffusion regimes in electrochemistry.
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