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Abstract

In this paper we present analytical mean field techniques that can be used
to better understand the behavior of malware propagation in opportunistic
large networks. We develop a modeling methodology based on stochastic
mean field optimal control that is able to capture many aspects of the prob-
lem, especially the impact of the control and heterogeneity of the system on
the spreading characteristics of malware. The stochastic large process charac-
terizing the evolution of the total number of infected nodes is examined with
a noisy mean field limit and compared to a deterministic one. The stochastic
nature of the wireless environment make stochastic approaches more realistic
for such types of networks. By introducing control strategies, we show that
the fraction of infected nodes can be maintained below some threshold. In
contrast to most of the existing results on mean field propagation models
which focus on deterministic equations, we show that the mean field limit is
stochastic if the second moment of the number of object transitions per time
slot is unbounded with the size of the system. This allows us to compare
one path of the fraction of infected nodes with the stochastic trajectory of its
mean field limit. In order to take into account the heterogeneity of oppor-
tunistic networks, the analysis is extended to multiple types of nodes. Our
numerical results show that the heterogeneity can help to stabilize the sys-
tem. We verify the results through simulation showing how to obtain useful
approximations in the case of very large systems.
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1. Introduction

In modern times, the massive use of information formed an intercon-
nected global society of billions in which communication systems are vital
infrastructures. Among them, wireless communications is without doubt one
of the most explosive developments ever to have taken place in the telecom-
munications industry. At the same time, over the last years, we have seen
the power of microprocessors double about every 18 months, becoming con-
siderably smaller, cheaper and abundant; indeed, they are ubiquitous and
are even finding their way into everyday objects. Those technology trends -
tiny, cheap processors with integrated sensors and wireless communications
formed the technological basis for a new era of vast number of smart objects
that communicate via wireless links.

Those incredibly diverse and complex wireless communication networks
brought several fundamental technical issues: networks must be designed to
carry out the intended functions in an efficient and predictable way; they
must be manageable and upgradeable; and the most of all: reliable. Today,
one of the major emerging threat against reliability is malware, that is, ma-
licious self-replicating code. Threats posed by malware ranges from attacks
against the confidentiality of the communication to attacks that actually alter
the information traffic, hence destroying the integrity of the network [1].

Recently, malware outbreaks designed for personal computer environ-
ments on wired networks like those of Slammer and Code Red worms over
the Internet have already inflicted severe economic damages, infecting thou-
sands of hosts in short periods of time. Then, it is of vital importance to
predict the limits of the damages that the attackers can inflict in large wire-
less networks, subject to its fundamental limitations, such as limited energy,
unreliable communications and topology changes due mobility.

In this work we illustrate how the mean field approach can be used to
reduce the complexity in the analysis of the damage that can be inflicted in
a large network with opportunistic interaction of the objects. Opportunistic
networking is one of the emerging communication paradigms in wireless mo-
bile communications, in which the communication opportunities are based
on sporadic and intermittent contacts. In contrast with the extensive work
of malware propagation in wired networks ([2, 3, 4]), large wireless networks
have not yet received similar attention, with a few exceptions ([5, 6]).
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Our contributions
Contributions in this paper are twofold. First, from the theoretical point

of view, we present a novel mean field approach, which tries to overcome one
of the limitations of the “classic” mean field, that is, the approximation of
an inherently stochastic system with a deterministic representation (ordinary
differential equation). We propose a new, more general approach in which we
preserve the main advantage of the classic mean field, that is, the reduction
of the number of parameters in the analysis of large systems, but adding a
random or “noisy” component. This new addition could lead to a more real-
istic mathematical model of the original situation, for example when many
local object transitions occurs at the same time making the second moment
unbounded. In this context the works [7, 8, 9] are not applicable anymore
because the second moment of the number of object transitions per time slot
may not vanish when the number of objects goes to infinity. A typical sce-
nario is when many players do parallel transitions. The idea of the proposed
analysis is that, if the third order in the Taylor approximation of the regular
function of the mean field is bounded, then the noise may not be negligible
but a convergence to a stochastic mean field limit can be established. Inspired
from the work of [10] based on multidimensional diffusion processes, we were
able to establish a mean field convergence to non-deterministic differential
equations and extend the previous works in mean field interaction models
(with and without controls). This new mean field limit which is stochas-
tic is called ”noisy” mean field limit and applied in this work to malware
propagation in opportunistic networks.

Second, from the malware propagation modelling point of view, we extend
the model developed in [7] in which the types are not used and the impact of
the control parameters are not specially studied. This leads to a limitation
in the results obtained, because different types of systems could lead for
example to slower rates of propagation. They can represent, for example,
different operating systems, different versions of the operating systems or
patched/unpatched version of the same operating system. To the best of
our knowledge, in most of the related work about malware spreading in
large networks authors do not model the heterogeneity of the network. The
authors in [1] examined controlled dissemination using Pontryagin maximum
principle. However, the mean field convergence of their fluid model is not
provided. In [11], the authors analyze spatial mean field model between
different locations but the control framework is not examined there. We
observe that control parameters are important in the mean field limit since
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they give new insights to uncontrolled mean field framework which may be
constrained (energy limitation). This helps in controlling the proportion of
infected nodes.

Organization

The rest of the paper is structured as follows. In next section we present
basics on stochastic games with random set of interacting players. In section
3, we overview existing mean field models in discrete time. We develop a
controlled mean field framework in section 4 and in section 5 we provide a
general convergence to mean field which is characterized by a stochastic dif-
ferential equation and the payoff evolution are solution of partial differential
equations. Finally, we apply the noisy mean field framework to opportunistic
wireless large networks.

2. Basics of stochastic games with individual states

In this section we introduce basic notions of stochastic games and in
subsequent sections we establish their convergence to the noisy mean field
when the number of players goes to infinity under suitable conditions. A
stochastic game with individual states and random set of interacting players
is a collection

Γ =
(

N ,S, (Xj, Ãj,Aj, rj)j∈N , q,B
n
)

where
• N is the set of players. The cardinality of N is n.
• S is a set of environment states. A state vector.
• For every player j, Xj is its state space. The state of player j at time t
is denoted by Xn

j (t) = (θj, Y
n
j (t)) where θj is the type, which is constant

through the game. The set of possible states Xj = {1, 2, ...,Θ}×Yj is finite.
Yj may include other parameters, such as, space location, current direction
and so on.
• For every player j ∈ N , Ãj is the set of actions of that player. Aj :

S × Xj −→ 2Ãj is a set-valued map (correspondence) that assigns to each
state (s, xj) ∈ S × Xj the set of actions Aj(s, x) that are available to player
j. We denote the state-action space by

SXA=

{

(s, x, a):(s, x1, . . . , xn) ∈ S×
∏

j∈N

Xj, a=(aj)j∈N , aj∈Aj(s, x), ∀j ∈ N

}
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• For every player j ∈ N , rj : SXA −→ R is an instant payoff function for
player j.
• q : SXA −→ ∆(S ×

∏

j Xj) is a transition function where ∆(S ×
∏

j Xj) is
the space of probability distributions over S ×

∏

j Xj. The marginal of q is
denoted by qj, which represents the transition probabilities of state of player
j, given the state of all other players and the resource state.
• Bn is a random set of players: Bn ⊆ N denotes the set of interacting players
at current time. The random selection will be explained in detail in the next
section. The payoff function will be denoted by rB

n

j .
How does the dynamic game evolves?
The dynamic game starts at an initial (s0, x0) ∈ S ×

∏

j Xj and is played
as follows. Time space is N. A set Bn

t of players are randomly selected
without replacement for a one-shot interaction. The current state st, xt,B

n
t

is known by all the selected players. At each time t ∈ N, each player j ∈ Bn
t ,

chooses an action aj,t ∈ Aj(st, xt), and receives an instant payoff rj(st, xt, at),
where at = (aj,t)j∈N , and the game moves to a new state according to a
probability distribution given by q(. | st, xt, at) ∈ ∆(S ×

∏

j′ Xj′). The payoff

and transitions of non-selected players are zero and the payoff function r
Bn
t

j of
a selected player j does not depend on the state-actions of the non-selected
players.

2.0.1. Strategies

Under complete information of past play, a history of length t + 1 cor-
responds to the sequence ht = (s0, x0,B

n
0 , a0, s1, x1,B

n
1 , a1, . . . , st, xt,B

n
t ). A

pure strategy σj of player j is a mapping that assigns to every finite history
ht an element of Aj(st, xt). A mixed strategy is a probability distribution of
the pure strategies. The set of mixed strategies is denoted by Σj. A strategy
profile (σj)j∈N is stationary if ∀ j, σj(ht) depends only on the current pair
(st, xt). A stationary strategy of player j can be identified with element of the
product-space of

∏

(s,x)∈S×X ∆(Aj(s, x)). Every profile σ = (σj)j∈N ∈
∏

j Σj

of mixed strategies, together with the initial state s0, x0 induces a probabil-
ity distribution Ps0,x0,σ over the space of infinite plays SXA∞. We denote the
corresponding expectation operator by Es0,x0,σ.

2.0.2. Payoff

We examine the finite-horizon payoff. Let σ be a mixed strategy profile.
In the finite-horizon payoff, a player considers the cumulative payoff during
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the first T times. For every finite T ∈ N, the finite-horizon payoff for player
j is

Fj,T (s0, x0, σ) = Es0,x0,σ

[

T−1
∑

t=0

r
Bn
t

j (st, xt, at)1l{j∈Bn
t }

]

(1)

where 1l{·} equals 1 if · is true and 0 if not.

3. The classic mean field approach

In this section we present a summary of the previous work on mean field
and its relation with stochastic games.

3.1. Mean Field Interaction model [7]

The main interests of [7] are models of interacting objects in discrete
time, with finite number of states. The objects share local resources, which
have a finite number of states. The objects are observable only through their
state. In the limit, when the number of objects goes to infinity, it is found
that the system can be approximated by a deterministic, usually non linear,
dynamical system called the mean field limit. The mean field is in discrete
or continuous time, depending on how the model scales with the number
of objects. If the expected number of transitions per object per time slot
vanishes when n grows, then the limit is in continuous time. Otherwise,
the limit is in discrete time. One of the main advantages of the mean field
approach is that it could drastically reduce the number of parameters in the
analysis of large systems by using an aggregate dynamical system description.

Xn(t) is called a mean field interaction model with n objects if:
1) Xn(t) ∈ X n is an homogeneous Markov chain.
2) The transition kernel Ln of Xn(t) is invariant under any permutation of
the labeling of the objects. That is,

Ln(x, s; x′, s′) = Ln(x1, .., xn, s; x
′
1, .., x

′
n, s

′)=Ln(xp(1), .., xp(n), s; x
′
p(1), .., x

′
p(n), s

′)

=P(Xn
1 (t+1)=x′1, .., X

n
n (t+1)=x′n, S(t+1)=s′

∣

∣

∣Xn
1 (t)=x1, .., X

n
n (t)=xn, S(t)=s)

for any permutation p of the index set {1, 2, .., n}.
The occupancy measure is defined as the vector of frequencies of states:

Mn
x (t) =

1

n

n
∑

j=1

1l{Xn
j (t)=x}
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By the invariance assumption, (Mn(t), S(t)) is an homogeneous Markov
chain. Its state space is ∆×S, where ∆ is the simplex {m = (mi) :

∑

imi =
1,mi ≥ 0, i = 1, 2, ..|X |}. Since we are interested in the asymptotic results
when n grows to infinity, we need to set the proper time scaling. Assume
there exists a vanishing δn called intensity, which can be understood as the
probability that one arbitrary object does a transition in one time slot. Also
define the drift fn(m, s) = E(Mn(t+1)−Mn(t)|Mn(t) = m,S(t) = s), which
is the expected change in the occupancy measure in one time slot. The main
scaling assumptions in this model are:
H1: The resource does not scale with n, that is, exists

lim
n→∞

Ln
s;s′(m) = Ls;s′(m), ∀s, s′ ∈ S

where Ln
s;s′(m) = P(S(t + 1) = s′|Mn(t) = m,S(t) = s). Moreover, the

transition matrix L(m) has an unique invariant probability distribution.
H2: Intensity vanishes at a rate δn, that is, exists δn, such that limn→∞ δn = 0
and

lim
n→∞

fn(m, s)

δn
= f(m, s), ∀s ∈ S

H3: Second moment of the number of object transitions per time slot is
bounded, which is equivalent to ∀s ∈ S, ∀x, x′ ∈ X

∫

m′

1l{‖m−m′‖≤2}(mx−m
′
x)(mx′−m′

x′)
1

δn
Ln(dm′;m, s) → 0

where Ln(m′;m, s) = P(Mn(t+1)=m′ |Mn(t)=m,S(t)=s)
H4: Ln

s;s′(m) is a smooth function of δn and m.
H5: fn(m, s) is a smooth function of δn and m.

Later we will see that these assumptions are indeed relaxed in our ap-
proach. This theorem can be used to approximate Mn(t) by the solution
m(δnt) of an ODE with the same initial condition, that is,

Theorem 1. IfMn(0) → m0 in probability [resp. in mean square] as n→ ∞
then sup0≤τ≤T ‖ Mn(τ) −m(τ) ‖→ 0 in probability [resp. in mean square],
τ ∈ [tδn, (t+ 1)δn], where m(τ) satisfies

{

ṁ = f̃(m)

m(0) = m0

where f̃(m) =
∑

sws(m)f(m, s) and w(m) is the invariant probability of the
transition matrix L(m).
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3.2. Mean Field Asymptotic of Markov Decision Evolutionary Games and
Teams model [8]

The main interests of [8] are large populations of players in which fre-
quent interactions occur between small numbers of chosen individuals. Each
interaction in which a player is involved can be described as one stage of a
dynamic game. The state and actions of the players at each stage determine
an immediate payoff for each player as well as the transition probabilities
of a controlled Markov chain. Each player wishes to maximize or minimize
its expected payoff averaged over time. This model with a finite number
of players, is in general difficult to analyze because of the huge state space
required to describe all of the players. Then taking the asymptotics as the
number of players grows to infinity, the whole behavior of the population is
replaced by a deterministic limit that represents the system state, which is
fraction of the population at each individual state that use a given action.

For large n, under assumptions analogous to H1-H5, the mean field con-
verges to a deterministic measure that satisfies a non-linear ordinary dif-
ferential equation for under any stationary strategy. They show that the
mean field interaction is asymptotically equivalent to a Markov decision evo-
lutionary game. The mean field asymptotic calculations for large n for given
choices of strategies allows to compute the equilibrium of the game in the
asymptotic regime.

Theorem 2. If Mn(0) → m0 in probability as n → ∞ then, for any sta-
tionary strategy u, and any time t, Mn(t) converges in law to the solution
of

{

ṁ = f̃(u,m)

m(0) = m0

u is formally defined in the next section.

4. Controlled mean field interaction model

In this section, we introduce a controlled mean field interaction model.
The finite version of this model is a particular case of stochastic games with
individual states. We restrict our attention into a particular class of behav-
ioral strategies within we are able to establish the mean field convergence.
This restriction is due to the fact that when the number goes to infinity,
the dimension of the set of stationary strategies goes to infinity as well as.
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By letting the size of the system go to infinity, the discrete stochastic game
problem is replaced by a limit of a system of Hamilton-Jacobi-Bellman equa-
tions coupled with a mean field limit ODE or coupled system of Bellman-
Shapley optimality and discrete mean field evolution, that are deterministic
and where the dimensionality of the original system has been transformed in
the mass-behavior of the system.

Time t ∈ N is discrete. The global state of the system at time t is
(S(t), Xn(t)) = (S(t), Xn

1 (t), ..., X
n
n (t)). Denote byA

n(t) = (An
1 (t), . . . , A

n
n(t))

the action profile at time t. The system (S(t), Xn(t)) is Markovian once the
action profile An(t) are drawn under Markovian strategies. We denote the
set of Markovian strategies by U .

Mn
x (t) is the fraction of players who belong to the population of individual

state x, as defined in section 3. Similarly, we associate the process

Un
a (t) =

1

n

n
∑

j=1

1l{An
j (t)=a}

to the fraction of actions.

Strategies and random set of interacting players

At time slot t, an ordered list Bn
t , of players in {1, 2, . . . , n}, is randomly

selected without repetition as follows: First we draw a random number of
players kt such that P(|Bn

t | = k | Mn(t) = m) =: Jn
k (m) where the distri-

bution Jn
k (m) is given for any n, m ∈ {0, 1

n
, 2
n
, . . . , 1}|X |. Second, we set

Bn
t to an ordered list of kt players drawn uniformly at random among the

n(n− 1)...(n− kt + 1) possible ones.
Each player such that j ∈ Bn

t takes part in a one-shot interaction at time t,
as follows. First, each selected player j ∈ Bn

t chooses an action aj,t ∈ A(s, xj)
with probability u(aj | s, xj) where (s, xj) is the current player state. The
stochastic array u is the strategy profile of the population.

Denote the current set of interacting players Bn
t = {j1, . . . , jk}. Given the

actions aj1 , ..., ajk drawn by the k players, we draw a new set of individual
states (x′j1 , ..., x

′
jk
) and resource state s′ with probability Ln

s;s′(k,m, a), where
a is the vector of the selected actions by the interacting players.

We assume that for any given Markovian strategy, the transition kernel
Ln is invariant by any permutation of the index of the players within the
same type. This implies in particular that the players are only distinguish-
able through their individual state. Moreover, this means that the process
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Mn(t) is also Markovian once the sequence of strategy is given. Denote by
wn

s,s′(u,m) the marginal transition probability between the resource states.
Given any Markov strategy and any vector m of ∆, the resource state gener-
ates an irreducible Markov decision process with limiting invariant measure
ws(u,m). Then, we can simplify the analysis by fixing the resource state
S(t) = s without losing generality. The model is entirely determined by
the probability distributions Jn, the transition kernels Ln and the strategy
profile u.

5. Noisy mean field approach

We provide a general convergence result of the mean field to a stochastic
differential equation and a martingale problem is formulated for the the law
of the process Mn

t . We are able to establish a mean field convergence to
non-deterministic differential equations, thus, extending the previous works
in mean field interaction [7, 11], in mean field Markov decision teams [8, 9]
or in mean field Markov games [8, 12]. We show that even if the expected
number of players that do a transition in one time slot is not bounded, one
can have a mean field limit, in such a case a stochastic one. This mean field
limit is referred as noisy mean field.

Before presenting the main theoretical results of this paper, we first in-
troduce some preliminary notions. The evolution of the system depends on
the decision of the interacting players. Given a history

ht = (S(0), Xn(0), An(0), . . . , S(t) = s,Xn(t), An(t)).

The random vector Xn(t+1) evolves according to the transition probability

Ln(x′; x, u, s) = P (Xn(t+ 1) = x′ | ht) . (2)

The term Ln(x′; x, u, s) is the transition kernel on X n under the strategy Un.
Let xn = (xn1 , . . . , x

n
n) such that 1

n

∑n

j=1 δxn
j
= m and define

Ln(m′;m,u, s) :=
∑

(x′1,...,x
′
n)

1
n

∑n
j=1

δ
x′
j
=m′

Ln(x′; x, u, s)

= P(Mn(t+1)=m′ |Mn(t)=m,Un(t)=u, S(t)=s)

= P(Mn(t+1)=m′ |h̃t)
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where h̃t = (S(t′), Xn(t′), An(t′), t′≤t, S(t)=s,Xn(t)=xn).The term Ln(m′;m,u, s)
corresponds to the projected kernel of Ln. Below we give sufficient conditions
on the transition kernels to get a weak convergence of the process Mn

t under
the strategy Un(t).

We now present the main assumptions of this paper.
A1: ws(u,m) is continuously differentiable in m and u. Note that this
assumption was already implicit in the approach of [7] via the smoothness of
the drift.
A2: There exists a continuous mapping f : R

|X| × U × S −→ R
|X| such that

∀s ∈ S;

lim
n

sup
u∈U

sup
‖m‖≤1

‖
fn(m,u, s)

δn
− f(m,u, s) ‖= 0

where

fn
x (m,u, s)=

∫

m′∈R|X|

1l{‖m′−m‖≤2}(m
′
x −mx)L

n(dm′;m,u, s),

for x ∈ X , and s ∈ S. This assumption is analogous to H2 in which control
parameters are added.
A3: There exists δn ց 0 and a continuous mapping a : R

|X| × U × S −→
R

|X|×|X| such that ∀s ∈ S;

lim
n

sup
u∈U

sup
‖m‖≤1

‖
an(m,u, s)

δn
− a(m,u, s) ‖= 0

where

anx,x′,s(m,u, s) =

∫

m′∈R|X|

1l{‖m′−m‖≤2}(m
′
x−mx)(m

′
x′−mx′)Ln(dm′;m,u, s),

(3)

for (x, x′, s) ∈ X 2 × S, where the third moment is finite. Note that under
H3, a ≡ 0.
A4: For all ǫ > 0 and ∀s ∈ S;

lim
n

sup
u∈U

1

δn

∫

m′∈R|X|

1l{‖m′−m‖>ǫ}L
n(dm′;m,u, s) = 0

Note that assumption H3 and lemma 3 from [7], implies A4.
A4’: ∀s ∈ S;

sup
u∈U

sup
m∈R|X|

sup
n≥1

[

‖
an(m,u, s)

δn
‖ + ‖

fn(m,u, s)

δn
‖

]

<∞
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The smoothness assumptions H4-H5 in [7] imply A4′ which implies A4 too.

Theorem 3. Let Mn
0 −→ π in law where π is a probability measure. Under

A1-A4 [resp. A1-A4’], the process Mn
t converges in law to a weak [resp.

strong] solution of the Itô stochastic differential equation given by

dm = f̃(m,u)dt+ σ̃(m,u)dWt

where σ̃σ̃t = ã, f̃(m,u)=
∑

sws(m,u)f(m,u, s), ã(m,u)=
∑

sws(m,u)a(m,u, s)
and w(m,u) is the invariant probability of the transition matrix L(m,u)

Proof. See Appendix.

Remark This result generalizes the deterministic mean field limit condi-
tions established in [7] for U equal to a singleton. It generalizes also the
deterministic controlled mean field dynamics obtained in [8] for stationary
strategies.

Remark The conditions A1 − A4, A4′ are weaker than those given in [7].
Under the conditions in [7], the noise term 1

δn
an −→ 0 when n goes the

infinity. Moreover, the continuity assumption on the drift limit is not needed.
If f̃ admits a unique integral curve, and ã is bounded and continuous then, the
result applies as well. This allows us to apply it in wide range of networking
scenarios with discontinuous drift limit but lower semi-continuity properties.
Note that the uniformity in u may not be satisfied. In that case, a local mean
field solution is derived. An example of such discontinuity is provided in [8].
Our result extends also the convergence theorem in [8] which was restricted
to stationary strategies. Here ut is an admissible strategy at time t.

Definition 1 (Individual optimization framework). To a game as defined
above, we associate a macroscopic population game, defined as follows. Each
member j of the population, with state Xj(t) and a population profile m[u](t).
The initial condition of the game is S(0) = s,Xj(0) = x, m[u](0) = m0. The
population profile is solution to the noisy mean field evolution and S(t), Xj(t)
evolves as a jump process given by the marginal of q which depends on m(t),
u(t) and the strategy u′(t) of j. Further, let VT (s, x, u

′, u,m) be the T−stage
payoff of player j in this game, given that S(0) = s,Xj(0) = x and m(0) =
m0, i.e. VT (s, x, u

′, u,m) =

E

(

g(m(T )) +

∫ T

0

r(S(t), Xj(t), u
′(t), u(t),m(t))dt

∣

∣

∣
s, x,m0

)
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where m is solution of the Itô SDE

dm(t) = f̃(m(t), u(t))dt+ σ̃(m(t), u(t))dWt (4)

Using Itô’s formula [13] the expected payoff evolution for a fixed horizon
T is then given by































vu′,u(T,m) = g(m)

−∂tvu′,u(t,m) = r̄(t,m, u, u′) +
∑

x∈X

f̃x(m,u)∂mx
vu′,u(t,m)

+
1

2

∑

(x,x′)∈X 2

ãx,x′(m,u)∂2mxmx′
vu′,u(t,m)

where vu′,u(t,m) = ES,Xj
VT (s, x, u

′, u,m) starting at time t and r̄(t,m, u, u′) =
ES,Xj

r(S,Xj, u
′, u,m) is the global expected mean field payoff.

Centralized mean field control: We now provide the feedback opti-
mality principle for the global expected mean field payoff r̄(t,m, u, u). Please
note that in this case, each member of the population uses the same strategy.
The T−stage mean field optimization problem writes

sup
u

Eg(m(T )) +

∫ T

0

r̄(t,m(t), u(t), u(t)) dt

subject to the stochastic differential equation (4).
A strategy u∗(t) = φ(t,m) constitutes an optimal mean field solution if

there exist a continuously differentiable function v̄(t,m) satisfying the follow-
ing Hamilton-Jacobi-Bellman equation combined with the mean field SDE.
By combining the system, one gets the mean field optimality:

Proposition 1. The mean field optimality for horizon T is given by


























































v̄(T,m) = g(m)

−∂tv̄ = sup
ut∈Ut

{

r̄(t,mt, ut, ut)+
∑

x∈X

f̃x(mt, ut)∂mx
v̄

+
1

2

∑

(x,x′)∈X 2

ãx,x′(mt, ut)∂
2
mxmx′

v̄







dmt = f̃(mt, ut)dt+ σ̃(mt, ut)dWt, t > 0

m0 = m
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where v̄ = v̄(t,m).

Please note that this kind of systems may not have a solution. Coun-
terexamples can be found in [14].

Discrete time mean field limit

If the step-size δn is not vanishing when n goes to infinity, then the de-
terministic mean field limit is in discrete time and driven by the probability
transition Lt(u,m). Given an initial population profile m0 and a terminal
payoff, the sequence of population profiles {mt}t is driven by the transition
probabilities {Lt,s,x,s′,x′(u,mt)}t.

mt+1(x) =
∑

x′∈X

mt(x
′)Lt,x,x′(ut,mt), (5)

where
Lt,x,x′(u,m) =

∑

k≥0

∑

s

ws(u,m)Lt,s,x,x′(u,m; k)Jk(m),

Lt,s,x,x′(u,m; k) is the limiting probability transition from x to x′ when the
resource state is s and the number of interacting players is k. Combining
with the Bellman-Shapley optimality criterion, one gets the following system
in the finite horizon case:






















vj,t(s, x,m) = max
uj

{

r(s, x, u,mt) +
∑

s′,x′

L(s′, x′|s, x, u,mt)vj,t+1(s
′, x′)

}

mt+1(x) =
∑

x′∈X

mt(x
′)Lt,x′,x(u,mt)

(6)

6. Application to malware propagation

In this section, we apply the mean field approach to a controlled malware
propagation in opportunistic networks. The malware propagation model is
based on [7] in which the impact of the control parameters is not examined
and the player types are not used. The types can represent, for example,
different operating systems, different versions of the operating systems, or
patched/unpatched version of the same operating system. In most of the
related work about malware spreading in large networks authors do not model
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the heterogeneity of systems which forms the network, as far as we know.
This leads to a limitation in the results obtained, because different types of
systems could lead for example to slower rates of propagation.

In this example we have mobile nodes that can be infected by a malicious
code. There are two infected states: passive and active. Non infected nodes
are susceptible. Then, the set of possible state of a node is {P,A, S} (for
passive, active and susceptible) and the set of possible types is {θ1, θ2}. The
state of the system at time t is Xn(t) = (P1(t), P2(t), A1(t), A2(t), S(t)),
where P (t) + A(t) + S(t) = n,

∑

j Pj(t) = P (t),
∑

j Aj(t) = A(t), ∀t and
n is the total number of mobiles in the system. In this example, there is no
resource. The occupancy measure is Mn

θ (t) = (Pθ(t)/n,Aθ(t)/n, S(t)/n) =
(P n

θ (t), A
n
θ (t), S

n(t)). At every time step we want to control the proportion of
infected nodes, which is In(t) := An(t) + P n(t). There are two fundamental
ways to get infected:

1. Caused by a system flaw. (e.g: an exploit that could allow arbitrary
code execution).

2. Caused by human flaw. (e.g: the user is deceived and executes a dan-
gerous piece of code).

We can model this system as a controlled mean field interaction model.
The interaction is simulated using the following rules:
1) A passive node may become susceptible (inoculation) with probability δP .
2) A passive node with type θ may opportunistically encounter another pas-
sive node of type θ′, and both become active. This occurs with probability
proportional to the frequency of other passive nodes at time t. For type
θ, the probability is λ(P n

θ′(t) −
1
n
1l{θ=θ′}). Note that the passive node can

decide to contact the other passive node or not, so there are two possible
actions: {m, m̄} (for meet and not meet). Those events will be modeled as
a Bernoulli random variable with success (meeting) probability δm, which
represents u(m|P, θ). Here we model the possibility of getting infected by a
system flaw.
3) An active node may become susceptible (inoculation) with probability δA.

4) An active node of type θ may become passive with probability β
Pn
θ
(t)

hθ+Pn
θ
(t)

at

time t. Here is assumed that, at high concentrations of passive nodes, each
active node infects some maximum number of passive ones per time step.
This reflects finite total bandwidth. The parameter 0 ≤ β ≤ 1 has the inter-
pretation of the maximum infection rate. The parameter 0 ≤ hθ ≤ 1 is the
passive node density at which the infection proceeds at half of its maximum
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rate. Here we model the possibility of getting infected by a system flaw.
5) A susceptible node may become active with probability δS.
6) A susceptible node may become passive via two ways. First, δSm is the
probability of getting infected by a human flaw. In this case, the susceptible
node can “decide” to get deceived or not, so there are two possible actions:
{o, ō}. The stationary strategy in this case will be modeled as a coin toss with
probability δe. Second, η(P n

θ (t) + P n
θ′(t)) models the probability of encoun-

tering a passive node. In this case, the passive node can decide to contact
the susceptible node or not, and it is modeled analogously to the other two
cases.

At every time step, one of the transitions is randomly selected and per-
formed. The number of nodes that do a transition in one time slot is always
0, 1 or 2. In order to control the infected population, each transition has a
certain payoff contribution which could be 0 if no infected node is inoculated,
1/n if there is a node which is inoculated and −1/n if one node is infected. In
Table 1 are the transition probabilities, the contribution toMn(t+1)−Mn(t),
the set of actions, and the contribution to the total payoff.

Transition proba. Mn
θ (t+ 1)−Mn

θ (t) Actions Payoff
1 P n

θ (t)δP (−1, 0, 1)/n singleton set −1/n
2 P n

θ (t)δ
2
mλ(P

n
θ (t)−

1
n
) (−2, 2, 0)/n {m, m̄} 0

3 An
θ (t)δA (0,−1, 1)/n singleton set −1/n

4 An
θ (t)β

Pn
θ
(t)

hθ+Pn
θ
(t)

(−1, 1, 0)/n singleton set 0

5 Sn(t)δS (0, 1,−1)/n singleton set 1/n
6 Sn(t)(δeδSm + δmηP

n(t)) (1, 0,−1)/n {o, ō,m, m̄} 1/n

Table 1: Probabilities, effects, actions and payoffs, (θ, θ′ ∈ {1, 2}).

The intensity, that is, the probability that one arbitrary object does a
transition in one time slot is of the order of 1/n. The drift, that is, the
expected change ofMn in one time step, given the current state of the system
is:

fn
θ (m) = nE(Mn

θ (t+ 1)−Mn
θ (t)|M

n(t) = m) =




−pθδP −2pθδ
2
mλ

npθ−1
n

−aθβ
pθ

hθ+pθ
+s(δeδSm+δmη(pθ+pθ′))

2pθδ
2
mλ

npθ−1
n

− aθδA + aθβ
pθ

hθ+pθ
+ sδS

pθδP + aθδA − sδS − s(δeδSm+δmη(pθ+pθ′))
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where m = (pθ, pθ′ , aθ, aθ′ , s). Then the limit f(m) is















−pθδP −2λp2θδ
2
m −aθβ

pθ
hθ+pθ

+s(δeδSm+δmη(pθ+pθ′))

−pθ′δP −2λp2θ′δ
2
m −aθ′β

pθ′

hθ′+pθ′
+s(δeδSm+δmη(pθ+pθ′))

2λp2θδ
2
m − aθδA + aθβ

pθ
hθ+pθ

+ sδS
2λp2θ′δ

2
m − aθ′δA + aθ′β

pθ′

hθ′+pθ′
+ sδS

(pθ+pθ′)δP+(aθ+aθ′)δA−2sδS−2s(δeδSm+δmη(pθ+pθ′))















6.1. Homogeneous system

We briefly mention the homogeneous mean field. The drift is obtained by
computing the expected changes in one time slot: fn(m) = E(Mn(t + 1) −
Mn(t)|Mn(t) = m) =

1

n





−pδP − 2pδ2mλ
np−1
n

− aβ p

h+p
+ s(δeδSm + δmηp)

2pδ2mλ
np−1
n

− aδA + aβ p

h+p
+ sδS

pδP + aδA − sδS − s(δeδSm + δmηp)





where m = (p, a, s). Then the limit is

f(m) =





−pδP − 2p2δ2mλ− aβ p

h+p
+ s(δeδSm + δmηp)

2p2δ2mλ− aδA + aβ p

h+p
+ sδS

pδP + aδA − sδS − s(δeδSm + δmηp)





In all the simulations, we kept this parameters unchanged: β = 10−2,
δA = 5×10−3 and δP = δS = δSm = 10−4. On parameter h (the passive node
density at which the infection of active nodes proceeds at half of it maximum
value) depends the stability of the system. Here we set h = 10−2 in order
to obtain an unstable behaviour. Regarding the control parameters, δm = 1,
δe = 1 means no control.

We investigate the evolution of the system in the following scenarios:

• Trajectory of one run of the simulation (figure 1),

• Mean trajectory of multiple simulations (figure 2),

• Mean field limit trajectory (figure 3),

• Trajectory of the payoff function,

• Controlled mean field limit (figure 4),
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• Trajectory of the heterogeneous malware propagation (figure 6),

• Optimal control under the mean field limit (figure 7),

• Noisy mean field (stochastic path), (figure 8).

These configurations are analyzed with control and without control parame-
ters. We observe that the time mean 1

T

∫ T

0
m(s)ds is asymptotically close to

the stationary point inside the limit cycle.

6.1.1. Uncontrolled behaviour

In figures 1,2,3 we can see the simulation results, using the well-known
algorithm for exact simulation of a discrete time Markov chain. The initial
configuration is (0.2, 0, 0.8). An oscillating behaviour of the total reward can
be seen.
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Figure 1: Left: Path of one simulation without control. Right: Total reward.

6.1.2. Controlled behaviour

In order to illustrate the control parameters, suppose we want to keep
the proportion of infected nodes below 0.9 for all times. One simple way to
achieve this is to reduce the contact tendency of a passive node. Then, we
set δm = 0.075, which is the more relevant control parameter. The results
can be seen in figures 4 and 5.
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Figure 2: Leftmost: Mean of simulation trajectories without control. Rightmost: Total
reward.

6.2. Heterogeneous system

We investigate numerically the behavior of the mean field limit for two
types θ and θ′. In figure 6 we can see that it is possible to stabilize the
homogeneous system using classes.

6.3. Optimal strategy for the homogeneous system

Since the payoff function is the same for all the players i.e. rj(·) = r(·)
the discounted stochastic game with common payoff can be transformed in
a team problem. Moreover, the set of actions is the same for all the players.
In figure 7, we plot the optimal strategy obtained by solving the system in
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Figure 3: Left: Deterministic mean field without control. Right: Total reward.

the finite horizon case (equation (6)). The existence of a dominant strategy
can be observed in the plot.

6.4. Noisy mean field

In order to give some feeling on how the noisy mean field evolves with
time, we show in figure 8 two different realizations, for n = 1000 and n =
2000. The variance of the noise is obtained from σ̃n = 1

δn
fn − f which its

norm sup is bounded by 2Dλ
n
, then we have dm̃ = f(m̃)dt+ σ̃ndWt. Note that

the smooth version of the last equation can be ṁn = fn(mn)
δn

. It is worth to
mention that, in this case, the simulation algorithm is only exact when the
numerical time step vanishes.

6.5. Effect of the system size

In this subsection we examine the effect of n of the mean field object
Mn. We represent the evolution (in time) for different value of n and same
state-component (see figures 9).

7. Concluding remarks

We have studied mean field stochastic games and established a mean
field convergence to Itô stochastic differential equations. Our convergence
result opens new questions for discontinuous mapping (namely the drift and
the variance). In that case one may expect to have a stochastic differential
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Figure 4: Leftmost: Deterministic mean field with controlled passive node contact ten-
dency. Rightmost: Total reward.

inclusion as in [15] for which the existence of solution needs more attention.
This leads to ask what will happen when the discontinuities are coming from
the strategies as it is the case for the best response correspondence? We
do not have answers to this question and postpone it to future work. In
practical scenarios, when the second moment conditions are not satisfied,
the conditions for mean field convergence given in [8, 7, 9] are not applicable.
In these cases, the weak conditions that we provided here cover a wide range
of networking scenarios. The cycling behavior of the fraction of infected is
sensitive to the control parameters. It would be useful to understand this
relationship better by taking into account the network topology.
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Figure 5: Evolution of the limit point of the time mean, for δm = 0, 0.025, .., 0.925, 1.
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Appendix A. Sketch of the proof

Here we provide a proof sketch for noisy mean field convergence in law.
We start by some notations. Given a test function φ defined on R

|X |×U , let

Lφ(m,u) =
∑

x

f̃x(m,u)∂mx
φ(m,u) +

1

2

∑

x,x′

ãx,x′(m,u)∂2mxmx′
φ(m,u),

Let Dφ(t)=mt−
∫ t

0
Lzφ(mz, uz) dz. Dφ(t) is a martingale if

E

(

φ(mt2)−φ(mt1)−

∫ t2

t1

Lzφ(mz, uz) dz
∣

∣

∣ mt′ , ut′ , t′≤t1

)

=0

since u is deterministic, φ depends only on m in the first and second terms.
With the notion of martingale, the question of characterization of the

mean field trajectory can be formulate as martingale problem. One can ask
if the property that Dφ(.) is a martingale for all test functions φ uniquely
characterizes the mean field m(.), up to an initial m(0).

The martingale problem for Lz is : the existence of probability measure
π defined on R

|X | such that π(m0 = m) = 1, and Dφ(.) is a martingale for
any test function. Is there at most one such π for each m?

We now define the martingale problem for the interpolated process from
Mn

t denoted by M̃n(.).

πn,m,u(M̃
n
0 = m) = 1,

πn,m,u

(

M̃n
t =M

n(δnt
′)+

t−δnt
′

δn
(Mn

δn(t′+1)−M
n
δnt′

), t ∈ [δnt
′, δn(t

′+1)]

)

=1, ∀t′≥0.

πn,m,u

(

M̃n
δn(t′+1) ∈ E | Fn

t

)

=

∫

m′∈E

Ln(dm′; M̃n
δnt′
, u, s), ∀t′ ≥ 0.
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where E is a measurable subset in R
|X |.We construct an interpolated process

M̃n(.) from the discrete time population profile Mn
t with the step-size δn.

The time space is then the union of span in the form [tnk , t
n
k+1), where t

n
k =

kδn, k ∈ N. The martingale problem can be analogous defined as before.
Next, we construct a law πn,m,u of the new process with each interval in

the form [δnt, δn(t+1)]. It is not difficult to see that this covers the positive
real line.

Then a martingale problem associated to πn,m,u and the transition kernel
Ln can be formulated. To do this, we define the martingale problem for
the interpolated process from Mn

t denoted by M̃n(.) as above. We derive
the generator of the process M̃n(.) and compute 1

δn
Ln. We show that the

generator has limit if the assumptions A1-A4 are met. Let φ be an infinitely
differentiable and bounded function defined on R

|X |. Let O12(m,m
′) be the

sum of first and second order in the Taylor development of φ i.e

O12:=
∑

x

(m′
x−mx)∂mx

φ+
1

2

∑

x,x′

(m′
x−mx)(m

′
x′−mx′)∂2mxmx′

φ

Then, ‖φ(m′, u) − φ(m,u) − O12(m,m
′, u) ‖ = O(‖m′−m ‖3). This means

that if ψn denotes the operator with the coefficients an

δn
and fn

δn
i.e

ψnφ(m,u) =
∑

x

f̃n
x (m,u)

δn
∂mx

φ+
1

2

∑

x,x′

ãnx,x′(m,u)

δn
∂2mxmx′

φ.

then, the difference

∣

∣

∣

1

δn

(∫

(φ(m′, u)− φ(m,u))Ln(dm′;m,u, s)− ψnφ(m,u, s)

)

∣

∣

∣

is bounded by

c

∫

1l{‖m−m′ ‖≤1}‖m−m′ ‖3Ln(dm′,m, u, s)

+

∫

1l{‖m−m′ ‖>1} | φ(m,u)− φ(m′, u) | Ln(dm′,m, u, s).

The last term is clearly bounded by

2‖φ ‖∞

∫

1l{‖m−m′‖>1}L
n(dm′,m, u, s)
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which goes to zero by assumption A4. It remains to show that the first term
goes to 0.

∫

1l{‖m−m′‖≤1}‖m−m′ ‖3Ln(dm′,m, u, s)

≤ ǫ3 +

∫

1l{‖m−m′‖>ǫ}L
n(dm′,m, u, s) −→ 0.

Under the above assumptions, we derive the tightness properties of the mar-
tingale law. Under the above assumptions, the sequence of processes {πn}n≥0

is pre-compact and any limit point as n −→ +∞ solves the martingale prob-
lem for f(., .) and a(., .) starting from m0. Finally, it follows from the as-
sumptions A4’ and the regularity of the coefficients f, a and the fact that
the third order in Taylor approximation is bounded, the martingale problem
has a unique solution determined by these properties up to a null set. Then,
the noisy mean field limit (solution of the stochastic differential equation
given by the generator) is the unique solution of the martingale problem,
and πn −→ π the law of the process limit m̃. This completes the proof.
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