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Efficient modeling of eddy current testing (ECT) signals is needed in many areas of industry. Design of probes may be improved
and interpretation of experimental signals better understood by using dedicated numerical simulation tools, if they are computationally
effective and accurate, yet remain simple enough to be applied at an end-user level. A boundary element method (BEM), dedicated to
the numerical simulation of ECT signals due to complex narrow cracks within a planar multilayered structure (PMS) and presenting
arbitrary orientations, is investigated. The theoretical formulation relies on the calculation of the dyadic Green operator, associated to the
PMS, via appropriate vector wave function expansions. Then, the use of the discrete complex image method followed by the application of
the generalized pencil of function method is proposed for efficient computation of this operator. Results of the validation of the complete
model by comparison with the experimental data acquired in the laboratory-controlled conditions and with data computed by a finite
element code are discussed.

Index Terms—Boundary element method (BEM), dyadic Green function, eddy current testing (ECT), layered media, narrow cracks.

I. INTRODUCTION

E DDY CURRENT TESTING (ECT) is used in many in-
dustrial areas to ensure quality and reliability standards.

ECT is widespread, in particular, for inspection of metal struc-
tures in power plants and airplanes, for example, where detec-
tion and monitoring of mechanical stress and corrosion cracks
are major issues. To avoid costly and time-consuming proce-
dures, simulation tools are increasingly used as a complement
to hardware experimental design. In addition, real situations
often involve complicated layered structures and possibly many
topologies of cracks. Therefore, modeling and numerical simu-
lation thereof is more and more employed to better simulate the
reality of the ECT signals, which are due to interactions of in-
duced currents with the cracks, and to help their interpretation
as well.

Fast and reliable simulations of narrow cracks are hard to ad-
dress with standard methods such as volume-integral methods
(VIMs) and finite element methods (FEMs), in particular since
the computational effort required might become very important
for complex problems [1], [2]. Indeed, it is easy to understand
that a very fine mesh is needed to describe the very small crack
volumes due to their tiny openings, while the cracks must still be
properly approximated along the other dimensions. The binary
element method (BEM) has shown to be an interesting alterna-
tive to VIM or FEM for modeling ECT of narrow cracks [3]–[5],
[6]. Its main advantages are excellent performance in terms of
computational time and a very good accuracy whenever crack
openings get close to zero. In addition, this method can be em-
ployed in cylindrical structures [7].

Fig. 1. Example of multilayered structure affected by two arbitrarily oriented
straight flaws.

CEA LIST, L2S, and UWM (referring to the acronyms of the
authors’ laboratories) have collaborated for some time in order
to develop a fast and accurate ECT simulation tool. In a recent
article [8], the authors proposed a BEM, which is suitable to the
case of narrow multiple cracks, be those parallel or orthogonal to
one other, within the same layer of a planar multilayered struc-
ture (PMS). Validation results showed a good agreement with
respect to experimental data, and overall a good computational
efficiency was achieved. The aim of the present contribution is
to investigate a generalization of this model, strongly needed in
view of the targeted applications, by addressing the case of ar-
bitrarily oriented narrow cracks, embedded in any layer of the
considered PMS, as sketched in Fig. 1. Here, by arbitrarily ori-
ented cracks (AOCs), narrow cracks arbitrarily positioned and
rotated with respect to the vertical axis are those that are meant.

Theory of BEM applied to ECT signal simulations is nowa-
days rather well established for particular cases and simple
topologies. In fundamental works [3], [4], the main assumptions
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and validity domain of the BEM are discussed. Recent works
have extended the domain of application to a nonideal crack
embedded in a plate, with proven efficiency and accuracy [5],
[6]. To do so, the accurate derivation of the Green operator as-
sociated to the medium undergoing testing, and in particular its
singularity, is a key step. The expression of the Green operator
is based on its expansion onto a family of vector wave functions
[9]–[11] and on generalized reflection and transmission coef-
ficients for transverse electric (TE) and transverse magnetic
(TM) modes [12]. It constitutes an important generalization of
[8], where the operator was derived using the Hertz vectors.

The Sommerfeld integral (SI) formulation, associated to
casting the Green operator via vector wave functions, needs,
however, to be properly handled. It is well known that SI ker-
nels are highly oscillatory and that they slowly decay when the
distance between source and observation increases. Therefore,
their calculation is not easy, and standard adaptive integration
techniques might be inaccurate. However, a method based on
the discrete complex image method (DCIM), developed in
[13], can be used to cast the SI kernels into a form enabling fast
and accurate analytical calculations in the spatial domain. The
complex coefficients involved in this closed form are obtained
by applying an efficient numerical approximation method
called the generalized pencil of function (GPOF) [14]–[16].

The present contribution is organized as follows. First, the an-
alytical formulation, describing the general case of cracks em-
bedded in different layers, is introduced as a general extension
of the previous work. The derivation of the associated Green op-
erators is then explained in some detail. Subsequently, the treat-
ment of arbitrary crack orientations in PMS is presented. Com-
parisons of simulation results with experimental data in labora-
tory-controlled conditions and numerical results obtained with
the FEM code Comsol Multiphysics™ v3.5a [17] follow, before
conclusions are drawn.

II. ANALYSIS OF THE PROBLEM

The following work assumes that a given angular frequency
and the associated time-harmonic dependence are omitted
inside the formulation. All materials are considered to be linear,
isotropic, and nonmagnetic ( , permeability of air).

A. Overview of BEM in ECT Signal Simulation

In general, a PMS is made of layers, where layers 1 and
are both air half-spaces. In our problem, each layer may be

affected by the presence of one or more cracks. In the case of
Fig. 1, the PMS contains two cracks, located within layers and
. Considering a given couple of cracks, we denote the source

crack with subscript and the observation one with subscript
. Their indices span from 1 to being the total number of

cracks within the PMS.
Let us consider, for simplicity, the case of a single coil in-

specting a flawed PMS containing flaws. The change of the
coil impedance , due to the crack presence, is computed by
using the reciprocity theorem [19] and is given as

(1)

Fig. 2. (a) Typical configuration of interest. (b) Detail of normal dipolar sources
inside the crack zone.

In (1), is the RMS supplied current and is the conduc-
tivity associated to the layer affected by the th crack. The in-
cident eddy current density is emitted by the coil inside
the volume when no flaw is present. The crack orientation is
identified by its opening direction . represents the hor-
izontal electric dipole (HED) density, oriented toward the di-
rection , corresponding to the opening of the th crack; see
Fig. 2(a). This dipole density is the solution of the following
system of integral equations:

(2)

We define the conductivity of the th flaw and
the constant conductivity of the layer hosting the th flaw.
Then, in (2), the contrast function is defined as

and is used to obtain the expressions based on
fictitious current sources. The wave number is
associated to the layer hosting the th crack. The electric–elec-
tric dyadic Green function generally describes the
interaction of crack on crack . The dyads superscripts
and identify the opening orientations of crack and crack
, respectively.

System (2) is solved numerically with the method of
moments (MoM) [18] by considering pulse basis and point
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test functions, leading to the following linear system of
equations:

...
...

. . .
...

... (3)

Since only one cell is used across the crack gap, the mesh em-
ployed is 2-D-like. In (3), is the known column vector
that contains the incident eddy current density, is the square
matrix that contains the Green function elements, and is the
unknown column vector that contains the dipole density values.
The accuracy of the method relies on the calculation of the op-
erator , which calls for particular attention in the case of
narrow cracks.

B. Dyadic Green Function in Multilayered Structure:

Source and Field Points in Different Layers

In [8], a treatment based on Hertz vector potentials has been
applied to find dyadic Green function expressions suitable to
handle cases of parallel and orthogonal cracks, buried within
the same layer. The approach employed has involved a deriva-
tion of the dyadic Green function based on source and reflection
parts. In the following, an alternative strategy, based on vector
wave functions [9]–[11], is used to describe the effects of a point
source onto a field point when they are separated by one or more
planar interfaces. This choice is particularly useful in the case
of a multilayered structure, when source and observation points
are in different layers. It is worth mentioning that the analytical
treatment has been kept as general as possible. Therefore, any
value of conductivity is admitted, as well as any size of layer
thickness. The dyadic Green function is derived starting directly
from decompositions into TE and TM modes. Therefore, a di-
rect use of the generalized transmission and reflection coeffi-
cients is made. Moreover, the proposed generalization makes
the treatments of particular cases easy, like when source and ob-
servation points are embedded in the same layer, within a single
layer or a half-space. In the following, we only concentrate upon
the general case involving dyadic Green function expressions
associated to a point source located within a different layer from
that of the field point. The Green operator for source and field
points located within the same layer has already been addressed
in [8]. Let us emphasize that only and dyadic compo-
nents are detailed, since only these components are necessary
to model flaws interactions with an opening oriented toward the
transverse directions (AOCs). This issue of flaw orientation will
be dealt with in the next section.

The complete electric–electric dyadic Green function, called
hereafter , is a solution, in a given layer with wave number

of the Helmholtz equation

layer layer (4)

Subscripts and stand for the layers where source and the
field points are located, respectively. Equation (4) needs to be
solved in a suitable manner to satisfy the electromagnetic fields
behavior on any layer boundary. Therefore, at each layer,

must be such that the continuity of the tangential components
of electric and magnetic fields at the interfaces is fulfilled, both
fields vanishing when . Following the works detailed
in [9]–[11], we can define the dyadic Green function as

(5)

where is the tensor associated to the vertical direction,
, and the operators and

are applied to the observation and the source coordinates, re-
spectively. Superscripts TE and TM are associated to the trans-
verse electric and magnetic field decomposition. in a
homogeneous medium reads as

Expressions associated to the primary and secondary terms
for the and TM components are given under the form of SIs as

(6)

(7)

Functions and in (6) and (7) can
be found in [12]. Then, after substituting these expressions into
(5), we obtain

(8)

Superscript stands for the preferential directions of the
source and the field points, respectively. Subscripts and
stand for the th and th layers, where the source and the
observation points are placed, respectively. Furthermore, is
the th-order Bessel function of the first kind,
is the radial distance with respect to the -axis, and is the
angular position of the observation point with respect to the
source point. The proposed treatment assumes the relation

with

(9)
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The evaluation of SIs presented in (8) and (9) has been car-
ried out by employing the DCIM in conjunction with GPOF.
Then, the dyadic Green function obtained in closed form has
been analytically evaluated [8]. It is worth mentioning that ex-
pressions (8) and (9) match exactly those proposed earlier [8],
starting from the Hertz vectors, if the layers and are adja-
cent and have the same properties.

The integration over the discretized source in the vertical in-
terval has been analytically
performed. After integration over directions and , in Carte-
sian coordinates, the dyadic Green functions and are
combined in order to build the matrix block of (3).

C. Arbitrarily Oriented Crack in PMS

Let us consider now the configuration with two AOCs inside
a PMS, sketched in Fig. 2(a). Each crack occupies a volume

, its opening is directed along the direction , and its
angle in the transverse plane, perpendicular to the vertical axis,
is . The ECT problem is described by the set of integral state
equation (2). Each of these equations is written with respect to
the observation domain, their solutions giving the expressions
of unknowns . In the general case, illustrated in Fig. 2, angles

and can be different from 0 or 90 .
To ensure a good matrix conditioning, and thus a good numer-

ical stability of the solution, each integral equation of system (2)
is written in the local coordinate system of its diagonal block.
The first equation is written in the frame and the
second one in the frame ; see Fig. 2. In each equation,
off-diagonal dyadic terms (with ) are combina-
tions of elementary terms (8) and (9), accounting for the relative
orientations of the flaws. For instance, in our example, the term

will be expressed as follows:

(10)

where . The diagonal terms associated to the crack
self-effect ( 0 ) are the same as described in [8].

Then, we can express the numerical system to solve by ap-
plying the MoM [18], obtaining the following complex matrix
system [1]:

(11)

where diagonal terms on the right-hand side correspond to the
contribution of the cracks upon themselves.

In (11), the quantities of the first equation are expressed in
the frame and the quantities of the second one are
expressed in the frame . The terms in (10) are the
contributions due to one crack on another, calculated with re-
spect to the observation domain. Therefore, each equation in
(11) has been written with respect to the frame of the equation.
The unknown functions and , associated to cracks 1
and 2, represent the dipole distributions along the normal com-
ponents and of both cracks, respectively. The size of each
term of the matrix is , with representing the total
number of fictitious dipoles introduced in the problem. Finally,
after solving (11) and applying the reciprocity theorem, the coil
response is given by (1) with .

TABLE I
EXPERIMENTAL DATA FOR A MULTILAYERED STRUCTURE BENCHMARK: COIL

PARAMETERS, SPECIMEN, AND DEFECT CHARACTERISTICS

The choice of the particular coordinate system associated to
the crack zone is mandatory. Indeed, in the presence of skewed
crack(s), if we express directly the integral equation into an ar-
bitrary coordinate system, different from that of the crack(s), the
values associated to the Green dyad will span over an enlarged
system of equations that involves the two transverse compo-
nents instead of the normal component to the crack. Therefore,
the linear system in (11) would be artificially larger and the mag-
nitude of the dominant terms would decrease, implying a bad
conditioning of the matrix. Then, the solution of the associated
complex matrix system would be affected by instabilities and
lead to wrong results.

This formulation and its implementation have been tested in
several cases that are representative of realistic ECT configura-
tions. Results of validations are presented in the next section.

III. RESULTS AND VALIDATION

Hereafter, we first present an experimental validation and
then a numerical comparison with results obtained with Comsol
Multiphysics™ v3.5a [17]. The first case consists of a coil in-
specting a stratified planar structure affected by two cracks. The
second one is a plate inspection where the test piece is affected
by a complex crack.

A. Experimental Validation for Multilayered Structure

This validation is based ona set of measurements performedby
the MEANDER laboratory, whose experience in precision mea-
surements has been well demonstrated in many experiments [20],
[21]. A planar structure made of three layers has been studied.
Each one of two metallic plates contains an electrodischarged
machined (EDM) through-wall slot. Both these plates are sep-
arated by a thin sheet of dielectric insulator. The coil, located
above the piece, has been moved by a precision XY-scanner with
a spatial resolution of 0.025 mm. Measurements were made using
the precision LCR bridge Agilent 4284A and the whole setup
has been controlled via PC using Labview. Details of coil, spec-
imens, and cracks parameters are given in Table I.
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Fig. 3. Experimental setup for AOCs embedded in different layers. Two par-
allelepiped notches with an angle of 45 are inspected with an absolute coil at
1.5 kHz. Views from both sides are given on the left and above the top view.

Both slabs have been arranged in order to get an angle of 45
between the cracks that share the same center position in the

-plane (see Fig. 3). The mesh, used during the BEM simu-
lation of each crack, is chosen following the criterion of five
elements per skin depth for the crack depth and ten elements
per coil outer radius for the crack length.

An inspection of the multilayered structure has been simu-
lated using 60 60 positions in steps of 1 mm. To compare the
numerical results with experimental measurements, a 1-D signal
has been extracted along the axis of crack 1. In Fig. 4(a), the
complex plane curves depict the variation of the coil impedance
simulated with BEM, compared with experimental measure-
ments. In Fig. 4(b), the normalized real and imaginary parts of
the impedance variation and , respectively, are
also plotted with respect to the coil position. The normalization
factor is the reactance of the coil in air where, for the mea-
sure, we have employed factor , whereas for the nu-
merical results, is used. Simulation results obtained
agree very well with experimental data. Moreover, an excellent
performance in terms of computation time has been achieved,
since 3600 points of the complete map have been calculated in
about one and a half minute on an Intel-Q9550 @2.83 GHz with
8 GB of RAM. Let us emphasize that, due to the very small gap
between the two plates, the corresponding FEM calculations do
not give satisfactory results at all, due to the extremely large
mesh needed to describe the tiny dielectric sheet. The VIM [1]
code is also not able to correctly handle a problem like that one,
involving two long cracks with very narrow openings. Complete
convergence is not achieved due to the lack of memory. There-
fore, only BEM results and experimental data are presented in
Fig. 4.

B. Numerical Comparisons for AOCs

In order to validate the theoretical results for configurations
involving more complex topologies, we propose here a compar-
ison between Comsol Multiphysics™ v3.5a [17] and the theo-
retical approach. The geometry studied is shown in Fig. 5, where
a succession of five cracks embedded in a plate has been created
in order to approximate a hypothetical crack with complex pro-
file. Characteristics of the proposed case are listed in Table II.

Fig. 4. Coil impedance change of the probe scanning performed along the axis
of crack 1. Comparison between BEM (solid line) and experimental data (cir-
cles) in (a) the complex impedance plane and (b) for normalized imaginary and
real parts with respect to the coil scan positions.

Fig. 5. Plate structure affected by a succession of AOCs used to approximate a
realistic crack line. Views from the top and both sides are given on the left and
above the main plot.

One can notice that in Fig. 5 very tiny gaps (less than 200 m)
are present between every couple of cracks. This choice has
been taken in order to simulate as coherently as possible the
problem with the two numerical methods. Indeed, differences
in mesh methodology are present between FEM and BEM when
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TABLE II
ARBITRARILY ORIENTED CRACKS: COIL PARAMETERS,

SPECIMEN, AND DEFECTS CHARACTERISTICS

Fig. 6. BEM simulated amplitude map of a complex crack line in a plate struc-
ture with 81 81 points.

two cracks are partially overlapped. This choice, because of the
frequency regime adopted and the specimen conductivity, will
give negligible differences compared to a continuous crack line.
Furthermore, we have decided to simulate a plate structure with
through-wall cracks, because strongest perturbations can give
us more trustworthy comparisons of the results.

The amplitude map of the ECT signal, simulated with BEM,
is presented in Fig. 6. It corresponds to 81 81 positions of the

Fig. 7. Quantitative comparison of BEM (solid lines) and FEM simulations
(circles). The change of coil impedance is normalized by its reactance in
air. Signal extraction along the crack line shown in Fig. 6: (a) complex plane
representation and (b) real and imaginary parts versus coil position.

probe above the PMS, with scanning step of 0.5 mm. The only
regions meshed uniformly in 2-D are the flawed regions, using
the same criterion as before. To compare such results with those
provided by the FEM code, we have carried out three vertical
signal extractions at three different positions, as shown also in
Fig. 6.

A good agreement between BEM results and FEM simula-
tions can be observed in Figs. 7 and 8, respectively. Moreover,
the BEM model has preserved its efficiency since the simula-
tion of the complete map has taken about 12 min on our PC.
This time corresponds to the calculation of two coil positions
for the FEM code, where the whole electromagnetic scenario
has been described with about 71 100 elements. An even better
agreement and efficiency has been achieved with BEM for the
same configuration at frequencies of 1, 2.5, and 5 kHz.

IV. CONCLUSION

The generalization of the boundary element model applied in
[8] to the ECT signal simulation of a planar multilayered struc-
ture has been detailed. This generalization enables to model far
more complex crack topologies than before, in terms of orien-
tation and of location inside the PMS. The dyadic Green func-
tion (of the layered embedding medium) has been expressed,
in a more general way, via vector wave functions instead of
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Fig. 8. Quantitative comparison of BEM (solid lines) and FEM simulations
(circles). The change of coil impedance is normalized by its reactance in
air. Complex plane representation for signal extraction along the external scan
line (a) in 1.5 mm and (b) in 1.5 mm as shown in Fig. 6.

Hertz vectors. Results of the simulations, compared with exper-
imental data and FEM code results, have confirmed the excel-
lent accuracy of the approach, as well as its computational ef-
ficiency. This makes the proposed BEM a simulation tool—to
be released within the forthcoming version 11 of CIVA software
[22]—adapted to applications requiring intensive use of simula-
tion, among which we can cite parametric studies, probe design,
data base generation, or probability of detection (POD) studies.

Some interesting perspectives of this work are the mod-
eling of cracks with even more complex orientations, and the
modeling of configurations involving both narrow and volu-
metric cracks. Moreover, the precision of MoM can also be
improved by the use of higher order projection functions like
the Rao–Wilton–Glisson (RWG) basis functions [23].
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