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SOLUTION FOR A SPHERE

The problem of heat propagation inside a sphere can
be solved analytically due to the rotational symmetry.
Assuming zero initial condition inside the sphere of ra-
dius R, T (r, t = 0) = 0 (for r < R), and the Dirichlet
boundary condition at the boundary, T (R, t) = 1 (for
t > 0), the Laplace-transformed heat density, T̃ (r, s),
satisfies the following equation in d-dimensional space:
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T̃ (r, s) = 0 (r < R),

with the Dirichlet boundary condition T̃ (R, s) = 1/s. Its
solution is well-known (see, e.g., [1])
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where Iν(z) is the modified Bessel function of the first
kind. Integrating this density over the sphere, one gets
the Laplace transform of the heat Q(t)
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where Vd is the volume of the sphere of radius R in d
dimensions. The short-time behavior of the transfered
heat Q(t) can be derived from the asymptotic behavior
of its Laplace transform as s → ∞, from which
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where Sd is the surface area of the sphere.
On the other hand, one can define the position rt of

a given temperature level T at time t implicitly, as a
solution of the equation

T (rt, t) = T . (3)

As previously, the short-time asymptotic behavior of the
density T (r, t) can be derived from the asymptotic be-
havior of T̃ (r, s) as s → ∞:
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from which
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where erfc(z) is the complementary error function. In
this regime, one can search for an approximate solution
rt in the form

rt = R− 2β
√
Kt, (4)

from which one gets the approximate equation for the
coefficient β (in the leading order in

√
Kt):

erfc(β) = T . (5)

For a given temperature level T , this equation determines
the constant β in the dependence of rt on

√
Kt. The

volume between this position and the boundary is then

S(t) = Vd(1− (rt/R)d) ≃ 2βSd

√
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One can see the qualitative agreement between the exact
solution of the heat equation (Eq. 2) and its approxima-
tion by Minkowski sausage (Eq. 6). In order to make this
agreement quantitative, one has to rescale the time by
πβ2, i.e., to replace t by t/(πβ2) in Eq. (6). On logarith-
mic scale, this rescaling corresponds to a shift of the curve
S(t) along the horizontal (t) axis. Only when πβ2 = 1
(i.e., T = erfc(1/

√
π) ≃ 0.4249), the Minkowski sausage

at length
√
Kt provides the same short-time asymptotic

behavior as the exact solution of the heat equation. In
general, the rescaling factor and its dependence on the
temperature T are not known, and the approximation of
the transfered heat Q(t) by S(t) remains qualitative.

Long-time behavior

It is instructive to analyze the long-time behavior for
both Q(t) and S(t). Using the properties of Bessel func-
tions, Eq. (1) can be rewritten as
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The computation of the inverse Laplace transform yields
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where αn are the positive roots of the function Jd/2−1(z).
As expected, the transfered heat Q(t) exponentially ap-
proaches the constant (here, the volume Vd of the domain
given that the imposed temperature and heat capacity
were set to 1). The long-time asymptotic behavior is
determined by the smallest positive root α1:
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with a numerical prefactor

Ad =
2Jd/2+1(α1)

α1Jd/2(α1)
.

For instance, one has

d 1 2 3
α1 π/2 2.4048... π
Ad 8/π2 0.6917... 6/π2

Similarly, one gets an explicit solution for the temper-
ature density for any r > 0
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(the point r = 0 has to be considered separately). For
any 0 < r < 1, this function monotonously increases from
0 to 1 as the time goes from 0 to infinity. The solution
rt of Eq. (3) is uniquely determined and decreases from
1 to 0. For any prescribed temperature 0 < T < 1, the
radius rt of the isothermal line shrinks to 0 at finite time
tc (since T (r, t) > T for t > tc for any r > 0).
In the long-time limit, the asymptotic behavior is de-

termined by the term with the smallest α1, from which
the radius rt of the isocolor line from Eq. (3) can be
approximated as
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For small rt, one can expand the Bessel function to get
an explicit (but approximate) dependence of rt on t. For
d = 2, one gets
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from which
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The critical time is obtained from S(tc) = Vd:
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For t > tc, the temperature T (r, t) throughout the whole
domain is greater than T so that the corresponding iso-
color line disappears.
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FIG. 1: The transfered heat Q(t)/Q(∞) from Eq. (7) (solid
line), its short-time asymptotic from Eq. (2) (dash-dotted
line) and long-time asymptotic from Eq. (8) (dashed lines)
for the disk (d = 2) of radius R. The approximation by S(t)
is obtained by solving numerically the equation T (rt, t) = T
with T = 0.9 (a.u) and is shown by circles. An approximate
long-time solution (10) is shown by dotted line. One can see
that the critical time tc is accurately determined by Eq. (11).
Note that both curves S(t) were shifted along the horizontal
axis by ln(πβ2) that corresponds to rescaling the time by πβ2

(which is equal to 0.0248 for T = 0.9).

The comparison of Eqs. (8, 10) reveals significantly
different behaviors for the transfered heat Q(t) and its
“approximation” by S(t) at long times (Fig. 1). The
former quantity shows an exponential approach to the
limiting constant (here, Vd) which takes infinitely long
time. In turn, S(t) approaches the same limit Vd at a
finite time tc, after which there is no change in S(t). The
same feature was observed in the experiment for prefrac-
tal boundaries.

SOLUTION FOR A SQUARE

The solution of the heat equation inside a square of
size L with a constant temperature on the boundary is
well known [2, 3]:

T (x, y, t) = Ts − (Ts − T0)u(x, t)u(y, t), (12)

where
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(13)
is the solution of the corresponding one-dimensional
problem. The amount of heat transferred into the square
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is
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