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Bornes inférieures de l'erreur quadratique moyenne pour la localisation de sources en champ proche

Dans cet article nous étudions différentes bornes inférieures de l'erreur quadratique moyenne pour la localisation de sources en champ proche. Plus précisément, on s'intéresse au phénomène de décrochement. A cet effet, nous calculons et analysons la borne la plus connue, à savoir, la borne de Cramér-Rao, mais aussi les bornes de McAulay-Seidman, de Hammersley-Chapman-Robbins, de McAulay-Hofstetter et, plus particulièrement, la borne de Fourier Cramér-Rao récemment introduite dans la littérature. Enfin, des simulations numériques sont données pour évaluer l'efficacité de la prédiction du décrochement.

Introduction

La localisation passive de sources à l'aide d'une antenne composée d'un réseau de capteurs est un sujet d'une importance croissante avec plusieurs applications (radar, sismologie, communication numériques, etc.) Dans cet article, nous proposons d'analyser les performances ultimes des estimateurs dans le contexte de la localisation passive de sources en champ proche. Ainsi, et contrairement au contexte de sources en champ lointain, les fronts d'ondes ne sont plus considérés comme plans. Il faut alors prendre en compte un modèle d'observation paramétré, d'une part, par l'azimut et l'élévation de chaque source, et d'autre part par la distance entre les sources et un référentiel visà-vis de l'antenne. Bien qu'une multitude d'algorithmes d'estimation de ces paramètres soit disponible dans la littérature, les performances non-asymptotiques (à faible rapport signal sur bruit et/ou à faible nombre d'observations) de tels estimateurs n'ont pas été encore traitées.

Dans ce papier nous calculons et analysons différentes bornes déterministes inférieures de l'erreur quadratique moyenne dans le cadre de la localisation passive d'une source en champ proche : la borne la plus connue, à savoir, la borne de Cramér-Rao (BCR), mais aussi les bornes de McAulay-Seidman (BMS), de Hammersley-Chapman-Robbins (BHCR), de McAulay-Hofstetter (BMH) et, plus particulièrement, la borne de Fourier Cramér-Rao (BFCR) récemment introduite dans la littérature. Le but de cette étude est de caractériser les performances optimales nonasymptotiques des estimateurs, dans le contexte champ proche. Plus particulièrement, on s'intéresse à la prédiction du phénomène de décrochement pour lequel ces bornes sont utiles. Cette analyse est pertinente, d'autant plus, qu'à notre connaissance, aucun résultat concernant des bornes inférieures autres que la BCR, n'est disponible dans la littérature. A cet effet, nous rappelons que la BCR est une borne optimiste (et même non valable) dans les zones non-asymptotiques, et donc non utilisable dans ces zones (voir Fig. 1).

Modèle d'observations

Considérons une antenne linéaire uniforme composée de N capteurs avec une distance inter-capteurs notée d. L'antenne reçoit un signal, supposé à bande étroite, émis par une source située dans le champ proche de l'antenne. Par conséquent, le modèle d'observation au niveau de l'antenne s'écrit comme : x n (t) = s(t)e jτn + v n (t), avec t = 1, . . . , T et n = 0, . . . , N -1 où, T est le nombre d'observations et x n (t) représente le signal observé à la sortie du (n + 1) ème capteur. s(t) = α(t)e j(2πf0t+ψ(t)) représente le signal émis à une fréquence porteuse f 0 où α(t), ψ(t), représentent, respectivement, l'amplitude et la phase du signal source. Le processus aléatoire v n (t) est un bruit additif. Le retard temporel, τ n , qui représente le temps de propagation du signal de la source au (n + 1) ème capteur, est donné par [START_REF] Grosicki | A weighted linear prediction method for near-field source localization[END_REF] 

τ n = 2πr λ 1 + n 2 d 2 r 2 -2nd sin θ r - 1 
x(t) = [x 1 (t) . . . x N (t)] T = a(ω, φ)s(t) + v(t), (1) où v(t) = [v 1 (t) . . . v N (t)] T , et où, le (n+1) ème élément du vecteur directionnel a(ω, φ) est donné par [a(ω, φ)] n+1 = e j(ωn+φn 2 ) .
Dans ce qui suit, nous utiliserons les hypothèses suivantes :

• On admet que le bruit suit une loi normale complexe circulaire multidimensionnelle, de moyenne nulle et de matrice de covariance Σ bruit connue et supposée de rang plein. • Les paramètres ω, φ, ψ(1), . . . , ψ(T ) et α(1), . . . , α(T ) sont supposés déterministes. Le vecteur de paramètres inconnus est défini par ξ = [ω φ] T .

La fonction de vraisemblance relative au vecteur d'observations χ = [x T (1) . . . x T (T )] T pour un ξ 0 donné, s'écrit simplement par : 

p( χ|ξ 0 ) = 1 π N T det(Σ) e -(χ-µ(ξ 0 )) H Σ -1 (χ-µ(ξ 0 )) , où µ(ξ 0 ) = [a T (ω 0 , φ 0 )s(1) . . . a T (ω 0 , φ 0 )s(T )] T . ξ 0 , ω 0 ,
EQM( ξ) = C N T ξ -ξ 0 ξ -ξ 0 T p(χ|ξ 0 )dχ C (2) avec C = ΓK -1 Γ H et K = C N T γγ H p(χ|ξ 0 )dχ,
où ξ est un estimateur du vrai paramètre déterministe ξ 0 et où A B signifie que la matrice A -B est définie positive. Ainsi, la BCR est donnée par le couple :

Γ BCR = 1 2 , γ BCR = ∂ ln p(x|ξ) ∂ξ | ξ=ξ 0 ,
où 1 l represente le vecteur de taille l ∈ {1, . . . , L} rempli de 1. La borne de McAulay-Seidman (BMS) [START_REF] Mcaulay | A useful form of the Barankin lower bound and its application to ppm threshold analysis[END_REF] peut être définie par le couple suivant :

Γ BMS = Φ, γ BMS = [ν(x|ξ 1 ) . . . ν(x|ξ L )] T , où ν(x|ξ l ) = p(x|ξ l ) p(x|ξ 0 ) , Φ = [ξ 1 -ξ 0 . . . ξ L -ξ 0 ]
T avec {ξ 1 , . . . , ξ L } qui représente un ensemble de points test appartenant à Θ. La borne de Hammersley-Chapman-Robbins (BHCR) [START_REF] Hammersley | On estimating restricted parametrers[END_REF] est, quant à elle, donnée par :

Γ BHCR = [0 2 Φ], γ BHCR = [1 γ BMS ] T ,
où 0 l représente le vecteur de taille l ∈ {1, . . . , L} rempli de 0 et enfin la borne de McAulay-Hofstetter (BMH) [START_REF] Mcaulay | Barankin bounds on parameter estimation[END_REF] peut être exprimée par :

Γ BMH = [I 2 Φ], γ BMH = [γ BCR γ BMS ] T ,
où I 2 est la matrice identité de taille 2. La borne de Fourier Cramér-Rao (BFCR), récemment proposée [START_REF] Todros | General classes of performance lower bounds for parameter estimation Part I: Non-bayesian bounds for unbiased estimators[END_REF], peut également être écrite sous la forme [START_REF] Grosicki | A weighted linear prediction method for near-field source localization[END_REF]. Pour avoir un gain en temps de calcul, cette dernière utilise la transformée de Fourier discrète (TFD) des vecteurs Φ et γ BMS . La TFD peut être obtenue grâce à une multiplication matricielle notée W . Ainsi, le couple (Γ, γ) adéquat pour la BFCR est donné par :

Γ BFCR = [I 2 ΦW H ] γ BFCR = [γ BCR γ BMS W T ] T . (3) où [W ] p,l = exp(-iΩ T p ξ l ), (4) 
représente la matrice de transformation relative à la TFD bi-dimensionelle et Ω p s'exprime à l'aide du p ème point test frequentiel f p = [f p f p ] T comme suit :

Ω p = 2πf p δ([ξ] 1 )L 1 2πf p δ([ξ] 2 )L 2 T , avec L = L 1 L 2 , tel que f p ∈ {1, . . . , L 1 }, f p ∈ {1, . . . , L 2 }, L i est le nombre de points test associé à la variable [ξ] i et δ([ξ] i ) est la distance (constante) entre deux points test associée à la variable [ξ] i , i = 1, 2.
Après calcul, on peut montrer que les bornes précitées de (2) peuvent être écrites comme suit pour le modèle d'observation donné dans ( 1)

C (L) BMS = ΦΨ -1 Φ T , (5) 
C (L) BHCR = Φ Ψ -11 T -1 Φ T , (6) 
C (L) BMH = C BCR + QR -1 Q T , (7) 
C (L,P ) BFCR = C BCR + QW H W RW H -1 W Q T , (8) 
où nous avons introduit la dépendance de ces bornes par rapport aux points test1 (symboles L et P ).

Notons DKL (p(x|ξ l )||p(x|ξ 0 )), la distance de Kullback-Leibler [START_REF] Scharf | Statistical Signal Processing: Detection, Estimation, and Time Series Analysis[END_REF], entre p(x|ξ l ) et p(x|ξ 0 ). On peut alors définir tous les élements apparaissant dans ( 5)-( 8) comme suit:

Q = C BCR D -Φ, (9) 
tel que

D = d(ξ 1 ) . . . d(ξ L ) , et d(ξ l ) = - ∂DKL (p(x|ξ l )||p(x|ξ)) ∂ξ T | ξ=ξ 0 . ( 10 
)
De plus, la matrice R est donnée par

R = Ψ -D T C BCR D, (11) 
et les éléments de la matrice Ψ sont définis par

[Ψ] m,n = E χ|ξ 0 {ν(x|ξ m )ν(x|ξ n )} , (12) 
où E χ|ξ l {.} indique l'opérateur d'espérance mathématique relatif à p(χ|ξ l ). Sachant que, pour un modèle Gaussien (circulaire) à moyenne paramétrée, C BCR est donné par l'inverse de la MIF (voir ( 13)), alors dans la suite nous ne donnerons que l'expression de D et Ψ. Ainsi, en utilisant la valeur de D et de Ψ et ( 9) et [START_REF] Reuven | The use of the Barankin bound for determining the threshold SNR in estimating the bearing of a source in the presence of another[END_REF], nous obtiendrons

C (L) BMS , C (L) BHCR , C (L) BMH et C (L,P )
BFCR (voir ( 5), ( 6), ( 7) et (8).)

[FIM] i,k = 2 ∂µ(ξ 0 ) H ∂ [ξ 0 ] i Σ -1 bruit ∂µ(ξ 0 ) ∂ [ξ 0 ] k , i = 1, 2, k = 1, 2.
(13) Tout d'abord, notons que :

DKL (p(χ|ξ n )||p(χ|ξ)) = C N T p(χ|ξ n )Ln p(χ|ξ n ) p(χ|ξ) dχ = C N T (χ -µ(ξ)) H Σ -1 bruit (χ -µ(ξ)) p(χ|ξ n )dχ - C N T (χ -µ(ξ n )) H Σ -1 bruit (χ -µ(ξ n )) p(χ|ξ n )dχ = C N T χ H Σ -1 bruit (µ(ξ n ) -µ(ξ)) -µ(ξ) H Σ -1 bruit (χ -µ(ξ)) f (χ|ξ n )dχ = (µ(ξ n ) -µ(ξ)) H Σ -1 bruit (µ(ξ n ) -µ(ξ)) . (14) 
De plus, les éléments de la matrice Ψ sont donnés par :

[Ψ] m,n = C N T 1 π |Σ bruit | exp (χ -µ(ξ 0 )) H Σ -1 bruit (χ -µ(ξ 0 )) × exp -(χ -µ(ξ m )) H Σ -1 bruit (χ -µ(ξ m )) × exp -(χ -µ(ξ n )) H Σ -1 bruit (χ -µ(ξ n )) dχ = α(ξ m , ξ n ) π |Σ bruit | C N T exp(-(χ -µ(ξ m ) -µ(ξ n ) + µ(ξ 0 )) H Σ -1 bruit (χ -µ(ξ m ) -µ(ξ n ) + µ(ξ 0 )))dχ = α(ξ m , ξ n ), où α(ξ m , ξ n ) = exp(-2µ(ξ 0 ) H Σ -1 bruit µ(ξ 0 ) -µ(ξ 0 ) H Σ -1 bruit × (µ(ξ m ) + µ(ξ n )) + µ(ξ m ) H Σ -1 bruit (µ(ξ n ) -µ(ξ 0 )) + µ(ξ m ) H Σ -1 bruit (µ(ξ n ) -µ(ξ 0 ))). (15) 
De ce fait, en utilisant ( 7), ( 6), ( 5) et [START_REF] Hammersley | On estimating restricted parametrers[END_REF],

C (L) BMH , C (L) BHCR , C (L) BMS et C (L,P )
BCRF sont données en remplaçant (13), ( 14) et (15) dans ( 9) et [START_REF] Reuven | The use of the Barankin bound for determining the threshold SNR in estimating the bearing of a source in the presence of another[END_REF].

Analyse numérique

Pour ces simulations, nous avons considéré une antenne composée de N = 10 capteurs avec une distance intercapteurs d = λ 2 . La source, située dans la région de Fresnel, est repérée par les coordonnées suivantes (θ, r) = (30 • , 6λ). On supposera également que Σ bruit = σ 2 I.

Il est à noter que les EQM empiriques de l'estimateur du maximum de vraisemblance déterministe représentées dans les Fig. 2 et 3, ont été obtenues avec 1000 tirages de type Monte-Carlo. L'ensemble des points test utilisés pour la BMS, la BHCR, la BMH et la BFCR est égal à L = 2 14 (plus précisément, l'ensemble des points test suivant le paramètre ω est fixé à L 1 = 2 7 , de même que celui par rapport à φ qui est donné par L 2 = 2 7 ). La BFCR se calcule aussi en choisissant un ensemble de points de test fréquentiels. A cet effet, et pour garder une complexité de calcul sensiblement égale à la BMS, la BHCR et la BMH, on a choisi deux points test fréquentiels parmi les 2 14 maximisant la BFCR. De façon générale on constate que la BFCR demeure moins performante que toutes les bornes présentées dans cette contribution. Ceci est dû au fait que la BFCR "comprime" les contraintes en appliquant la TFD. Cette compression de contraintes est à l'origine de la dégradation de cette borne. Ce point n'a pas été mentionné dans [START_REF] Todros | General classes of performance lower bounds for parameter estimation Part I: Non-bayesian bounds for unbiased estimators[END_REF] où la BFCR apparaît comme une borne plus pertinente par rapport à la BMS, BHCR et la BMH dans le cas particulier de l'analyse spectrale. Cela étant dit, il faut noter que la BFCR a été calculée à partir de 2 9 points tests, or les autres bornes (BMS, BHCR et la BMH) ont étés calculées en maximisant seulement 1 point test parmi 2 9 . Ceci explique, pourquoi dans [START_REF] Todros | General classes of performance lower bounds for parameter estimation Part I: Non-bayesian bounds for unbiased estimators[END_REF] la BFCR apparaît comme étant plus précise que les autres bornes contrairement à l'exemple traité ici.

Conclusion

Dans cette contribution, nous présentons le calcul de différentes bornes déterministes inférieures de l'erreur quadratique moyenne pour la localisation d'une source en champ proche. Cette analyse nous a permis de caractériser les performances non-asymptotiques d'estimateurs à hautes résolutions. Elle nous a, plus particulièrement permis d'avoir une bonne prédiction du phénomène de décrochement. De plus, nous avons démontré lors de cette étude, que la borne de Fourier Cramér-Rao, récemment proposée, demeure moins performante que certaines de ses prédécesseurs, on cite la borne de McAulay-Hofstetter comme exemple.

Fig. 1 :

 1 Fig.1: On constate (pour des problèmes non linéaires) que l'erreur quadratique moyenne de l'estimateur du maximum de vraisemblance est répartie en trois régions bien distinctes[START_REF] Rife | Single tone parameter estimation from discrete time observations[END_REF] : 1-la zone dite asymptotique où la valeur estimée du paramètre est proche de la vraie valeur, 2la zone dite de décrochement due à un accroissement brusque de l'erreur quadratique moyenne (dont la cause est l'apparition d'observations aberrantes), 3-la zone dite de non-information où l'observation se réduit principalement à la composante du bruit, d'où la distribution des estimées quasi uniforme de l'erreur quadratique moyenne.

Fig. 2 :

 2 Fig. 2: Bornes inférieures de l'erreur quadratique moyenne pour le modèle déterministe en fonction de ω pour (θ, r) = (30 • , 6λ) et T = 15.

Fig. 3 :

 3 Fig. 3: Bornes inférieures de l'erreur quadratique moyenne pour le modèle déterministe en fonction de φ pour (θ, r) = (30 • , 6λ) et T = 15.

  appuyant sur un problème d'optimisation sous contraintes, Forster et Larzabal[START_REF] Forster | On lower bounds for deterministic parameter estimation[END_REF] ont présenté une unification des bornes de l'erreur quadratique moyenne en imposant des contraintes sur le biais. Ils ont montré, par un choix judicieux de ces contraintes, qu'on pouvait ainsi donner une expression explicite des bornes de Cramér-Rao, de Barankin ou de Bhattacharyya. Notons que l'on peut trouver l'extension des travaux de Forster et Larzabal[START_REF] Forster | On lower bounds for deterministic parameter estimation[END_REF] dans le cas de plusieurs paramètres inconnus déterministes dans[START_REF] Chaumette | A new Barankin bound approximation for the prediction of the threshold region performance of maximum likelihood estimators[END_REF]. Dans[START_REF] Todros | General classes of performance lower bounds for parameter estimation Part I: Non-bayesian bounds for unbiased estimators[END_REF], Todros et Tabrikian ont proposé une nouvelle classe de bornes de l'erreur quadratique moyenne en utilisant une transformation intégrale généralisée appliquée à la fonction de vraisemblance. Ainsi, ils ont montré que certaines bornes de l'erreur quadratique moyenne (par exemple, les bornes de Cramér-Rao, de McAulay-Seidman et de Bhattacharyya) sont obtenues par un choix approprié du noyau de la transformation intégrale de la fonction de rapport de vraisemblance.En utilisant l'une des deux approches, on constate que l'unification s'exprime comme suit :

φ 0 représentent les vraies valeurs des paramètres candidats ξ, ω et φ, respectivement.

3 Expressions des bornes inférieures de l'erreur quadratique moyenne

Dans

[START_REF] Glave | A new look at the Barankin lower bound[END_REF][START_REF] Forster | On lower bounds for deterministic parameter estimation[END_REF][START_REF] Chaumette | A new Barankin bound approximation for the prediction of the threshold region performance of maximum likelihood estimators[END_REF][START_REF] Todros | General classes of performance lower bounds for parameter estimation Part I: Non-bayesian bounds for unbiased estimators[END_REF] 

les auteurs ont proposé une unification de différentes bornes de l'erreur quadratique moyenne. Plus précisément, s'

Notons par ailleurs que les valeurs des points test qui maximisent les bornes (dites bornes optimales) sont celles où la fonction d'ambiguïté exhibe des maxima locaux[START_REF] Renaux | Contribution à l'analyse des performances d'estimation en traitement statistique du signal[END_REF][START_REF] Reuven | The use of the Barankin bound for determining the threshold SNR in estimating the bearing of a source in the presence of another[END_REF][START_REF] Xu | Bayesian bounds for matched-field parameter estimation[END_REF][START_REF] Reuven | A Barankin-type lower bound on the estimation error of a hybrid parameter vector[END_REF][START_REF] Renaux | A useful form of the Abel bound and its application to estimator threshold prediction[END_REF]. Cela étant dit, il a été montré que, dans le cas où les points test couvrent les extrémités de Θ et aussi la vraie valeur du paramètre ξ 0 , alors même si on obtient des bornes en dessous des bornes optimales, la différence est suffisamment faible pour que leur utilisation reste pertinente[START_REF] Renaux | Contribution à l'analyse des performances d'estimation en traitement statistique du signal[END_REF].