
HAL Id: hal-00765296
https://centralesupelec.hal.science/hal-00765296

Submitted on 14 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An imprecision importance measure for uncertainty
representations interpreted as lower and upper

probabilities, with special emphasis on possibility theory
R. Flage, Terje Aven, Piero Baraldi, Enrico Zio

To cite this version:
R. Flage, Terje Aven, Piero Baraldi, Enrico Zio. An imprecision importance measure for uncertainty
representations interpreted as lower and upper probabilities, with special emphasis on possibility
theory. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
2012, 226 (6), pp.656-665. �10.1177/1748006X12467591�. �hal-00765296�

https://centralesupelec.hal.science/hal-00765296
https://hal.archives-ouvertes.fr


 

An imprecision importance measure for uncertainty representations 

interpreted as lower and upper probabilities, with special emphasis on 

possibility theory 

 

 

R. Flage
1
, T. Aven

1
, P. Baraldi

2
& E. Zio

3,2
 

 

1
 University of Stavanger, Norway 

2
 Polytechnic of Milan, Italy 

3
Chair on Systems Science and the Energetic Challenge, European Foundation for New Energy-Electricité de 

France, EcoleCentrale Paris and Supelec, France 

 

Uncertainty importance measures typically reflect the degree to which uncertainty 

about risk and reliability parameters at the component level influences uncertainty 

about parameters at the system level. The definition of these measures is typically 

founded on a Bayesian perspective where subjective probabilities are used to express 

epistemic uncertainty; hence, they do not reflect the effect of imprecision in 

probability assignments, as captured by alternative uncertainty representation 

frameworks such as imprecise probability, possibility theory and evidence theory. In 

the present paper, we define an imprecision importance measure to evaluate the effect 

of removing imprecision to the extent that a probabilistic representation of uncertainty 

remains, as well as to the extent that no epistemic uncertainty remains. Possibility 

theory is highlighted throughout the paper as an example of an uncertainty 

representation reflecting imprecision, and used in particular in two numerical 

examples which are included for illustration. 
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1 Introduction 

 

The use of importance measures (IM) is an integral part of reliability and risk analysis. IM are 

used to study the effect on system level reliability or risk parameters of altering component 

level parameters. A number of uncertainty importance measures (UIM) have also been 

proposed in the literature (Aven &Nøkland, 2010). These extend the ‘classical’ reliability and 

risk IM in the presence of epistemic uncertainty. UIM are used to study to what degree 

uncertainty about risk and reliability parameters at the component level influences uncertainty 

about parameters at the system level. 

 

In general terms, we are interested in the quantity Y, possibly a vector, and introduce a model 

g(X) which relates n input quantities X = (X1,X2,…,Xn) to the output quantity of interest Y. In 

particular,we are interested in an output quantity Y= p = g(q), function of the input X=q 

where p and q are reliability or risk parameters at the system and component level, 

respectively. Typically, p and q are given the interpretation of long-run frequencies, e.g. the 

fraction of time a system and its components are functioning, respectively. This is the 

interpretation adopted, for example, in the probability of frequency approach to risk analysis 

(Kaplan & Garrick, 1981). 

 

Classical IM are used to analyze changes to p given changes to q. For example, the so-called 

‘improvement potential’ of component i is defined as the change to the system availability p 

when the component availability qi is set equal to 1, and the Birnbaum IM is defined as the 

partial derivative of p with respect to qi(e.g. Aven & Jensen, 1999; Rausand&Høyland, 2004).  

 

UIM are typically founded on a Bayesian perspective. A subjective probability distribution F 

is introduced for q and propagated through a model g. The result is a probability distribution 

of p, and UIMs are used to analyse changes to the distribution of p given changes to F. 

Reference is made to Section 2 for a brief review of IM and UIM. 

 

In a Bayesian perspective subjective probabilities express epistemic uncertainty; hence, they 

do not reflect imprecision in probability assignments. The term imprecision here labels the 

phenomenon captured by a wide range of extensions of the classical theory of probability, 

including lower and upper pre-visions (Walley, 1991), belief and plausibility functions 



(Dempster, 1967; Shafer, 1976), possibility measures (Dubois &Prade, 1988), fuzzy sets 

(Zadeh, 1965), robust Bayesian methods (Berger, 1984), p-boxes (Ferson et al., 2003) and 

interval probabilities (Weichselberger, 2000). 

 

One much studied type of UIM is that reflecting the effect on system level parameter 

uncertainty of removing component level parameter uncertainty. For example, for a 

probability distribution F of component level parameters q which propagated through a model 

g induces a probability distribution of the system level parameter p, this type of UIM 

evaluates changes to the distribution of p by assuming qi known for some i. Of course, the 

value of qi cannot be specified with certainty and so the resulting measure becomes a function 

of qi. An example is the measure Var(p) – Var(p|qi), expressing the reduction in the variance 

of the system level parameter p that is achieved by specifying the value of the component 

level parameter qi. One way to proceed is to consider the expected value of the above 

measure, namely (Iman, 1987): 

 

                                  (1) 

 

Aven & Nøkland (2010) investigate the link between UIM and traditional IM. In doing so 

they distinguish between the cases that X and Y, as introduced above, are (a) observable 

events and quantities, such as the occurrence of a system failure and the number of system 

failures, and (b) unobservable parameters, such as p and q. Based on their findings a 

combined set of IM and UIM is defined. 

 

Within a non-probabilistic framework, a Fuzzy Uncertainty Importance Measure (FUIM) has 

been proposed in (Suresh et al., 1996) to identify those component level parameters qi having 

the greatest impact on the uncertainty of the system level parameter p. The FUIM measures 

the distance between the output fuzzy sets considering the input parameters qi with or without 

uncertainty. In (Baraldi et al., 2009), the FUIM has been modified in order to consider the 

different imprecision in the output fuzzy sets, measured in terms of fuzzy specificity, instead 

of the difference between the fuzzy sets. In (Liping & Fuzheng, 2009), an importance measure 

based on the concept of possibilistic entropy has been proposed and applied to fault tree 

analysis in a possibilistic framework. 

 

http://www.scopus.com/authid/detail.url?authorId=36537712000&eid=2-s2.0-77957590930
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In the present paper, we consider the case that a distribution pair Hq is introduced for q. We 

may for example have Hq = [Nq, Πq], where Nq and Πq are the cumulative necessity and 

possibility distributions (from possibility theory) of q, respectively; or Hq = [Belq, Plq], where 

Belq and Plq are the cumulative belief and plausibility distributions (from evidence theory) of 

q, respectively; or Hq = [Hq
l
, Hq

u
] where Hq

l
 and Hq

u
 are lower and upper imprecise 

probability distributions of q, respectively. In the present paper, possibility theory is 

highlighted throughout the paper as an example of an uncertainty representation reflecting 

imprecision. The choice of possibility theory in this early study of the suggested IIM is due to 

its mathematical simplicity; cf. Dubois (2006) who notes that ‘Possibility theory is one of the 

current uncertainty theories devoted to the handling of incomplete information, more 

precisely it is the simplest one, mathematically’. 

 

Defining the imprecision of a distribution pair as the area between its lower and upper 

cumulative distributions, we define an imprecision importance measure (IIM) that evaluates 

the effect on system level parameter imprecision of removing component level parameter 

imprecision. Two extents of imprecision removal are possible: 

 

i. Removal of imprecision to the extent that a probabilistic representation remains 

ii. Removal of imprecision to the extent that no epistemic uncertainty remains 

 

The latter case may be seen as a special case of the former. The definition of an IIM in terms 

of imprecision removal is associated with an analogous problem as was seen above for 

uncertainty removal in the case of UIM; namely, the measure can be defined but neither the 

specific value of a component level parameter nor its probability distribution can really be 

specified. We are led to consider, respectively: 

 

I. A probability distribution consistent with Hq 

II. The IIM as a function of qi 

 

In the following we refer to these as type I and type II measures. Flage et al. (2011) study the 

type II measure. In the present paper,we extend the work of Flage et al. (2011) and study also 

the type I measure in the case that Hq = [Nq, Πq]. A probability distribution is obtained from 

Hq by considering a possibility-probability transformation procedure, and further 

computations take place within the framework of a hybrid probabilistic/possibilistic method. 



 

The remainder of the paper is organized as follows: In Section 2, we review some basic 

classical IM and some UIM. In Section 3, we review the concepts of uncertainty and 

imprecision, as well as their representation. In Section 4, we define an IIM as indicated above, 

and in Section 5 the suggested measure is evaluated in terms of a numerical example where 

possibility theory is used as the representation of uncertainty. Section 6 provides a discussion 

and some conclusions. 

 

 

2 Importance measures and uncertainty importance measures 

 

There are essentially two fundamental classical importance measures: the ‘improvement 

potential’ of a component, describing the effect on the system reliability of making the 

component perfectly reliable; the Birnbaum importance measure, reflecting the effect on 

system reliability of an incremental change in the reliability of a component. The 

improvement potential of a component is defined by (e.g. Aven & Jensen, 1999; Rausand & 

Høyland, 2004) 

 

              

(2) 

 

where h(q) is the system reliability function expressing p as a function of q; and h(1i,q) = 

h(q1,...,1i,...qn) the system reliability function when component i is perfectly reliable. The 

importance measures referred to as risk achievement worth (RAW) and risk reduction worth 

(RRW) (e.g. Cheok et al., 1998; Rausand&Høyland, 2004; Zio, 2009) represent minor 

adjustments of the improvement potential importance measure. The Birnbaum importance 

measure is defined by (e.g. Aven & Jensen, 1999; Rausand & Høyland, 2004; Zio, 2009) 

 

     

   
  

(3) 

 

i.e. as the partial derivative of the system reliability with respect to qi. The improvement 

potential importance measure is most relevant in the design phase of a system, whereas the 



Birnbaum importance measure is most relevant in the operational phase (Aven& Jensen, 

1999). See Rausand & Høyland (2004) and Zio (2009) for a more in-depth review of classical 

IMs. 

 

Uncertainty importance measures were described to some extent in Section 1. The UIM by 

Iman (1987) is variance-based and hence an example of a measure in one of the three 

categories described by Borgonovo (2006):  

 

i. Non parametric techniques (input-output correlation) 

ii. Variance-based importance measures 

iii. Moment-independent sensitivity indicators. 

 

See Borgonovo (2006) for a more in-depth review of UIMs. 

 

3 Uncertainty, imprecision and its representation 

 

In engineering risk analysis a distinction is commonly made between aleatory (stochastic) and 

epistemic (knowledge-related) uncertainty (e.g. Apostolakis, 1990; Helton & Burmaster, 

1996). Aleatory uncertainty refers to variation in populations. Epistemic uncertainty refers to 

lack of knowledge about phenomena and usually translates into uncertainty about the 

parameters of a model used to describe random variation. Whereas epistemic uncertainty can 

be reduced, aleatory uncertainty cannot and for this reason it is sometimes called irreducible 

uncertainty (Helton & Burmaster, 1996). 

 

Traditionally, limiting relative frequency probabilities are used to describe aleatory 

uncertainty and subjective probabilities are used to describe epistemic uncertainty. However, 

as described in Section 1, several alternatives to probability as representation of epistemic 

uncertainty have been suggested, the motivation being to capture imprecision in subjective 

probability assignments. Imprecision here refers to inability to precisely specify a probability 

(distribution). Presumably an analyst/expert would ideally want to characterize epistemic 

uncertainty using a subjective probability (distribution); however, due to limitations in the 

information available (e.g. lack of data, lack of phenomenological understanding) the 

analyst/expert is unable or not willing to specify a single subjective probability (distribution) 



and only able to or willing to specify a probability interval (a family of probability 

distributions). 

 

For example, numerical possibility distributions can encode special convex families of 

probability measures (Dubois, 2006). In possibility theory, uncertainty and imprecision is 

represented by a possibility function π. For each element ω in a set Ω, π(ω) expresses the 

degree of possibility of ω. Since one of the elements of Ω is the true value, it is assumed that 

π(ω) = 1 for at least one element ω. The possibility measure of an event A, Π(A), is defined 

by 

 

        
   

      

(4) 

 

and the necessity measure of A, N(A), by  

 

             

(5) 

 

Uncertainty about the occurrence of an event A, then, is represented by the pair [N(A), Π(A)], 

where the necessity and possibility measures can be given the interpretation of lower and 

upper probabilities induced from specific convex sets of probability functions (Dubois, 2006):  

 

                                                              

(6) 

 

Then,                    and                    (see e.g. Dubois & Prade, 1992). 

 

Another point of view on possibility theory is a graded view where possibility measures 

express the extent to which an event is plausible, i.e. consistent with a possible state of the 

world, and necessity measures express the certainty of events. Reference is made to Dubois 

(2006) and the references therein. 

 

4 An imprecision importance measure 



 

Consider the system level reliability or risk parameter p and its distribution pair Hp induced by 

the propagation of the distribution pair Hq for a set of lower level parameters q through a 

model g. Define the imprecision of a distribution pair H, denoted ΔH, as the area between its 

lower and upper cumulative distributions, i.e. 

 

                         

(7) 

 

as illustrated in Figure 1. 

 

 

Figure 1.Imprecision measure ΔH equal to the area between the lower and upper distributions in the distribution 

pair Hp. 

 

For example, in the case of a distribution pair H = [N, Π] induced by a triangular possibility 

distribution π with support S, we have – by geometrical considerations and recalling that a 

possibility distribution has unit height – that the imprecision of the possibility distribution is 

Δ(H) = |S| / 2. In the case of a probabilistic representation of uncertainty we have max H(x) = 

min H(x) for all x, and hence ΔH = 0. 

 

Now define Δi(Hp) as the imprecision of Hp when the imprecision of the distribution on the 

parameter qi is removed. We may then define an imprecision removal importance measure 

(IRIM) as 

 

             



(8) 

 

which expresses the amount of system level imprecision removal that comes from removing 

imprecision at the component level. The relative imprecision removal effect can be studied in 

terms of the measure 

 

   
        

   
  

(9) 

 

which expresses the fraction of imprecision associated with the distribution pair Hp that is 

attributable to component i. 

 

As described in Section 1, imprecision can be removed either to the extent that a probabilistic 

representation remains, or to the extent that no epistemic uncertainty remains.  

 

4.1 Type I measure 

 

Removal of imprecision to the extent that a probabilistic representation remains means that 

uncertainty about qi is described using a (subjective) probability distribution Fi(x) = P(qi ≤ x), 

as illustrated in Figure 2. 

 

 

Figure 2.Removal of imprecision (imprecise probability distribution – dashed lines) to the extent that a single-

valued probabilistic representation remains (solid line). 

 



A probability distribution can be derived from a possibility distribution by considering a 

possibility-probability transformation procedure. Then a hybrid probabilistic/possibilistic 

method can be used for the joint propagation of the resulting probability distribution together 

with the remaining possibility distributions. In the following we review a possibility-

probability transformation procedure based on Dubois et al. (1993) and a hybrid 

probabilistic/possibilistic method based on Baudrit et al. (2006) and applied in the context of 

risk analysis by (Baraldi&Zio, 2008). 

 

4.1.1 Possibility-probability transformation procedure 

 

Possibility-probability transformations (as well as probability-possibility transformations) are 

based on given principles and ensure a consistent transformation to the extent that there is no 

violation of the formal rules (definitions) connecting probability and possibility when 

possibility and necessity measures are taken as upper and lower probabilities, and so that the 

transformation is not arbitrary within the constraints of these rules. Nevertheless, as noted in 

(Dubois et al., 1993): 

 

... going from a probabilistic representation to a possibilistic representation, some information is lost 

because we go from point-valued probabilities to interval-valued ones; the converse transformation adds 

information to some possibilistic incomplete knowledge. This additional information is always 

somewhat arbitrary. 

 

When possibilityand necessity measures are interpreted as upper and lower probabilities, a 

possibility distribution π can be seen as inducingthe family     Pdefined in Equation (6) of 

probability measures. Since there is not a one-to-one relation between possibility and 

probability, a transformation from a possibility distribution π into a probability measure P can 

only ensure that 

 

a) P is a member of     P 

b) P is selected among the members of     Paccording to some principle (rationale); 

e.g. 'minimize the information content of P', in some sense 

 

Various possibility-probability and probability-possibility transformations have been 

suggested in the literature.The principle of insufficient reason specifies that maximum 



uncertainty on an interval should be described by a uniform probability distribution on that 

interval. A sampling procedure for transforming a possibility distribution π into a probability 

distribution P according to the principle of insufficient reason is: 

 

 Sample a random value α* in (0, 1] and consider the α-cut level Lα* = {x : π(x) ≥ α*} 

 Sample x* at random in Lα* 

 

The probability density f resulting from a transformation of π is given by 

 

      
  

    

    

 

  

(10) 

 

where |Lα| is the length of the alpha-cut levels of π. To motivate this, note that 

 

                  
 

 

  

(11) 

 

From step 1 in the sampling procedure above we have f(α) = 1, and from step 2 that 

 

       
 

    
  

(12) 

 

For the integration space we note that f(x|α) = 0 for α > π(x). The densityf is the centre of 

gravity of     P. The transformation in Equation (10) applies to upper semi-continuous, 

unimodal possibility distributions π with bounded support. 

 

Another possibility to probability transformation principle, based on maximum entropy, 

consists in selecting the P in      which maximizes entropy. In general, however, this 

transformation violates the preference preservation constraint (Dubois et al., 1993) and is as 

such less attractive. 

 



4.1.2 Hybrid combination procedure 

 

By the hybrid procedure (Baudrit et al., 2006), propagation of uncertainty is based on a 

combination of the Monte Carlo technique (e.g. Kalos& Whitlock, 1986) and the extension 

principle of fuzzy set theory (e.g. Zadeh, 1965). The main steps of the procedure are: 

 

 Repeated Monte Carlo samplings of the probabilistic quantities 

 Fuzzy interval analysis of the possibilistic quantities 

 

Considering the functional relationship p = g(q) studied in the present paper, the 

transformation procedure described in the preceding Section leads to a situation where 

uncertainty related to a single parameter qi is described by a probability distribution Fi, while 

uncertainty related to the remaining n–1 parameters are described by possibility distributions 

(π1,...,πi-1,πi+1,...πn). For a fixed value of qi, obtained by Monte Carlo sampling, the extension 

principle defines the possibility distribution of p as 

 

         
        

                          

(13) 

 

We take m = 10
4
 Monte Carlo samplings and determine the imprecision reduction from the 

transformation from πi to Fi as the average imprecision reduction. 

 

4.2 Type II measure 

 

Removal of imprecision to the extent that no epistemic uncertainty remains means that qi can 

be specified with certainty, and the uncertainty hence represented by the step function ui(x), 

where ui(x) is equal to 0 for x <qi and equal to1 for x ≥ qi, as illustrated in Figure 3. 

 



 

Figure 3.Removal of imprecision (imprecise probability distribution – dashed lines) to the extent that a no 

epistemic uncertainty remains (solid line). 

 

In the case of removal of imprecision to the extent that no imprecision remains, we are led to 

consider the suggested imprecision importance measure as a function of qi, denoted Ii
II
(qi).  

 

Section 5 presents a numerical example evaluating type I and type II measures. 

 

4.3 Imprecision importance measures in presence of dependences 

 

Future work will be devoted to the investigation of the proposed imprecision uncertainty 

importance measures in presence of dependences in the input considered for the analysis. In 

practice, two types of dependencies may need to be considered: i) epistemic dependence 

between the uncertainty on the component parameters and ii) physical dependence between 

the system components. The former case relates to situations in which the information on the 

values  of the parameters of two or more system components is correlated. For example, if 

there are two identical components in the system and the same information is used to estimate 

their characteristic parameters, then the uncertainty on them will be the same and identically 

represented. In this case, the procedures of uncertainty removal should be modified in order to 

consider that the reduction of the uncertainty on a single component parameter can cause the 

(same) reduction of the uncertainty on other correlated parameters. Contrarily, the physical 

dependence between the system components is not expected to influence the procedures of 

uncertainty removal, since this dependence has an effect on the aleatory character of the 

modeled process but not on the epistemic uncertainty on the component parameters. 



On the contrary, the procedure for the propagation of the uncertainty from the component 

level parameters (input quantities) to the system level parameter (output quantity) should be 

modified in both cases of dependence. On this subject, the interested reader may refer to 

Pedroni and Zio (2012). 

 

5 Numerical example 

 

Consider a system S consisting of five independent components connected asillustrated by the 

reliability block diagram in Figure4. 

 

 

Figure 4. Reliability block diagram of system S. 

 

Component i has availability qi, i = 1, 2, 3. The availability of the system, denoted p, can then 

be expressed as 

 

                                    

(14) 

 

The component availability parameters q = (q1,q2,q3,q4,q5) are assumed to be unknown, the 

uncertainty being described using marginal necessity/possibility distribution pairs 

H = (H1,H2,H3,H4,H5), where Hi(x) = [N(qi ≤ x), Π(qi ≤ x)], i = 1, 2, 3, 4, 5.Due to the 

restrictions in terms of the type of possibility distributions that the transformation method 

described in Section 4.1.1 applies to, only triangular possibility distributions will be 

considered in relation to the type I measure in Section 5.1. In Section 5.2 also trapezoidal and 

uniform possibility distributions are considered in relation to the type II measure. 

 

5.1 Type I measure 

 



We assume that the distributions on the component availabilities and the resulting distribution 

on the system availability are asshown in Figure 5. 

 

 

Figure 5. Input distribution functions on component availabilities and resulting system availability. 

 

Let s1, s2and c denote the lower support limit,the upper support limit and the core value of a 

triangular possibility distribution, respectively. For this type of distribution the imprecision 

equals 

 

   
     

 
  

(15) 

 

Table 1 lists the possibility distribution parameters and the associated imprecision at both 

component and system level. The imprecision related to the resulting distribution for the 

system availability is determined as the Riemann sum over c = 10
3
 α-cuts. 

 



Table 1.Component and system availability distribution parameters and imprecision for system S. 

___________________________________ 

i  s1 c s2 ΔH  

___________________________________ 

1  0.70 0.75 0.80 0.050 

2  0.70 0.75 0.85 0.075 

3  0.80 0.85 0.90 0.050 

4  0.80 0.85 0.90 0.050 

5  0.80 0.90 0.95 0.075 

___________________________________ 

System 0.90 0.95 0.98 0.040 

___________________________________ 

 

Table 2 summarises the values of the type I imprecision importance measure. The imprecision 

importance ranking is [5, 3, 4, 2, 1]. 

 

Table 2.Type I imprecision importance value ranges. 

________________________ 

i   
     

 
 

________________________ 

1 0.0026  6.48 % 

2 0.0039  9.89 % 

3 0.0116  29.1 % 

4 0.0087  22.0 % 

5 0.0129  32.4 % 

________________________ 

 

Notice that although components 2 and 5 are characterized by the same imprecision ΔH = 

0.075, component 2 imprecision importance measure is lower than that of component 5 due to 

their different position in the system block diagram. In particular, since component 2 is in 

parallel to component 1, a failure of component 2 does not cause the unavailability of the 

upper system branch. Thus, component 2 has a lower impact on the system unavailability 

imprecision than component 5 whose failure would cause the unavailability of the bottom 

system branch. 



 

5.2 Type II measure 

 

We now assume that the distributions on thecomponent availabilities and the resulting 

distribution on the system availability are asshownin Figure 7. 

 

 

Figure 7. Input distribution functions on component availabilities and resulting system availability. 

 

Let s1 and s2 (c1 and c2) denote the lower and upper support (core) limits of a possibility 

distribution, respectively. For a trapezoidal distribution we have s1< c1< c2< s2, for a 

triangular distribution s1< c1 = c2< s2, and for a uniform distribution s1 = c1< c2 = s2. For these 

distribution classes we then have that the imprecision equals 

 

   
           

 
  

(16) 

 



Table 1 lists the possibility distribution parameters and the associated imprecision, at both 

component and system level. 

 

Table 3.Component and system availability distribution parameters and imprecision for system S. 

_________________________________________ 

i  s1 c1 c2 s2 ΔHq  

_________________________________________ 

1  0.70 0.75 0.75 0.80 0.05  

2  0.70 0.75 0.80 0.85 0.10  

3  0.80 0.80 0.90 0.90 0.10  

4  0.80 0.85 0.85 0.90 0.05 

5  0.80 0.85 0.90 0.95 0.10 

_________________________________________ 

System 0.90    0.93    0.97    0.98 0.057  

_________________________________________ 

 

Figure 8shows the relative variant of the type II imprecision importance measure for all five 

components in system S. 

 



 

Figure 8.Relative variant of the type II imprecision importance measurefor each component insystem S. 

 

The (relative) imprecision importance for each component is evaluated as a function of qi on 

the support of the associated distribution. Table 2 summarises the value ranges of the 

(R)IRIM. The imprecision importance ranking is [3, 5, 4, 2, 1] according to both high and low 

values. 

 

Table 4.Type II imprecision importance value ranges. 

______________________________________ 

i   
       

  
 

______________________________________ 

1 [0.0006, 0.0046] [1.13 %, 8.10 %] 

2 [0.0032, 0.0079] [5.60 %, 13.8 %] 

3 [0.0182, 0.0294] [31.7 %, 51.2 %] 

4 [0.0040, 0.0129] [6.94 %, 22.5 %] 

5 [0.0094, 0.0239] [16.4 %, 41.6 %] 

______________________________________ 



 

Notice that, although components 1 and 2 are in parallel, component 2 is characterized by 

larger Type II imprecision importance value ranges than component 1. This is due to the fact 

that our knowledge on q2 is more imprecise than that on q1, being ΔH2 = 0.10 whereas ΔH1 = 

0.05. Thus, as expected, removing the imprecision on the more imprecise input causes a larger 

reduction of the system unavailability imprecision. 

 

6 Discussion and conclusions 

 

In the present paper, we have described and applied an importance measure that can be used 

to evaluate the effect on system level parameter imprecision of removing component level 

parameter imprecision. Hence, the suggested measure is defined analogously to the classical 

improvement potential IM which describes the effect of removing the unreliability of a 

component, and analogously with a number of UIMs that describe the effect of removing 

uncertainty about component performance. 

 

Two extents of imprecision removal are considered: reduction to a probabilistic representation 

(type I) and removal of epistemic uncertainty (type II), the latter a special case of the former.  

 

The relative version of the measure expresses the fraction of the initial amount of imprecision 

on the system level parameter that is attributable to each component. In a ranking setting this 

format is perhaps easier to comprehend than the underlying absolute numbers; however, the 

fractions need to be seen in relation to the initial amount of imprecision on the system level 

parameter. 

 

IIMs may be seen as an extension of UIMs when the uncertainty representation is no longer 

single-valued probability but instead some alternative representation with the interpretation of 

lower and upper probabilities. 

 

An alternative to the measure ofimprecision used in the present paper, and hence relevant for 

future work,is the Hartley-like measure of non-specificity, variants of which exist for both 

possibility and evidence theory; see Klir (2006; 1999). 

 



Further work in relation to the suggested measure could also be directed towards 

implementation of the type II measure on more complex systems. Moreover, possibility 

theory provides a relatively simple and hence convenient uncertainty representation to use for 

the implementation of the suggested measures; however, other representations couldalso be 

considered in terms of application depending on the particular uncertainty setting. Finally, 

future work will also be devoted to the investigation of the proposed imprecision uncertainty 

importance measures in presence of dependences in the input considered for the analysis. 

 

 

 

Acknowledgements 

 

The authors are grateful to two anonymous reviewers for useful comments and suggestions to 

an earlier version of the present paper. 

 

The work of T. Aven and R. Flage has been partially funded by The Research Council of 

Norway through the PETROMAKS research program. The financial support is gratefully 

acknowledged. 

 

The work of E. Zio and P. Baraldi has been partially funded by the “Foundation pour une 

Culture de Securite’ Industrielle” of Toulouse, France, under the research contract AO2009-

04. 

 

References 

 

Apostolakis, G.E. 1990. The concept of probability in safety assessments of technological 

systems.Science 250(4986): 1359-1364. 

 

Aven, T. & Jensen, U. 1999.Stochastic Models in Reliability. New York: Springer. 

 

Aven, T. &Nøkland, T.E. 2010 On the use of uncertainty importance measures in reliability 

and risk analysis. Reliability Engineering and System Safety 95(2): 127-133. 

 



Baraldi, P., Librizzi, M., Zio, E., Podofillini, L. &Dang, V.N. 2009. Two techniques of 

sensitivity and uncertainty analysis of fuzzy expert systems. Expert Systems with 

Applications 36(10): 12461-12471. 

 

Baraldi, P. &Zio, E. 2008 A combined Monte Carlo and possibilistic approach to uncertainty 

propagation in event tree analysis.Risk Analysis 28(5): 1309-1325. 

 

Baudrit, C., Dubois D. &Guyonnet D. 2006.Joint propagation of probabilistic and possibilistic 

information in risk assessment.IEEE Transactions on Fuzzy Systems 14(5): 593-608. 

 

Berger, J.O. 1984 The robust Bayesian viewpoint. In J. B. Kadane, JB (ed.), Robustness of 

Bayesian Analyses: 63-144. Amsterdam: Elsevier Science. 

 

Borgonovo, E. 2006.Measuring uncertainty importance: Investigation and comparison of 

alternative approaches.Risk Analysis 26(5): 1349-1361. 

 

Dempster, A.P. (1967) Upper and lower probabilities induced by a multivalued mapping. The 

Annals of Mathematical Statistics 38: 325-339. 

 

Dubois, D. 2006. Possibility theory and statistical reasoning.Computational Statistics & Data 

Analysis 51: 47-69. 

 

Dubois, D. &Prade, H. (1992)When upper probabilities are possibility measures. Fuzzy Sets 

and Systems 49: 65-74. 

 

Dubois, D., Prade H. &Sandri S. 1993. On possibility/probability transformations. In: Lowen 

R, Roubens M, editors. Fuzzy Logic: State of the Art. Dordrecht: Kluwer Academic 

Publishers. pp. 103–112. 

 

Cheok, M.C., Parry, G.W. and Sherry, R.R. 1998. Use of importance measures in risk-

informed regulatory applications.Reliability Engineering and System Safety 60: 213-226. 

 

Dubois, D. &Prade, H. 1988.Possibility Theory – An Approach to Computerized Processing 

of Uncertainty. New York: Plenum Press. 



 

Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S. &Sentz, K. 2003.Constructing 

probability boxes and Dempster-Shafer structures.Technical Report SAND2002-4015, Sandia 

National Laboratories. 

 

Flage, R., Baraldi, P., Zio, E.& Aven, T. (2011) On imprecision in relation to uncertainty 

importance measures. In: Bérenguer, C., Grall, A.&GuedesSoares, C. (eds) Advances in 

Safety, Reliability and Risk Management. Proceedings of the European Safety and Reliability 

Conference (ESREL) 2011, Troyes, France, 18-22 September 2011. pp. 2250-2255. 

 

Helton, J C &Burmaster, D E (1996) Guest editorial: treatment of aleatory and epistemic 

uncertainty in performance assessments for complex systems. Reliability Engineering and 

System Safety 54: 91-94. 

 

Iman, R.L. 1987. A matrix-based approach  to uncertainty and sensitivity analysis for fault 

trees. Risk Analysis 7(1): 21-33. 

 

Kalos M.H. & Whitlock P.A. 1986.Monte Carlo Methods. Volume I: Basics. Wiley. 

 

Kaplan, S. & Garrick, B.J. 1981.On the quantitative definition of risk.Risk Analysis 1(1): 11-

27. 

 

Klir, G.J. (2006) Uncertainty and Information: Foundations of Generalized Information 

Theory. Hoboken, N.J.: Wiley-Interscience. 

 

Klir, G.J. (1999) Uncertainty and Information Measures for ImpreciseProbabilities: An 

Overview. In: De Cooman, G.,Cozman, F.G., Moral, S. &Walley, P. (eds)ISIPTA 

'99.Proceedings of the First International Symposium on Imprecise Probabilities and Their 

Applications, Ghent, Belgium, 29 June - 2 July 1999. pp. 234-240. 

 

Pedroni, N. & Zio, E. 2012. Empirical comparison of methods for the hierarchical  propagation of 

hybrid uncertainty in risk assessment in presence of dependences, International Journal of 

Uncertainty, Fuzziness and Knowledge-Based Systems. 20(4):509−557. 



 

 

Rausand, M. &Høyland, A. 2004. System Reliability Theory: Models, Statistical Methods, and 

Applications. 2nd ed. Hoboken, N.J.: Wiley-Interscience. 

 

Shafer, G. 1976. A Mathematical Theory of Evidence.Princeton University Press. 

 

Suresh, P. V., Babar, A. K., & Raj, V. V. (1996). Uncertainty in fault tree analysis: A fuzzy 

approach. Fuzzy Sets and Systems, 83, 135–141. 

 

Walley, P. 1991. Statistical Reasoning with Imprecise Probabilities. London: Chapman and 

Hall. 

 

Weichselberger, K. 2000. The theory of interval probability as a unifying concept for 

uncertainty.International Journal of Approximate Reasoning 24: 149-170. 

 

Zadeh L.A. 1965. Fuzzy sets. Information and Control 8: 338-353. 

 

Zio, E. 2009.Computational Methods for Reliability and Risk Analysis. Hackensack, N.J.: 

World Scientific. 

 

Liping, H. & Fuzheng, Q. 2009. Possibilistic entropy-based measure of importance in fault 

tree analysis. Journal of Systems Engineering and Electronics 20(2): 434-444. 

http://www.scopus.com/authid/detail.url?authorId=36537712000&eid=2-s2.0-77957590930
http://www.scopus.com/authid/detail.url?authorId=35210090200&eid=2-s2.0-77957590930

