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Random Beamforming over
Quasi-Static and Fading Channels:
A Deterministic Equivalent Approach

Romain Couillet™#, Jakob Hoydis** and Mérouane Debbah?

Abstract

In this work, we study the performance of random isometric precoding over quasi-static and correlated fading
channels. We derive deterministic approximations of the mutual information and the signal-to-interference-plus-noise
ratio (SINR) at the output of the minimum-mean-square-error (MMSE) receiver and provide simple provably converg-
ing fixed-point algorithms for their computation. Although the deterministic approximations are only asymptotically
exact, almost surely, we show by simulations that they are very accurate for small system dimensions. The analysis
is based on the Stieltjes transform method which enables the derivation of deterministic equivalents of functionals of
large-dimensional random matrices. In contrast to previous works, our analysis does not rely on arguments from free
probability theory which allows us to consider random matrix models for which asymptotic freeness does not hold.
Thus, the results of this work are also a novel contribution to the field of random matrix theory and are shown to
be applicable to a wide spectrum of practical systems. In this article, we specifically characterize the performance of
multi-cellular communication systems, multiple-input multiple-output multiple-access channels (MIMO-MAC), and

MIMO interference channels.
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I. INTRODUCTION

Consider the following discrete time wireless channel model

K
1
y=> H,WP!x;+n (1)
k=1
where
) ye C" is the channel output vector,
(i) Hy € (CNXN"', ke {1,...,K}, are complex channel matrices, satisfying either of the following properties:

(ii-a) The matrix Hy € CN*Nr is deterministic. In this case, we will denote Ry, = HkH,'j.

(ii-b) The matrix Hy, € CN*Nr is a random channel matrix whose jth column vector hy; € C" is modeled as

where Ry; € CY*™ are Hermitian nonnegative definite matrices and the vectors Zg; € C" have
independent and identically distributed (i.i.d.) elements with zero mean, variance 1/N and 4 + ¢ moment
of order O(1/N?*¢/2), for some common € > 0.

(iii)) Wy € C Ve , ke{l,..., K}, are complex (signature or precoding) matrices which contain each n; < N

orthonormal columns of independent [V, x Nj Haar-distributed random unitary matrices,

(v) P € R™ ™ ke {1,...,K}, are diagonal (power loading) matrices with nonnegative entries,

(v) xi ~CN(0,I,,), k € {1,..., K}, are random independent Gaussian transmit vectors,

(vi) n ~ CN(0,0%Iy) is a white Gaussian noise vector.

A ny N

In addition, we define the ratios of the matrix dimensions ¢; = £+ and ¢; = % forie {1,...,K}.

Remark 1: The statistical model (2) of the channel Hy under assumption (ii-b) generalizes several well-known
fading channel models of interest (see [1], [2] for examples). These models comprise in particular the Kronecker

channel model with transmit and receive correlation matrices [3], [4], where the matrices Hj, are given by
1 1
H), = R}Z,T; (3)

with Z, € CM*M 3 random matrix whose elements are independent CN(0,1/N) and Ry, € CV*N, T, €
CNe*Nk antenna correlation matrices. Since both Z;, and Wy, are unitarily invariant, we can assume without loss
of generality for the statistical properties of y that T}, = diag(tg1,...,txn, ). Defining the matrices Ry; = t;Rs
for j € {1,..., Ny}, we fall back to the channel model in (2). Taking instead all Ry; to be diagonal matrices
makes the entries of H;, independent with [Hy];; of zero mean and variance [Ry;];;/N. This corresponds to a

centered variance profile model, studied extensively in [5], [6], [7].

The objective of this work is to study the performance of the communication channel (1) in the large dimensional
regime where N, Ny,..., Ng,nq,...,ng are simultaneously large. In the following, we will consider both the
quasi-static channel scenario which assumes hypotheses (i), (ii-a), (iii)-(vi), and the fading channel scenario which
assumes (i), (ii-b), (iii)-(vi). The study of the latter naturally arises as an extension of the study of the quasi-static

channel scenario. The respective application contexts of both scenarios are described below.



A. Quasi-static channel scenario (hypothesis (ii-a))

Possible applications of the channel model (1) under assumptions (i), (ii-a), (iii)-(vi) arise in the study of direct-
sequence (DS) or multi-carrier (MC) code-division multiple-access (CDMA) systems with isometric signatures over
frequency-selective fading channels or space-division multiple-access (SDMA) systems with isometric precoding
matrices over flat-fading channels. More precisely, for DS-CDMA systems, the matrices Hy, are either Toeplitz or
circular matrices (if a cyclic prefix is used) constructed from the channel impulse response; for MC-CDMA, the
matrices Hj, are diagonal and represent the channel frequency response on each sub-carrier; for flat fading SDMA
systems, the matrices Hy, can be of arbitrary form and their elements represent the complex channel gains between
the transmit and receive antennas. In all cases, the diagonal entries of the matrices P determine the transmit power
of each signature (CDMA) or transmit stream (SDMA).

The large system analysis of random i.i.d. and random orthogonal precoded systems with optimal and sub-optimal
linear receivers has been the subject of numerous publications. The asymptotic performance of minimum-mean-
square-error (MMSE) receivers for the channel model (1) for the case K = 1,P; = I,,, and H; diagonal with
i.i.d. elements has been studied in [8] relying on results from free probability theory. This result was extended to
frequency-selective fading channels and sub-optimal receivers in [9]. Although not published, the associated mutual
information was evaluated in [10] (this result is recalled in [11, Theorem 4.11]). The case of i.i.d. and isometric
MC-CDMA over Rayleigh fading channels with multiple signatures per user terminal, i.e., K > 1 and Hj, diagonal
with i.i.d. complex Gaussian entries, was considered in [12], where approximate solutions of the signal-to-noise-
plus-interference-ratio (SINR) at the output of the MMSE receiver were provided. Asymptotic expressions for the
spectral efficiency of the same model were then derived in [13]. DS-CDMA over flat-fading channels, i.e., K > 1,
ng = N and Hy = Iy for all k, was studied in [14], where the authors derived deterministic equivalents of the
Shannon- and n-transform based on the asymptotic freeness [11, Section 3.5] of the matrices WkPkW,';'. Besides, a
sum-rate maximizing power-allocation algorithm was proposed. Finally, a different approach via incremental matrix
expansion [15] led to the exact characterization of the asymptotic SINR of the MMSE receiver for the general
channel model (1). However, the previously mentioned works share the underlying assumption that the spectral
distributions of the matrices H;, and P converge to some limiting distributions or the matrices HkH',;' are jointly
diagonalizable.! Also, the computation of the asymptotic SINR requires the computation of rather complicated
implicit equations. These can be solved in most cases by standard fixed-point algorithms but a proof of convergence
to the correct solution was not provided. Finally, a closed-form expression for the asymptotic spectral efficiency is
missing, although an approximate solution which requires numerical integration was presented in [13].

The above works assume non-random communication channels and can therefore be only applied to the perfor-
mance analysis of static or slow fading channels. Turning the matrices Hj, into random matrices instead allows for
the study of the ergodic performance of fast fading channels with isometric precoders. The next section discusses

the practical applications in this broader context.

IThat is, there exists a unitary matrix V such that VHkH',;'VH is diagonal for all k.



B. Fading channel scenario (hypothesis (ii-b))

The second scenario considers the channel model (1) under assumptions (i), (ii-b), (iii)-(vi). In contrast to the
first scenario, the Hj; matrices are now assumed to be random. Thus, we aim at evaluating both the instantaneous
performance for a random channel realization and the ergodic performance of these channels. These are appropriate
performance measures in fast fading environments.

Of particular interest in this setting is the evaluation of the MIMO channel capacity under random beamforming.
In point-to-point MIMO channels, the ergodic channel capacity has been the object of numerous works and is by
now well understood [16], [17]. However, the ergodic sum-rate of more involved models, such as the MIMO MAC
[4] under individual or sum power constraints, has been studied only recently through the scope of random matrix
theory. As a by-product of this work, we will extend the results of [4] to the transmit covariance optimization in
the class of scaled identity matrices under sum power constraints. More fundamental is the capacity of MIMO
channels with co-channel interference, for which much less is known about the optimal transmission strategies [18],
[19]. The first interesting question relates to the problem of how many antennas should be used for transmission
and how many independent data streams should be sent, which are the same problem when the channels have
1.1.d. entries. With transmit antenna correlation, however, it makes a difference which antennas are selected for
transmission and the question of the optimal number of antennas to be used becomes a combinatorial problem. To
circumvent this issue, random beamforming can be used. The remaining question is then how many orthogonal
streams should be sent, using all available antennas. This is one of the key motivations of this article, as our results
enable the evaluation of the sum-rate of systems composed of multiple transmitter-receiver pairs, each applying

random isotropic beamforming.

In summary, regardless of the specific application scenario of the model (1), unitary precoders have gained
significant interest in wireless communications [20] (see also the recent work on spatial multiplexing systems [21]
and limited feedback beamforming solutions in future wireless standards [22]). Thus, the performance evaluation

of isometric precoded systems is compulsory and a field of active research [23].

C. Contributions

The object of this article is to propose a new framework for the analysis of large random matrix models
involving Haar matrices using the Stieltjes-transform method. This method is considered today as one of the most
practical and powerful tools for handling large random matrices in wireless communications research. Our analysis is
fundamentally based on a trace lemma for Haar matrices first provided in [8] and recalled in Lemma 5 (Appendix F).
Unlike previous contributions, we dismiss most of the practical constraints of free probability theory, combinatorial
and incremental matrix expansion methods, such as the need for spectral limits of the deterministic matrices in
the model to exist, or the need for the matrices H;gH,':I to be diagonalizable in a common eigenvector basis. The
expressions we derive appear to be very similar to previously derived expressions when the precoding matrices

W have i.i.d. entries instead of being Haar distributed (see in particular Remark 2). This allows for a unified



understanding of both models with i.i.d. or Haar matrices. As a consequence, we believe that the generality of
the theoretical results presented in this article, supported by a large scope of application contexts, might stimulate
further related research.
Before summarizing our main contributions, we introduce some definitions which will be of repeated use. The
central object of interest is the matrix By € (CNXN, defined as
K
By = > H,W,P,W{H].
k=1
We denote by Iy (c?) the normalized mutual information of the channel (1), given by [24]

_ L
N

We further denote by 7%(02) the SINR at the output of the linear MMSE detector for the jth component of the

1
In(0?) log det (IN + JQBN> (nats/s/Hz).

transmit vector x;, which reads [25]
—1
Yoy (0%) = prywi HY (B i) + 0°Iy) Hewy;

where By ;) = By — prjHpwgjwi HY! and wy; is the jth column of W;. We then define the normalized

sum-rate with MMSE detection as
K ng

Ry(0?) = % Z Zlog (1+ 7,?2(02)) )

k=1j=1
Depending on whether we consider the quasi-static channel scenario (ii-a) or the fading channel scenario (ii-b),
we will sometimes differentiate between I](\‘,l) (0?) and I[(\l;)(0'2), the mutual information under (ii-a) and (ii-b),
respectively. The same holds for (%) and Ry (0?).

The technical contributions of this paper are as follows: We derive deterministic approximations I (c?), '71% (02),
and Ry (0?) of In(0?), v]}.(6?), and Ry (0?), respectively, which are (almost surely) asymptotically tight as the
system dimensions N, IV;,n; grow large at the same rate (denoted simply N — oc0). These approximations, called
deterministic equivalents, are easy to compute as they are shown to be the limits of simple (provably converging)
fixed-point algorithms, they are given in closed form and do not require any numerical integration, and they require
only very general conditions on the matrices Hy, and Py.

We then present several applications of our results to wireless communications. First, we consider a cellular uplink
orthogonal SDMA communication model with inter-cell interference, assuming independent codes in adjacent cells
and quasi-static channels at all communication pairs. We then study a MIMO multiple access channel (MAC) from
several multi-antenna transmitters to a multi-antenna receiver under the fading channel scenario (hypothesis (ii-b)).
The transmitters are unaware of the channel realizations and send an arbitrary number of independent data streams
using isometric random beamforming vectors. The receiver is assumed to be aware of all instantaneous channel
realizations and beamforming vectors. Under this setting, we derive the optimal power allocation under individual
or sum-power constraints which can be computed by an iterative water-filling algorithm. Finally, we address the

problem of finding the optimal number of independent streams to be transmitted in a two-by-two interference



channel. Although the use of deterministic approximations in this context requires an exhaustive search over all
possible stream-configurations, it is computationally much less expensive than Monte Carlo simulations. Extensions
to more than two transmit-receive pairs and possible different objective functions, e.g. weighted sum-rate or sum-rate
with MMSE decoding, are straightforward and not presented.

For all these applications, numerical simulations show that the deterministic approximations are very tight even
for small system dimensions. In the interference channel model, these simulations suggest in particular that, at low
SNR, it is optimal to use all streams while, at high SNR, stream-control, i.e. transmitting less than the maximal
number of streams, is beneficial.

Our work also constitutes a novel contribution to the field of random matrix theory, as we introduce new proof
techniques based on the Stieltjes transform method in the context of random isometric matrices. Namely, we
provide in Theorem 7 (Appendix A) a deterministic equivalent Fiy of the empirical spectral distribution (e.s.d.)
Fn of By (see Appendix A for a definition of e.s.d.). That is, Fy is such that, as N — oo, Fy — Fy = 0, this
convergence being valid almost surely. Although deterministic equivalents of e.s.d. are by now more or less standard
and have been developed for rather involved random matrix models [5], [4], [1], results for the case of isometric
(Haar) matrices are still an exception. In particular, most results on Haar matrices are based on the assumption of
asymptotic freeness of the underlying matrices, a requirement which is rarely met for the matrices in the channel
model (1) of interest here. The approach taken in this work is therefore novel as it does not rely on free probability
theory [26], [27] and we do not require any of the matrices in (1) to be asymptotically free. Interestingly, a very
recent extension of free probability theory, coined free deterministic equivalents [28], has come as a response to
the present article in which free probability tools are developed to tackle the aforementioned limitations.

The remainder of this article is structured as follows: in Section II, we introduce the main results of this work,
the proofs of which are postponed to the appendices. In Section III, the results are applied to the practical wireless

communication models discussed above. Section IV then concludes the article.

Notations: Boldface lower and upper case symbols represent vectors and matrices, respectively. Iy is the size-N
identity matrix and diag(z1,...,xn) is a diagonal matrix with elements x;. The trace, transpose and Hermitian
transpose operators are denoted by tr(+), (-)T and (-)M, respectively. The spectral norm of a matrix A is denoted
by ||A||, and, for two matrices A and B, the notation A > B means that A — B is positive-definite. The notations
= and 2% denote weak and almost sure convergence, respectively. We use CN (m,R) to denote the circular
symmetric complex Gaussian distribution with mean m and covariance matrix R. We denote by R ; the set [0, 00)
and by C, the set {z € C,Im[z] > 0}. Denote by €(X,Y") the set of continuous functions from X C Cto Y C C,
by H(X,Y) the set of holomorphic functions from X C C to Y C C, and by 8(X) the class Stieltjes transforms

of finite measures supported by X C R (see Definition 1).



II. MAIN RESULTS

In this section, we present the main results of the article. All proofs are deferred to the appendix. We will distin-
guish the results for the quasi-static and the fading channel scenarios. Since we will make limiting considerations
as the system dimensions grow large, some technical assumptions will be necessary:

Al The notation N — oo denotes the simultaneous growth of N, N;, n; for all ¢, in such a way that 0 < ¢; =

I’\‘/— <1land 0 <liminfy¢; = % <limsupy ¢; < 0.
For all convergence results in this paper (as N — o0), the matrices Py = Py (N) € R}**"™ H;, = Hy(N) €
CN*Ne (a5 well as the R;; =Ry;(N) € CV*N under assumption (ii-a)), and W, = W (N) € CNEX1 ghould
be understood as sequences of (random) matrices with growing dimensions. Wherever this is clear from the context,
we drop the dependence on N to simplify the notations.

In order to control the power loading matrices as the system grows large, we need the following assumption:

A2 There exists P > 0 such that, for all k, limsupy ||Pg|| < P.

Under (ii-a), the channel gains will need to remain bounded for all large V:

A3-a There exists R > 0 such that maxy, limsupy||Ry|| < R, where we recall that Ry, = H,H!.

The equivalent constraint under (ii-b) is that the channel correlations remain bounded for all large NV:

A3-b There exists R > 0 such that limsupy ||Rg;|| < R for all j, k.

Due to some technical issues, it will be sometimes necessary to require the following condition:

A4 For all random matrices H, within a set of probability one, there exists M > 0 such that max;, | H,HY| <

M for all large N.
Assumption A4 is met in particular in the situation when there exists m > 0, such that for all £, j, N, Ry; € Ry
with R a discrete set of cardinality |Ry| < m for all N (see the arguments in [4]). For example, this holds true

for the scenario of a common correlation matrix at each receiver, i.e., Rx; = Ry, are equal for all j.

A. Fundamental Equations

We first introduce the fundamental equations for model (1). These equations provide the core deterministic
quantities that will define the deterministic equivalents for I (o?), ’yi]}] (02), and Ry(0?).

Theorem 1 (Fundamental equations under (ii-a)): Consider the system model (1) under assumptions (i), (ii-a),
(iii)-(vi). Let o2 > 0. Then the following system of implicit equations

C_lk(0'2) = %tr P, (ak(0'2)Pk + [Ek — ak(o2)dk(02)]1nk)_l

—1

K
1 _
ap(o?) = ¥ tr Ry Zlaj(a2)Rj + 0%y 4
=
with k € {1,..., K}, admits a unique solution such that, for all k, ay(c?),ax(c?) > 0, and 0 < ag(0?)ag(0?) <

ciCr. Moreover, this solution is obtained explicitly by the following fixed-point algorithm

a0 = Jim ¥ (0). (o) = lim ) (0?)



where, for k € {1,..., K},

-1

K
al” (0?) = —trRk Z =D (R, + oIy

-1
" (0%) = N tr Py (a,gt) (0*)Py + [k — af (0%)a" ™ (621, )

with arbitrary initial values a\"% (62) € [0, cxén/a\” (02)) and a\” (62) = 1.

Proof: The proof is provided in Appendix A. [ ]

Remark 2: Assume ¢, = 1 for every k (e.g., when Hj is a Toeplitz matrix as in the CDMA case). Then,
extending every P, € C"* ™" into N x N matrices filled with zeros, we can assume c; = 1 without affecting the
final result. In this scenario, the fundamental equations (1) under (ii-a) become

ay(o?) = %tr P (ak(a2)Pk +[1- ak:(02)(711&‘72)]11\/)71 ®)

-1

K
1
ar(o?) = i tr Ry, E a;j(c)R; — 21y
j=1

This can be compared to the scenario where the matrices Wy, instead of being Haar matrices, have i.i.d. entries of
variance 1/N. The fundamental equations of this model were derived in [4, Corollary 1] and are given as follows:
B 1 -1
a,(0%) = ~ P (ap(c®)Py, + Iy) (6)
-1

ai(o 3 = —trRk Za R+UIN

such that a,(0?) is positive for all k. The scalars gk(az) and a,(o?) are also defined as the limits of a classical
fixed-point algorithm. The only difference between the two sets of equations lies in the additional term —aparIy

in (5), not present in (6).

We now turn to the fundamental equations in the fading channel context.
Theorem 2 (Fundamental equations under (ii-b)): Consider the system model (1) under assumptions (i), (ii-b),

(iii)-(vi). Let o2 > 0. Then, the following system of implicit equations

bo(02) = %upk (bk(az)Pk + [ek — bi(0)bi(0)] Ink)_l
Ny,

1 Crj(0?)
be(o?) = 5 Jz::l 1+ bk (02)Ckj(0?)

-1
K N

]. Rk» 2 .
Cei(0?) = —tRy; § § J o | , j€{1,...,N
k(07) = R N &< 11+bk 02 )Crj(02) N { k)

with k € {1,..., K}, admits a unique solution satisfying (;(02), bx(c%), bx(0?) > 0 and 0 < by (0%)bx(0?) < cxey,

for all k, j. Moreover, this solution is given explicitly by the following fixed-point algorithm

br(0?) = lim g{”(0%), br(0?) = lim b (0%), (ij(0?) = lim ¢ (0?)

t—o0 t—o0 t—o00



where
5D (62) = 1im bV (52 ) (52) = lim & (52
bk (U ) liglo bk (‘7 )7 Ck (U ) liglo ij (U )

1 Ny, C(t)( )
N =145 (02)¢) (02)

- 1 _ —(t—
b (02) = Py (b(t Y(e?)Py + [ak_b;; D(e2)pt! ”(02)} Ink>

-1

b (0%) =

-1

K N b(t 1)

(t.0) o®)Ry;
0 = i (300 -
Nk = 11—|—b(t 1( Q)CIE?l 1)(02)

+0'21N

with the initial values (,(C?O) (0%) =1/02, 5,(;’0) € [O,Ckék/bg_l)(ﬂ)) and béo) (0%) =1 for all k, j.
Proof: The proof is provided in Appendix D. [ ]

B. System performance
The following results are all based on the fundamental equations of Theorem 1 and Theorem 2.
Theorem 3 (Mutual information under (ii-a)): Consider the system model (1) under assumptions (i), (ii-a), (iii)-
(vi), and denote, for o2 > 0,
(a) 1 1
Iy (0?) = Nlogdet (IN + JQBN> .
Assume Al, A2, and A3-a. Then, as N — oo,
EIM(0%) - I\"(0?) — 0

1{(0?) = I (0%) 25 0

where
@ 1 1 K
Fla), 2y _
IN (0’ ) = N log det (IN + ; kil akRk>

K

1

+ Z |:N log det ([Ek — akdk]lnk + akPk) + (1 — Ck)ék log(ék - akdk) — Ck log(ék) (7)
k=1

with ay = ag(0?), a, = ax(o?), k € {1,..., K}, given by Theorem 1.
Proof: The proof is provided in Appendix B. [ ]
Theorem 4 (Mutual information under (ii-b)): Consider the system model (1) under assumptions (i), (ii-b), (iii)-
(vi), and denote, for o2 > 0

1 1
I](\?)(O'Q) = Nlog det (IN + UQBN> .

Assume Al, A2, A3-b, and A4. Let by = by(0?), by, = bi(0?) and (x; = (x;(0?) for all k,j be defined as in

Theorem 2. Then, as N — oo,



10

K K
I_](\l;)(o-Q) — Z ogdet Ck — bkgk} Ink + kak —l— Z 1 — Ck Ck 1og(ck — bkbk) — Ck log(ck)
=1 k=1
1 K N bR K K Ng
e kR j .
Vn(0%) = + log det 1N+——Zzl+bk<k - b bk+NZZIOg (1+ brdey) - ®)
k=1j=1 k=1 k=1 j=1
Proof: The proof is provided in Appendix E. [ ]

Before moving to approximations of the SINR at the output of the MMSE receiver, we provide hereafter a
mutual information maximizing power allocation scheme of practical interest in multiple access channels. We will
in particular differentiate between the scenario (I) in which each transmitter has its own power allocation policy,
i.e. the total power transmitted across its antennas cannot exceed a given threshold, and the scenario (1) in which
the total power transmitted across all antennas is less than a threshold.

Proposition 1 (Optimal power allocation): Consider the system model (1) under assumptions (i), (ii-b), (iii)-(vi).
Let 02 >0and I (b)(O'Q) be defined as in Theorem 4 and let P, Py, ..., Px > 0. Then, the solution to the following

optimization problem:

(P1,...,P}) = arg pnax In(0?)

P K
%trPk < P, Vk (I)
s.t.
SK, LuP <P (1)
is given by
132 = Dlng
where
P (1)
I Ck ciC +
(r-g+oe) an
for all k, with b = b}(c?),b; = bj(c?) given by Theorem 2 when P, = P}, and A in (1) is chosen such that
O k=17 —trP* P. Moreover, let

(P%,...,P%) =arg _max Ely(c?)

15, PK

st { " 9)
K 1
ket a2 uPp <P (II)
and assume Al, A2, A3-b, and A4. Then,
EIY(P},... . Py) — IV (P},... . Pk) *50.

Proof: The proof is provided in Appendix E. [ ]
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Remark 3: The optimal power allocation matrices P} under a sum-power constraint (1) can be computed by

the iterative water-filling algorithm below. Although we cannot prove the sure convergence of this algorithm (see

[7] for a related discussion), we know that if it converges, it achieves the correct solution. In our simulations, we

could not create a case in which it did not converge.

Algorithm 1 Iterative water-filling algorithm

1: Lete > 0,¢t=0 and 151(3) = Py, for all k&, j.

2: repeat

3:  For all k, compute l_)gf) and b,(:) according to Theorem 2 for the matrices P; = diag (p;f;)

+
4:  For all k, j, calculate ﬁ](ffl) = <l_)](f) — % + C’CAC’“) , with A such that Zkl,(zl ﬁ >
k

50 t=t+1

6: until max;y, ; |]3](;)j - ﬁ](ctgl)\ <e€

ng  S(t+1) P.

i=1Pk;

Remark 4: The optimal power allocation also shows that sending as many independent data streams as transmit

antennas is optimal to maximize the ergodic mutual information. In this scenario, P; becomes a scaled identity

matrix. The precoder Wy, is now of no practical use and we fall back to a standard MAC channel model. In

this case, Proposition 1 can be seen as the optimal power allocation in the class of scaled identity matrices. This

optimality is no longer valid in the case of interference channels as will be discussed later on.

Theorem 5 (SINR of the MMSE detector under (ii-a)): Consider the system model (1) under assumptions (i),

(ii-a), (iii)-(vi) and, for o2 > 0, denote

N(a)

-1
Vij (%) :pkjWEjH;';' (Bnkjy +0°In) Hpwg;.

Assume Al, A2, and A3-a. Then, as N — oo,
N(a _N(a a.s,
'ij( )(02) - 'ij( )(02) » 0

where
_N(a), 2 Prjag
. o = —
ka:] ( ) Ek; _ akak

with a; = ax(0?) and @y = ax(0?) defined in Theorem 1.
Proof: The proof is provided in Appendix C.
As an (almost immediate) corollary, we have

Corollary 1: Under the conditions of Theorem 5, denote
K Nk

R 0% = 330 log (1475 (0%)

k=1 j=1

(10)
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Then,
(@) 2y _ pla), 2
ERy (o) Ry (c°) =0

R (%) — R (0?) 2% 0

where
K ng
R(a) ZZlog (1+’ykj (o ))
k 15=1
Proof: The proof is provided in Appendix C. [ ]

Theorem 6 (SINR of the MMSE detector under (ii-b)): Consider the system model (1) under assumptions (i),
(ii-b), (iii)-(vi) and, for o2 > 0, denote

N(b -1
’ij( )( %) = pkjW;':jH;': (Byk,j) +0°In)  Hpwy;.

Assume Al, A2, A3-b, and A4. Then, as N — oo,

b b a.s.
Yoy (02) = A (0%) 25 0
where

_N() _ Drjb
’ij ( ) Cr — kak;

with by, = by.(0?) and by, = by.(c?), given by Theorem 2.
Proof: The proof is provided in Appendix E. [ ]
Similar to the quasi-static channel scenario, we also have the following corollary.

Corollary 2: Under the conditions of Theorem 6, denote

K ng

(b) (b)
Ry NZZlog(lJr’ykJ (o ))
k=1 j=1
Then,
ERY (62) = RY(6) = 0
b b
RY(0%) = R (%) *5 0
where
K ng
N(b
ZZIOg (1 + Vi )( ))
k 15=1
Proof: The proof is provided in Appendix E |

Remark 5: Under scenario (ii-b), for the special case K=1, P; =1,,, Ny =n; = N and Ry; = Iy for all j,
the set of implicit equations in Theorem 2 reduces to:

1
1—g(0?)b(0?) + g(0?)’

¢(0?) 1

1+ b(0?)¢(0?)’

b(o?) = 9(0%) = ") = —303

_ b)) 2’
50202 T 7
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Note that

0=1

1—g(a®)b(0?) + g(o?) T T ONT T2 o 2NE( A2\ (1 2\F( 2 a0
- 1— g(c2)b(02) + g(o2) =1 [1 g(a”)b(o )] b(c*) — g(o”)b(c®) = [1 g(c?)b(o )] (1 —b(c?))

which implies b(c?) = 1 since 1 — g(c?)b(c?) > 0 by definition. Thus, the last equations further simplify to

¢(e?) 1

RGO

2
g(o%) —
@ T 0

which has a unique solution satisfying ¢(c?) > 0 and that can be given in closed-form:

i s
((0%) = ——5—
Note that ((o?) is the Stieltjes transform of the Maréenko-Pastur law with scale parameter 1 [11, Equation (3.20)]
evaluated on the negative real axis. This result is consistent with our expectations since By = Z;Z!!, where
YARRS CN*N has ii.d. entries with zero mean and variance 1 /N. Moreover, the expression of the normalized

asymptotic mutual information as given in Theorem 4 reduces to

_((e?)
1+ ¢(e?)

which is consistent with the asymptotic spectral efficiency of a Rayleigh-fading N x N MIMO channel [29, Equation

IP(0%) = Vi (0®) =log (1+((0?) +1/0?)

(9)] (see also [11, Section 13.2.2]). Equivalently, the asymptotic SINR of the MMSE detector and the associated

normalized sum-rate can be given as (cf. [29, Proposition VI.1]):

P =¢0?),  RY(0%) = log(1 +(0?).

Remark 6: Technically, the results obtained for the quasi-static scenario unfold from the Stieltjes transform
framework very similar to [4], [5]. However, some new tools are introduced which simplify the analysis made in
these papers, such as the method of standard interference functions to prove existence and uniqueness of the derived
deterministic equivalents. As for the results in the fading channel scenario, they unfold from the conjugation of the
results obtained in the quasi-static scenario and the results obtained in [1] (recalled in Appendix G) for a channel
model similar to (1) but without the presence of the W, matrices. The central tool to allow this conjugation is
the Tonelli (or Fubini) theorem, Lemma 9, on the product probability space engendering both the W and Hy,

matrices.
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Fig. 1. Three-cell example: The BS in the center cell decodes the n streams from the UT in its own cell while treating the other signals as

interference.

III. NUMERICAL RESULTS

The results of Section II enable a simple characterization of different performance measures of isometric precoded
multi-user systems with large dimensional quasi-static or fading channels, some of which were introduced in

Section L. In the following, we apply these results to three practical examples.

A. Uplink orthogonal SDMA with inter-cell interference

In this first example, we apply the theoretical results of Section II under the quasi-static channel scenario
(hypothesis (ii-a)) to the uplink channel of an orthogonal SDMA scheme with inter-cell interference. We consider
a three cell system with one active user terminal (UT) per cell. The UT in cell %k is equipped with N transmit
antennas. We focus on the central cell, whose base station (BS) is equipped with /N antennas, and assume that the
the signals received from neighboring cells are treated as noise. This setup is schematically depicted in Figure 1.

The received signal y at the BS reads

y = HQWQPZ%XQ + \/alelP%xl + \/&H3W3P§X3 +n

||>

z

with H; € CY*Y' the channel matrix from UT i to the BS, x; ~ CN(0,1,,) the transmit symbol of UT i,
W, € CN*™ the isometric precoding vectors composed of n; orthogonal streams and 0 < « < 1 an inter-cell
interference factor. The vector z € C” combines the inter-cell interference and the thermal noise. The covariance

NXN
(CX

matrix Z € of z is given as

Z = Ezz" = o [H;W,; P, W'HY + H;W;P;WHHY] + 0?1y

We assume an SDMA system with channel matrices Hj, € CNV N generated as realizations of a random standard
Gaussian matrix with entries of zero mean and variance 1/N}. For simplicity, we further assume that each UT uses

ny = n different transmit signatures to which it assigns equal unit power, i.e., Py = I,,. Under these assumptions,
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—— deterministic equivalent

15H simulation
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-5 0 5 10 15 20 25 30
SNR [dB]

Fig. 2. Mutual information I (02) versus SNR for different numbers of transmit signatures n, N = 16, N; = 8, P; = I,,, « = 0.5. Error

bars represent one standard deviation on each side.

the mutual information Iy (c?) of the central cell when the interference is treated as noise is given by

1
In(0?) = 5 logdet (IN + Z*%HQWQWQHQZ*%)

3 3
1 1 M 1 1 H
= N log det (IN + ; kg_l HkaWk Hk> - N log det IN + ? E HkaWk Hk

=

According to [30], the spectral norm of HkH,';' is almost surely uniformly bounded. For such channel realizations,
we are therefore in the conditions of Theorem 3. As a consequence, In(0?) — In(0?) 23 0, with Ty defined in
Theorem 3 (termed I_](\?)). An approximation of the SINR at the output of the MMSE receiver for the jth entry
of xo can also be computed directly by Theorem 5. We assume « = 0.25, N = 16, N; = Ny = N3 = 8 and
define SNR = 1/ 2. We consider a single random realization of the matrices Hj, which is assumed to be static
and therefore deterministically known.

Figure 2 depicts Iy (0?) and the deterministic equivalent I (c2) versus SNR for different values of n € {1, 4,8},
scaled to bits/s/Hz instead of nats. We observe a very accurate fit between both results over the full range of SNR and
n. This validates the deterministic approximation of the mutual information for systems of even small dimensions.

In Figure 3, we compare the per-receive antenna sum rate Ry (o?) with single-stream MMSE-detection to the

associated deterministic equivalent Ry (02), for the same system conditions as in Figure 2. The sum rate Ry (o?)

is explicitly given by

n

R (o) = % 3 log (1+17(02)
k=1

with 7Y (0?) defined in (10) (termed fyg(a)(a2)). As for Ry (c?), from Theorem 5, it reads

Ry(0?) = cafa log (1 + o — aiz(f(fazj)dz(ffz))
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Fig. 3. Sum rate Ry (02) at the output of the MMSE decoder for user 2 versus SNR for different numbers of transmit signatures n, N = 16,

N; =8, P; =1,, a = 0.5. Error bars represent one standard deviation on each side.

with ay(0?) and @y (0?) defined in Theorem 7. Similar to the previous observations, the deterministic equivalent
provides an accurate approximation for all values of SNR and n, although the precision is slightly less than for the

mutual information in Figure 2.

B. Multiple access channel

In this and the following example, we apply the theoretical results of Section II under the fading channel scenario
(hypothesis (ii-b)). We consider a MAC from three transmitters to a single receiver as shown in Figure 4. The channel
from each transmitter to the receiver is modeled by the Kronecker model (see Remark 1) with individual transmit
and receive covariance matrices Ty and Ry and we assume additionally a different path loss a, > 0 on each link.

The received signal vector y for this model reads
2 1 1 1
y=> VarRZZT;W,PZx) +n
k=1
where x; ~ CN(0,1Iy,) and n ~ CN(0,02Iy). We create the correlation matrices according to a generalization

of Jakes’ model with non-isotropic signal transmission, see e.g. [31], [32], [33], where the elements of T} and Ry,

are given as

1 /9 <i27r . )
Tyl = —4———+ exp | ——d,;" cos (0) ) df
[ k]z] efﬁfx _ elttilljl 9:‘;‘? A J ( )

1 O i2
Ry, = 7/0 exp (I;Tdfj cos (9)) do (11)

 ark rk "
Omax — emin in

where (03{;,0,2;5,() and (0;1’1];,0;’;;) determine the azimuth angles over which useful signal power for the kth

transmitter is radiated or received, dfjk and d;; are the distances between the antenna elements ¢ and j at the
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Fig. 4. MIMO MAC from three transmitters (k = 1, 2, 3) with [N;, antennas to a receiver with N antennas. Each transmitter sends nj, streams

with precoding matrix Wy, and power allocation Py, over the channel /a;Hjy,.

TABLE I

SIMULATION PARAMETERS FOR FIGURE 5: N = 10, d}; = 8A(i — j)

t,k t,k rk .k t,k
k | Ng ng 0 Ormax 0 Omiax dij (&2

min min

1] 10 8 0 w/2 —=m/4 0 4xi-j) 1

2| 5 4 —x/4 =4 0 /3 AAG—j) 1/2

305 4 —x/2 0 —w/3 w/3 4Ai-j) 1/2

kth transmitter and receiver, respectively, and A is the signal wavelength. We assume uniform power allocation for
all k, and define SNR =1/ 2. All other parameters are summarized in Table 1.

Figure 5 compares the normalized mutual information Iy (c?) and the normalized rate with MMSE decoding
RN(O'Z), averaged over 10,000 different realizations of the matrices H; and Wy, against their deterministic
approximations Iy (02) and Ry (c?). Although we have chosen small dimensions for all matrices (see Table I), the
match between both results is almost perfect. Also the fluctuations of I (0?) and Ry (0?) are rather small as can be
seen from the error bars representing one standard deviation in each direction. The figure further illustrates the gains

of optimal power allocation with a sum-power constraint (II), where we have chosen P = Zizl étrlnk =3.

C. Stream-control in interference channels

Our last example considers a MIMO interference channel consisting of two transmitter-receiver pairs as depicted

in Figure 6. The received signal vectors y1,y2 € C™ are respectively given as
1 1

yi=H W Px; + HiaWyPJixs +n;
1 1

y2 = HaWi1P{x; + HpoWoPJixo + no

where H,j, € CN* Nk W, € CNexNe xr ~ CN(0,Iy,), Py € Rf’“XNk satisfying NiktrPk =1, and n; ~

EeN(0,0%Iy), for g,k € {1,2}. Assuming that the receivers are aware of both precoding matrices and their respective
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Fig. 5. Comparison of the average normalized mutual information Ix;(0?) and the normalized rate with MMSE decoding R (02) with their

deterministic approximations I (o?) and Ry (02). Error bars represent one standard deviation in each direction.
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Fig. 6. Interference channel from two transmitters with Ny (k = 1,2) antennas, respectively, to two receivers with /N antennas each. Each

transmitter sends nj independent data streams to its respective receiver.

channels but treat the interfering transmission as noise, the normalized mutual informations between x; and y1,
and x5 and y», are respectively given as
2
2 1 1 HyyH 1 1 HyyH
I(0%) = 47 logdet | Iy + — I;HlkaPkaHlk — 5 logdet ( Iy + — Hi, WP, WHHT,

_ L
N

1

1
I(o?) — —logdet Iy + —Hyy W, PyWHHY )
N o2

2
1

logdet | Iy + — ]; Ho WP, WHHE,

We adopt the same channel model as in Section III-B, where the channel matrices Hy, are given as

1 1
Hgr = RqZqulei
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where Zg), € CV*M have independent CN(0, 1/N) entries and T}, and R, are calculated according to (11). We
assume that no channel state information is available at the transmitters, so that the matrices Py, are simply used

to determine the number of independently transmitted streams:

Ny,
P, = —diag [ 1,...,1,0,...,0
Nk —— N———

Nk Nk—nk

We will now apply the previously derived results to find the optimal number of streams (n},n3) maximizing the

normalized ergodic sum-rate of the interference channel above. That is, we seek to find

(n7,n3) = maxE [11(02) +IQ(02)]

ni,n2

S.t.lSTLlSNh 1 <ng < Ny

where the expectation is with respect to both channel and precoding matrices. Due to the complexity of the random
matrix model, this optimization problem appears intractable by exact analysis. At the same time, any solution based
on an exhaustive search in combination with Monte Carlo simulations becomes quickly prohibitive for large N7, Na,
since N7 X Ny possible combinations need to be tested. Relying on Theorem 4, we can calculate an approximation
of E [I 1(0?) + 12(02)] to find an approximate solution which becomes asymptotically exact as N1 and Ny grow

large. Thus, we determine (7}, 75) as the solution to

(A1, 73) = max Ii(0%) + Io(0?)
ni,n2

S.t.lS'leSNh ].SnQSNQ

where I (02), I>(0?) are calculated based on a direct application of Theorem 4 to each of the two log-det terms
in I1(0?) and I5(0?), respectively. The optimal values (7if,7%) are then found by an exhaustive search over all
possible combinations. Although we still need to compute N7 X Ny values, this is computationally much cheaper
than Monte Carlo simulations.

Figure 7 and Figure 8 show the average normalized sum-rate E [I1(c%) + I(c)] and the deterministic approxi-
mation [ (0%) + I5(02), by Theorem 4, as a function of (ny,ny) for the simulation parameters as given in Table II.
We have assumed SNR = 0dB and SNR = 40dB in Figure 7 and Figure 8, respectively. In both figures, the
solid grid represents simulation results and the markers the deterministic approximations. We observe here again
an almost perfect overlap between both sets of results for all values of (n1,n2). The optimal values (n},n3) and
(a3, n%) coincide for both values of SNR and are indicated by large crosses. At low SNR, both transmitters should
send as many independent streams as transmit antennas, i.e., n; = no = 10. At high SNR, one transmitter should
use only a single stream (ny = 1) and the other transmitter ny = N — 1 = 9 streams. These results are in line with
the observations of [19].

Obviously, the last result is highly unfair and better solutions can be achieved by using different objective
functions, such as weighted sum-rate maximization. Also optimal stream-control with MMSE decoding could be

carried out in a similar manner. Although we would still need to perform and exhaustive search over all possible
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TABLE I

SIMULATION PARAMETERS FOR FIGURE 7 AND 8: N = 10, d;k =4X(i — j), dﬁjk =4\(i — j)

t.k t,k g,k g,k
(q7 k) N 0 Ormax 01 erTna(g(

min min

(1) | 10 0 /2 —m/4 0

12 | 10 —x/2 0 0 /4

@1 | 10 0 /2 —m/3 0

@2 | 10 —x/2 0 0 /3

combinations of ny, nq, the computations based on deterministic equivalents are significantly faster than simulation-
based approaches. The development of more intelligent algorithms to determine (75, 75) is outside the scope of

this paper and left to future work. The extension to more than two transmitter-receiver pairs is straightforward.

IV. CONCLUSION

We have studied a class of wireless communication channels with random unitary signature or precoding
matrices over quasi-static and fast fading channels and with multiple users or cells. We have provided deterministic
approximations of the mutual information, the SINR at the output of the MMSE receiver and the associated sum-rate,
which are asymptotically accurate as the system dimensions grow large. Simulations in the contexts of multi-cell
SDMA, MIMO-MAC, and interference channels verify the accuracy of the approximations even for systems of
small dimensions. This work also constitutes a novel contribution to the field of random matrix theory, which can

be extended to more involved communication models featuring isometric precoders.
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Fig. 7. Sum-rate versus number of transmitted data-streams (n1,n2) for SNR = 0dB and all other parameters as provided in Table II. Solid
lines correspond to simulation results, markers to the deterministic approximation by Theorem 4. As expected, both transmitters should send

the maximum number of independent streams.
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Fig. 8. Sum-rate versus number of transmitted data-streams (n1,n2) for SNR = 40dB and all other parameters as provided in Table II. Solid
lines correspond to simulation results, markers to the deterministic approximation by Theorem 4. As co-channel interference is dominant there

is a clear gain of limiting the number of transmitted streams.
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APPENDIX A

SPECTRAL APPROXIMATION OF B IN THE QUASI-STATIC MODEL

This section is dedicated to the proof of Theorem 7 introduced below. This theorem is the cornerstone result for
all other results derived in this article. The proof is based on the Stieltjes transform method (documented extensively
in [34], [11]).

We first remind some elementary notions needed in the following. For a Hermitian matrix A € CV*N with

eigenvalues \; < ... < Ay, we denote by FA the empirical spectral distribution (e.s.d.), defined as

N
1
FA(L) = N D 1< (®).
=1

We now recall the definition of a Stieltjes transform.
Definition 1: Let F be the distribution function of a probability measure with support S. Then the Stieltjes

transform of F', denoted m g, is the function

mpg : C \ S —C
1

z »—>/ dF(t).

t—2z

In particular, for FA the e.s.d. of a Hermitian matrix A,

(2) = = tr (A — 2Ly) "

m z) = —tr — 2z

FA N N

which will often be denoted m 4.
In the course of the derivations, some defining properties of the Stieltjes transform will be needed. These are
provided in Lemma 1 (Appendix F).

In the remainder of this section, we will prove the following result:

Theorem 7 (Convergence in distribution): For i € {1,...,K}, let P; € C"”™ be a Hermitian nonnegative
matrix with spectral norm bounded uniformly along n; and W, € CNixmi pe n; < N; columns of a unitary Haar
distributed random matrix. Consider H; € CYN*Ni 3 random matrix such that R, £ HlHlH S CN*N has uniformly

ni _ N

bounded spectral norm along N, almost surely. Define ¢; = 3+ and ¢; = 5 and denote

K
By =Y H,W,P,W/'H/
i=1
and F'y the e.s.d. of By.
Then, as N — oo, with ¢; satisfying 0 < liminf¢; < limsupé¢; < oo and 0 < ¢; < 1 for all 4, the following

limit holds true almost surely

FN7FN2>0

where Fyy is the distribution function with Stieltjes transform 7y (z) defined by

K —1
mN(Z) = %tl‘ (Z éi(Z)Ri — ZIN> (12)

i=1
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where (z = &1(2), ...,z — ex(z)) € H(C\R™,C)¥ are the unique solutions of the following system of equations
1 _
i(z) = N trP; (e;(2)P; + [ — €i(2)&(2)]Ln,) "
-1
1 K
ei(z) = N trR; Zéj(z)Rj — 21N (13)
j=1
which verify the conditions (i) (z — e1(2), ...,z — ex(z)) € S(R*)X and (ii) for z real negative and for all i,

0< el(z) < ciéi/éi(z).

Moreover, we have that for each real negative z,

éi(2) = lim &"(2), &"(z) = lim &""(z)

t—o00

and, for k£ > 1,
-1

N J
Jj=1
1 o —1
& (2) = 3 P (e (P + [ — el (2)e TV ()L, )

with the initial values e( ’ )( )€ [O,ciéi/egt)(z)) and e(o)( ) =1 for all 1.

Remark 7: Denoting a;(0?) = e;(—0?) for 0% > 0, we see immediately that Theorem 7 encompasses Theorem 1

as a special case.

We first provide an outline of the proof for better understanding. The full proof will be given in Appendix A-B.

A. Sketch of the proof
As a first step, we wish to prove that there exists a matrix F of the form F = Zfil fiR;, with f; € C, such
that, for all nonnegative A with ||A|| < co uniformly on N,
1tA(B Iy)™" 1tA(F Iy) ' 2%0.
N T N — zIN N r ZIN

Taking A = R; and denoting f; 2 % trR; (By — 2Iy) ", we will have in particular that

-1

f——trR ij i 250.

Contrary to classical deterministic equivalent approaches for random matrices with i.i.d. entries, finding the
approximation + tr A (F — 21 N)fl for +tr A (By — 2Ix) " is not straightforward. The reason is that, during

the derivation, terms such as N - tr (Iy, - WWH HY (By — 21y) " L H, with the (In, — W;WH) prefix will

naturally appear and will be requlred to be controlled. We proceed as follows.

o We first denote for all 7, §; = tr (I N, — W, WH) HH (By —2In)~ HZ- some auxiliary variable. Then
we prove

1 —_ a.s.
fi = 5 trRi (G — 2ly) b2,
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with G = Z —1 G;R; and

Uz

_ ]. 1 Dii
g; = S -~
(L= e+ 5% 2t N ; 1+ pud;’

where p;; denotes the /th eigenvalue of P;, and §; is linked to f; through

I~ 0 as,
i— | —c)edi+ =) ———~ | —0.
! <( e +Nz—11+p”6i>—>

o This expression of g;, which is not convenient under this form, is then shown to satisfy

_ 1 - Dit — 1 _ _ —1 a.s.
9i — ———— =0i — = trP; (fiP; + Ci_figilni — 0,
N =& +pufi — figi N ( : )

which induces the 2K -equation system

1

fi—NtI‘Ri —ZIN — 0

qu

_ 1 _ _ _ —1 as,
9~ trP; (3:;P; + [¢i — figilln,) = 0.
o These relations are sufficient to infer the deterministic equivalent, but will be made more attractive for further

considerations by introducing F = Zfil fiR;, and proving that
-1

fi — —trR ij 20y 250

_ 1 _ _ _
fi— Nter' (fiPi+[ci — fifilln,) '=o,
where, for z < 0, f; lies in [0, c;&;/f;) and is now uniquely determined by f;.

This is the very technical part of the proof. We then prove in a second step the existence and uniqueness of a

solution to the fixed-point equation
-1

——trR Zej — 21N =0

1 _
e; — N trP; (éiPi + [E,’ — 6iéi]Ini) t_ 0,

for all finite N, z < 0 and for &; € [0,¢;&/f;). This unfolds from a property of so-called standard functions. We

will show precisely that the vector application h = (hq,...,hx) defined for z < 0 by
-1

hi:(x1,...,x )+—>—trR ij —z2IN

Z; being the unique solution to

1 _
T; = N trP; (.szL + [Ei — xifi]lm) !

lying in [0, ¢;¢;/x;), is a standard function. It will unfold, from [35, Theorem 2], that the fixed-point equation in
(e1,...,ex) has a unique solution with positive entries and that this solution can be determined as the limiting

iteration of a classical fixed point algorithm.
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The last step proves that the unique solution (e, ...,en) is such that
a.s.
ei — fi — 0,

which is solved by standard arguments. This will entail immediately by classical complex analysis arguments that

mu(z) —my(z) =0 for all z € C\ R", form which the almost sure convergence Fyy — Fyy = 0 unfolds.

B. Complete proof

We will prove Theorem 7 by assuming first that, as N grows, the ratios ¢; = &+ for i = {1,..., K} satisfy

limsupe; < 1.
N
We also assume for the time being that for all 7, || R;]| is uniformly bounded surely. The cases where lim sup y ¢; = 1

for a certain 4, or where ||R;|| is uniformly bounded only in the almost sure sense, will be treated subsequently.

1) Case max;limsupy ¢; < 1:

Step 1: Convergence
In this section, we take z < 0, until further notice. Let us first introduce the following parameters. We will

denote P = max;{limsup ||P,]|

}, R = max;{limsup ||R;|

}, ¢+ = max;{limsup¢;}, ¢ = min;{liminf ¢;} and
¢4 = max;{limsupc; }.

We start with classical deterministic equivalent techniques.

Let A € CV*" be a Hermitian nonnegative definite matrix with spectral norm uniformly bounded by A. Recall
the definition R; = HZH? Taking G = Z]K:1 g;R;, with gy,..., gx scalars left undefined for the moment, we

have

1 1
¥ trA(By — 2Iy)"" — v tr A(G — 2Iy)"*

K
a) 1
@ i ABy —2IN)7! ZH (-W,P,WH 4 g,Iy,) HY(G — 21y) 7!
=1
K 1 1 K n;
® Zgiﬁ tr A(By — 2Iy) ' Ri(G —2Iy) 7 - S puwlHN(G — 21y) " ABy — #Ty) ' Howy
=t i=1 1=1

1 & pawHHE (G — 2In) TP A(Biyy — 2In) " Hiwyg
T

— — 1+ pawHHI (B ) — 2In) " Hiwy

(14)
with w;; € CV' the Ith column of W5, p;1, ..., pin, the cigenvalues of P; and B, = By — puH;wwiiH,

;‘}, while

The equality (a) follows from Lemma 2, () follows from the decomposition W, P, WH = > p,w;w
the equality (c) follows from Lemma 3.

The idea now is to infer the values of the g; such that the differences in (14) go to zero almost surely as N
grows large. We will therefore proceed by studying the quantities WZH'{'(BW) —2In)"'H;w;; and WHH?(G —

zIN)*lA(B(i)l) — 2In)"'H;w;; in the denominator and numerator of the second term in (14).
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For every i € {1,..., K}, denote

1 _
5 A Nt (In, - W,WHH By —2Iy) ' H, . (15)
3 (2

Introducing the additional term (G — 2Iy) ! A in the argument of the trace in §;, we denote

1

N (In, - W,WH) H,; (G - 2Iy) "' A(By — 2Iy) ' H; .

B2

Under these notations, according to Lemma 5, the quantity wleZH (Biyy — 21 ~) " 'H,;wy; is asymptotically close
to §;, and, if G is independent of wy;, the quantity wijH (G — 2Ix) ' A(B(; ;) — 2Iy) " H;w;; is asymptotically
close to 3;.

We also define

1 _
fi & ~ TRi By — 2Ly) >0

for any z < 0. Remark first, from standard matrix inequalities and the fact that w" Aw < ||A|| for any Hermitian
matrix A and any unitary vector w, that we have the following bounds on §;, 5; and f;,

@s;,&_Rﬁ ﬁ_f

From Lemma 3, we have that
(1—c¢)ed = fi— ZW HY (By — 21n) " Hywy

1 i Wz’lHi (B(i,l) — ZIN)il Hiwil

oy 1+ pawHHY (B — 2Ix) Hiwy {10
Since z < 0, §; > 0, so m is well defined. By adding the term — Zl'“l 1+p 775 on both sides, (16) can be
re-written as
R
(1 —c)edi — fi+ z;m
LN B § wHHH (B, — 2In) " Hywy,
; |14 padi 1 + pawhHHY (B )y — zIN)‘1 Hiwil]
i | 5, —wHHY (B, — 2In) " Hiwy
N | (L+padi) (1 + puwHHY (B )y — ZIN>_1 Hi“’il)
We now apply Lemma 5 and Lemma 7, which together with 6; < R|z|~! ensures that
IR S YS!
E [[(1—c)&di — fi + Z;m <845 (17)

for some constant C' > 0. This determines the asymptotic behaviour of §; and, thus, the asymptotic behaviour of

the quantity wHH! By — 2In)"'H;w;; in the denominator of (14).
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We now proceed similarly with 3; as with ¢;. Assuming first that G is independent of w;;, we first obtain

;= trHY (G — 2In) " A(By — 2In) ' H;
B Ni—er( zIn) (By —21y)
1 S wHHY (G —2y) A (B — Ay) T Haw
Ni —mni = 1+ pywhHHY (B — 211\/)71 H;wy
from which we have
trHY (G —2Iy) 'A By —z2Iy) 'H — B
Ni—ni ¢ (G = 2Iv) By = 1) —nzzlermS A
1 [ WHHE (G - 2y) A (B — 2In) T Hiwg B (18)
Ni—ns (= 1+ pywhHY (B )y — ZIN)_1 Hywy 1+ pad;
With the same inequalities as above, and with
_ -1 RA
wiH! (G — 2Iy) A (B — 2Iy) Hywy < e
we have that
_ 4
o | [ (G - dAy) A By —Ay) Hiwa B,
L+ pawHHY (B ) — 211\7)71 H,w; 1+ pud;
_ 1
g ||PHE (G - oT) T A (B — 2ly)” Hiwa — 6

1
(14 pads)(1 + pawHHE (B ) — 2Iy)  Hiwy)
piléi |:Wle!L-| (G - ZIN)_l A (B(i,l) - ZIN) 1 1W1l /Bzi|
1
(14 pads) (1 + pawiHE (B gy — 2In) Hiwy)

pitBi {51 —whiH! (B — ZIN)71 HiWu}
1
(14 puds) (1 + puwhHY (B — 2In) ~ Hywy)

(o PAR4 Al
< 8— — 1+ = 1
8N2(+ a4('*a0> 19

for some C’ > C. Multiplying (18) by 1 " we obtain

4

pzl(S
Cv/ P4R4 A4
< 1 1+ — . 2
sy (14 (14 75)) 0

This now provides us with the asymptotic behaviour of 3; or equivalently of the quantity w i HH (G —zI N)’lA(B(L H—

1 -1 —1 1
E|l—=trHY (G- 21 A(By — 21 H, -6 |(1-
‘NU‘ z(G ZN) ( N ZN) i Bz(( Cz ¢ + NZ].-F )

2In)"'H;w;; in the numerator of (14).

We are now in position to infer the g; such that 3 tr A(By — zIy) ™" — & tr A(G — zIy) ! is asymptotically
small. For the previous derivations to hold, the scalars gi, k € {1,..., K}, were assumed independent of w;.
It is however easy to see that these derivations still hold true (up to the choice of larger constants C, C’) if

gk = g(ll) + 5(”) with g(”) independent of w;; and E%j) = O(1/N).
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We choose

1 1 S Pkm
g = Sl L - Q1)
(1 —en)er + 3 3 1mN; L+ prm O

and remark that g — g,ﬁm = O(1/N) with g,(fl) defined similarly to g (15), with column w;; removed from the

expression of Jy.

Summing the previous results over ¢ and [, we then have

1 1
¥ trA(BN —2In)"t = N tr A(G — 2Iy)"?

1

M

Lo H" (G —2Iy) " A (By —2In) ' H;
i—1 + ¥ 1+p”5 N Z 1 +p”5 N

i nz pawiHN G — 2In) TA(B( ) — 2In) THywy
14 pagw

71H (B — 2In) " THywy

’Llll

Z Z tI‘H (G — ZIN)_ A (BN — ZIN)_1 H; WSH?(G — ZIN)_IA(B(iJ) — ZIN)_lHiWZ'l
= Pil -
i=1

(1—c)ei + % >y 1+p o) (1 + piadi) 14 pawHHY (B ) — 2In) " THywy
Notice now that 1 + p;;0; > 1 and

(1—c¢)éi<(1—¢)e+

I/\
o

N Z 1+ pzlé
which ensure that we can divide the term in the expectation of the left-hand side of (20) by 1 + p;;d; and (1 —

ci)Ci + & Zl 11 +p 05 without taking the risk of the denominator getting close to 0. This leads to

4
: Lt HY (G - 2Iy) ' A (By — 2Iy) ' H; / 4R 1
152‘5‘7Nr i ( 2Iy) (By — 21n) §8N210‘44<1+P§(1+A4)>~
+ pidi ((1_@)(3Z Lym 11+p116>(1+pil5i) (1—¢)ie || ||

(22)

From (19) and (22), we therefore have that

4
LtrHY (G- 2y) "ABy —2y) 'H;  wHHY (G —20x) ' A (B — 2y) Hiwy

-1
(0= co)es+ % X0y s ) (1 + pady) L+ pawH (B — 2Ly) " Hiwy

C’ P4R* At
<12 1 1+ — .
= 8N2<1—ci>4c;*< M ( +|z|4)>

We finally obtain

1
‘trA (By — 2Iy) 7! — NtrA(G —2Iy)7t

4
c’ P*R* At
< 128K* 1 1+—1].
]— N?(l—c+>4c4< EE ( +|z|4)>

(23)
This provides a first convergence result as a function of the parameters d;, from which a deterministic equivalent
can be determined. Nonetheless, the expression of g; is rather impractical as it stands and we need to go further.

Observe in particular that g; can be written under the form

_ 1 pil
9i = 7 g
N (1 —¢)e +

=1 N it 1+p THp,/0; )+ padi((1 = ci)e + 5 20y 1+p”/5 )
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We will study the denominator of the above expression and show that it can be synthesized into a much more
attractive form.

From (17), we first have

4
1 & 1 8C
5. — Ve 4 - < =
Ellfimo <(1 CZ)CZ+NZZ11+pil5i>| = N2 @4

Multiplying (21) by —0; ((1 — e A Y s ) and adding & to both sides yields

1 & 1 1 & 1
—gidi |l—c)ei+ =) —~ |=Q-c)la+-=) —— .
g <( i) +N§1+Pu5i> (1-e)e +N; 1+ pad;

and we therefore also have

By definition, g; < 7=t

(Ci — figi) — ((1 —¢)Ci + N Z 1+le5>

The equations (24) and (25) can now be used to approximate the denominator of g; as follows

4
C pt

E 8——7 -
- N2 (]. — C+)4E§

(25)

4

- 1 uz pll
E||g——= -

SN ; i — [igi + pufi

~ ~ 4
21 i Pil [fi = 0i((1 = eo)a + 5 iy 1+p Trpard: )} + [Ci — figi = (1= e)es + 5 Xty 1+pm5 )}
= ~ Pl
N £ [+ pud (1~ co)e + & Sy 1) e — £+ pafi]
(26)

Before to provide a useful bound, we need to ensure here that the term ¢; — f;g; + p;; f; is uniformly away from
zero, for all random f; and for all V. For this, we recall the bounds 0 < f; < ILZ%I and 0 < g; < ﬁ

&P 5> SO that ¢; — f;g; > e for all 7. From

Let us consider 0 < € < 1 and take from now on z < —=ee =9
+)e—(c——¢

(24), (25) and (26), we have
4

_ 1 Dil C P8 1
Ellg—~S — Pt || <es 1
SN ; ¢i — figi + pufi T N2 (1—¢)tetet * (1—¢;)*ct

which is of order O(1/N?) since we assumed limsup y ¢; < 1.

We are now ready to introduce the matrix F. Consider

K
F=> [Ri,
i=1

with f; defined as the unique solution to the equation in z

k2
r==) — "
N;@*fﬂJrfipu

within the interval 0 < z < ¢;¢;/ f;. To prove the uniqueness of the solution within this interval, note simply that

CiC; - Dil
> — - —
fi NZ:Ci — filei€i/ fi) + fipa

1 Uz
Ngé 0+fzpzz
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and that the function z — + >, P e e

in [0, ¢;¢;/ f;). We also show that this solution is an attractor of the fixed-point algorithm, when correctly initialized.

is convex for x € [0, ¢;¢;/ f;). Hence the uniqueness of the solution

Indeed, let xg,x1,... be defined by

1 & Dil
nr ng;ci—fixn-f'fipu

with zg € [0, ¢;¢;/f;). Then, z,, € [0,¢;¢;/f;) implies ¢; — fixn + fipu > (1 — ¢;)& + fipa > fipa and therefore

fixny1 < ¢, SO Xg, 1, ... i contained in [0, ¢;¢;/ f;). Now observe that

Uz

iz pirfi(Tn — Tp-1)
N (€ +pafi — firn) (@ +pafi — fizn—1)

=1

Tp+1 — Tnp =

with all terms being nonnegative in the sum, so that the differences x,, 1 — z,, and z,, — x,,_; have the same sign

(we also have from the above remarks that x,11 — x, < ¢;(, — ,—1)). The sequence zg, 1, ... is therefore

monotonic and bounded: it converges. Calling x, this limit, we have that

1 Pil
LToo = 77 =
N 1221 Ci +pifi — fito
as required.
To be able to finally prove that + tr A(By — zIy)~! — 4 tr A(F — 2Iy) ! 2% 0, we want now to show that

Gi — f; tends to zero at a sufficiently fast rate. For this, we write

R
E{lg: - fil']
i n 4_ i n n 4
<slE g,fiZLL R iZLLfiiL
" N figi+paf N =& — figi+tpufi N & — fifi+pafi
r 47 r 4
I G Dil Ll piLfi
=8|E||gi—= ) ———| | +E||gi — fi| |= - = - -
SN ; ¢ — figi + pufi l9: = £l N ; (¢i — fifi + pufi)(@ — figi + pufi)
27

ng ng £

where we have simply written §; — f; = (3 — v 2121 s=72 7)) + (8 21 575457, — fi) and used the
triangular inequality on the fourth power of each term.

We only need to ensure now that the coefficient multiplying \gi — fl’ in the right-hand side term is uniformly
smaller than 1. For this, observe that, as z — —oo, |pii fi| < % — 0 in the numerator. In the denominator, we
already know that & — fi f; + pafi > (1 — ¢;)é and we also have that ¢&; — f;G; + pufi > & — %, which is
greater than some 7 > 0 for |z| taken large.

Take n > 0 and smaller than 1, and choose z to be such that, for all ¢,

iz _ _ pz‘lfj _ < PR < 1—n
N = (e; = fifi + pufi)(@ = figi +pafi)| ~ |2[(1 = cien 8
That is, from now on, we take z < min (— n(l—n{)g(q]—%u)@ , —(1_C+}f£(1_5)).
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From the inequality (27), gathering the terms in E [|§1 - ﬁ-ﬂ on the left side, we finally have

8
=l 71 < 5 e (1 o) -
We can now proceed to prove the deterministic equivalent relations:

%trA (G —zIy) ' — %trA (F —2Iy)""

Z Z LtrHMA (G —2In) T (F—2Iy) 'H; A tHPA(G —2Iy) ' (F—2Iy) ' H;
o pi l l—c)e+ w Zz/ 1 m)(l + pird;) - ¢ — fifi +palfi ]

I LurHNA (G —2In) N (F-z2Iy) 'H; A trHPA(G —2Iy) ' (F—2Iy) ' H;
- P N ;pil l(((l — )&+ N iy m)(l +padi) ¢ — fi9i + pufi )

. (}V nHNA (G = 2Iy) ' (F—2Iy) 'H;  FoHN (G- 2Iy) "' (F - ZIn) 7! H)]
¢ — [iGi + pafi ¢ — fifi + pafi

K n; 3

— ; % tr HYA (G — 2Iy) ' (F — 2Iy) ! Hz% ;m {(Ci _— +£l(zi)(_cifi_) figi + pafs)

((Ez‘ — figi)) — (L —¢;)e + % ZZ’/ 1 m)) + pil (fi —0i((1—e)e + 3 ity 1+p 0 )>
(A=) + % >0, m)(l + piadi) (@ — fifi +pufi)

Therefore, from (24), (25) and (28),

1 1 _
‘NtrA(GzIN) - ~ A (F —2Iy)

TP - ep)teE N2 L—cy)? |2|*ntet

|t G4R'P*A'R C 1 ‘. 64R'P*
< 1+ —— ) |1
( )te
which is of order O(1/N?).

Together with (23), applying Markov inequality, (5.31) of [36], and the Borel Cantelli lemma, Theorem 4.3 of
[36], we finally have

1 - 1 a.
~ TA By —2Ly) 17NtrA(FfzIN) 2%, (29)
as N grows large for realizations of {W7,..., Wk} taken from a set A, C  of probability one. This therefore

holds true for countably many z (smaller than the established bound) with a cluster point in R™, on a set A C Q
of probability one. From Vitali convergence theorem, the analyticity of the functions under study and the fact that
+trA(By — 2Iy)” " and +trA(F — 2Iy)~" are uniformly bounded on all closed subsets of z € C\ R, we
have that (23) holds true for all z € C\ R™ and the convergence (23) is uniform on all closed subsets of C \ R,

Applying the result for A = R, this is in particular

-1
fi— trR <ZfZ i zIN> 220

where we remind that f; is the unique solution to

.
r=—) —*
N; G — fix +pafi
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within the set [0, ¢;¢;/ f;). For A = I, this implies

K -1
1 2 a.s.
mN(z)—Ntr (E fiRZ-—zIN> =0
i=1

which proves the convergence.

Step 2: Existence and Uniqueness
For existence, it suffices to consider the matrices Pp,; € C™” and Hy,; € CV"*N? for all ¢ defined as

£ P, ® L, H[P]J = H; ® Ip, such that P[pw and R[p],i = H[p],iHH have

the Kronecker products P (pl.i

pli
respectively the distribution function F'¥+ and FR¢ for all p. It is easy to see that e; is unchanged by substituting
the P, ; and Ry ; to the P; and R, respectively. Denoting similarly f[,) ; the f; adapted to P, ; and Hy, ;,
from the convergence result of Step 1, we can choose f[13,;, f[2),i, - - - @ sequence of the set of probability one where
convergence is ensured as p grows large (N and the n; are kept fixed). This sequence is uniformly bounded (by
R/|z|) in C\ RY, and therefore we can extract a converging subsequence fio(p)),i out of it. The limit of this
subsequence satisfies the fixed-point equation, which therefore proves existence. Call e;(z) this limit.

We wish to prove that e;, seen as a function of z, is the Stieltjes transform of a distribution function. For this,
we prove the defining properties of a Stieltjes transform, provided in Lemma 1. The fact that e; is analytic on
C* comes as an immediate application of Vitali’s convergence theorem [37], as e; is the almost sure limit of a
series of analytic functions, bounded on every compact of C\ R™. It is clear that for z € C*, Im][ Jw.i(2)] >0,
Im[z fi),i(2)] > 0 and limy_, o —iyfiy),:(iy) < R. This implies that for z € C™, Im[e;(2)] > 0, zIm[e;(2)] > 0
and lim,_, o, —iye;(iy) < R. In addition, note that, for z € C™,

1 T

I i > —=—-I >0
and
1 Kr2t
I il > = >0
m(2 fi)5] > N (RP 1 7])? m|z]
with r a lower bound on the smallest non-zero eigenvalues of R4, ..., Rx (we naturally assume all Ry non-zero)
and ¢ a lower bound on the smallest non-zero eigenvalues of Ty, ..., Tk (again, none assumed identically zero).

Take z € C and € < %min(%mlm[z], ﬁ%lm[z«]}. There now exists pg such that p > py implies

[Tm[fi (), —Imle;]| < /2 and |[Im[z fig(p)).s] — Im[ze;]| < €/2, and therefore Iml[e;] > £/2 and zIm[e;(2)] > ¢/2
so that e;(z) is the Stieltjes transform of a finite measure on R,

We will prove uniqueness of positive solutions e1(2), ..., ex(z) for z < 0 and the convergence of the classical
fixed point algorithm to these values. We first introduce some notations and useful identities. Notice that, similar
to the auxilliary variables §; in Step 1, we can define, for any pair of variables x; and Z;, with Z; defined as the

solution y to y = + >4 m such that 0 <y < ¢;¢;/x;, the auxiliary variables A1, ..., Ag, with the
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properties

2

1 1
A (1 =e)E + —
X; Az (( Cz)cz + N E 1 +p11A1>

_ pzlA
N ( 7721+p11A )

and
1 1
E/L' — Iifi = (1 — Ci)éi + N i m

pzlA
30
Z 1 +pzZA ( )

QI

Indeed, firstly, there exists a unique mapping between x; and A;. This unfolds from noticing that

1 & 1 1 & 1
A=)+ — — || =0—-a)a+ T A2
<( i) +N§1+pu&>] (1-e)e JrN; (14 pal;)? >0

and therefore z; and A; are one-to-one. Additionally, x; is a strictly growing function of A; with A; = 0 for

dA;  dA;

x; = 0. This ensures that A; > 0 if and only if z; > 0.
Secondly, from the definition of Z;, we have

2 Pil
N & (& — 2:%;) + pati

1< pad 1 & ;
ZCi—Ai<Ci— pl) Z Pit

N 1 + pu

_ _ _ n; [ 2AY] ’
=1 G — T + pald; (Ci N ity TEER )

Note in particular that for x;z; = N [y I i’;’ %A , the above equation simplifies to
n; n
& — A (C, 1 PilAi RS Pil
1 7 (4 NT NT
N 1+puld; | N = 1 n; P A ar D
=1 TPasi =1 \G— N it T a; ) TPadi (G- v i T A

pzl
N l 1 14+pit

and therefore ¢; — - is one of the solution of the implicit equation in u,

_ 1 Dil
U=C; — Tj— I —
¢ ZN;u+pua:i

Equivalently, writing u = ¢; — z;y, it follows that - l 1T _’;1; A is one of the solutions of the equation in y

1 Dil
VTN ; i — Ty +paxi
Since
pzlA _
< . .
( Z 1 +pllA ) it

this solution lies in [0, ¢;¢;/x;) and is exactly equal to Z;. This proves that the equations in (z;, Z;) can be written

under the form of the equations in (A;, Z;), as presented above.
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We take the opportunity of the above definitions to notice that, for z; > x and Z}, A} defined similarly as Z;

and A;,

_ pzl A A )
iTi — T;T; 31
vit i N Z +pzlA 1 +pzlA;) >0 ( )

whenever P; # 0. Therefore x;Z; is a growing function of x; (or equivalently of A;). This will turn out to be a
useful remark later.

We are now in position to prove the step of uniqueness. Define for ¢ € {1,..., K}, the functions

-1

hi:(x1,...,x )*—)—trR ij c— 21N

with Z; the unique solution of the equation in y
y = 1 Z # (32)
N = Gt Tipj— T3y
such that 0 < Z; < ¢;¢;/z;.
We will prove in the following that the multivariate function h = (hq,...,hk) is a standard function (or

interference standard function), defined in [35], as follows:

Definition 2: A function h(xq,...,xx) € R¥ is said to be standard if it fulfills the following conditions:
1) Positivity: for each j, if 1,...,xx >0, then h;(x1,...,2x) > 0.

2) Monotonicity: if 1 > 2}, ...,xx > @, then for all j, hj(x1,...,zx) > hj(z), ..., 2%).

3) Scalability: for all o > 1 and for all j, ahj(z1,...,xx) > hj(azi,. .., azk).

The important result regarding standard functions, [35, Theorem 2], is given as follows:

Theorem 8: If a K-variate function h(zy,...,2x) is standard and there exists (z1,...,2) such that for all 7,
xj > hj(x1,...,xK), then the fixed-point algorithm that consists in setting
t+1 t t
xi ) = hj(:v(l ),...,xg())
for ¢ > 1 and for any initial values m§0>, . ( >0 converges to the unique jointly positive solution of the system

of K equations

with j € {1,...,K}.

Since we have proved the existence of a solution of the fixed-point equation, there exists (x1,...,2x) such that
for all j, x; = hj(x1,...,xK). Therefore, by showing that h 2 (hq,...,hg) is standard, we will prove that the
classical fixed point algorithm converges to the unique set of positive solutions e1,...,ex, when z < 0.

The positivity condition is straightforward as Z; is positive for x; positive and therefore h;(z1, ...,z k) is always

positive whenever x4, ..., Tk are nonnegative.
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The scalability is also rather direct. Let « > 1, then

ahj(z1,...,2x) — hjlazi,. .., azk)

1 X z o 1 K o
= Nter ( ;Rk_aIN> —NU‘RJ‘ < E .’JSECQ)RIC—ZIN>
k=1 k=1

(@)

where we denoted z; the unique solution to (32) within [0, ¢;¢;/(ax;)) with x; replaced by ;. From Lemma

6, it suffices to show that

S [ - 2w [ 2

k=1
is positive definite. Since ax; > x;, we have from the property (31) that

(@)

arETy  — T >0
or equivalently
2 - S,
a
Along with 1 — 1/ > 0 and z < 0, this ensures that ah;(z1,...,2x) > hj(az,...,azk).

The monotonicity requires some more calculus. This unfolds from considering Z; as a function of A;, by verifying

d — . .
that 73-Z; is negative.

p . B B 1 N PitAi

_ C; (& N =1 (1+pil;)?

1'1‘ — (1 > + 4 ( Pil )
Ci —

dA. A2 Pl A2 _ . A 2
' ’ N Xt T ’ (ci — ¥ it 1—%?&)
k2 k3

1 [ 1 (& puAs L pad G Pl
- A; 2 _N 1+p'lA‘ Ci_N 1+p‘lA‘ +NZ(1+])'ZA')2
A2 (Ei — N ity TR ) L =1 = =1 = =1 e
2 _ .
1 i A C; i i A C; i i A1
- (A ) RS e s
A2 ( J A ) 1+ pul; N 1+ pul; ) (1 “l‘pilAi)
Ci N l 1 1+pi A
2 -
_ 1 ( Z Pl ) G (pin)?
3 2
A\ 14+ pad; N 14+ pad;
A2<1*N21 11151@) L z:1( )

From the Cauchy-SChwarZ inequality, we have

( A 7 A 7 A 71' o 2 Az 2
Z _Pasi Z Z (it = 65 Z (pit <i (palAi) (33)
N1 —&-leA P N2 1 +p11A N 1 +pzlA N — (1 -|—pilAi)2
which is sufficient to conclude that Kfci < 0. Since A; is an increasing function of x;, we have that z; is a

decreasing function of z;, i.e. d xz < 0. Therefore, for two sets x1,...,xx and ], ..., 2 of positive values

> dx;

7!

such that x; > :v , defining & equ1valently as Z; for the terms xj, we have f% > Zr. Therefore, from Lemma 6,

we finally have

K -1 K -1
1 1
hj(ml,...,xK)—hj(a:/l,...,x'K):Nter <Z$kRk_ZIN> —Nter (ZJSZR]C—ZIN> > 0.

k=1 k=1
(34
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This proves the monotonicity condition and, finally, that h = (hy,...,hg) is a standard function.

It follows from Theorem 8 that (eq,...,ex) is uniquely defined and that the classical fixed-point algorithm
converges to this solution from any initialisation point (remember that, at each step of the algorithm, the set
€1,...,€ex must be evaluated, possibly thanks to a further fixed-point algorithm).

Consider now two sets of Stieltjes transforms (e1(z), ..., ex(2)) and (€}(2), ..., €k (2)), z € C\R™, solutions
of the fixed-point equation. Since sup, |e;(z) —€/(z)] = 0 for all z < 0, and e;(z) —¢€}(z) is holomorphic on C\R™*
as the difference of Stieltjes transforms, e;(z) — ¢/(z) = 0 over C \ R™ [38]. This therefore proves, in addition to
point-wise uniqueness on the negative half-line, the uniqueness of the Stieltjes transform solution of the functional

implicit equation such that, for z < 0, 0 < ¢&; < ¢;¢;/e; for all 3.

This terminates the proof of Theorem 1.

Step 3: Convergence of ¢; — f;

For this step, we follow the same approach as in [5]. Denote

K -1
1 _
EN,i £ fi — N trR; (Z fiRy — ZIN>

k=1

and recall the definitions of f;, e;, f; and é&;:

1 _
fi:NtrRi(BN_ZIN) !

1 us -
€ = — tI‘Ri éjRj — ZIN

N o

13 Dil _ B
I — o - . = . - O7C‘C‘ X
N;Ciffifi‘i’pﬂfi fz [ 7 7//.fz)

Pii

1
€ = — e e; €10,¢ic;/e;) .
’ N;@—eiéri-puez" i €0, ciei/en)

From the definitions above, we have the following set of inequalities

R R - P P
i< eSS, il o/ —, &< /. 35
FEpr “<mr s ae “Sli-as 53)
We will show in the sequel that
e; — fi =0, (36)

for all s € {1,..., N}. Write the following differences

K K -1 K -1
1 _
fi—e = E (éj — fJ)N trR; ( E erRL — ZIN> Rj ( E iRy — ZIN> +en
Jj=1

k=1 k=1
s 1 o~ pi(fi—e) = pa [fz]? — €]
N & (¢ — eiei + puei) (€ — [ifi + pafi)

fifi —eiei = fi(fi —ei) +ei(fi — &) .
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For notational convenience, we define the following values

a s sup E Ufz — ei|4}

I
lI>

sup E Uﬁ - éi|4} .

It is thus sufficient to show that « is summable to prove (36). By applying (35) to the absolute of the first difference,

we obtain
KR? -
|fi—eil < TR 5P |fi — €| +sup len,
1 3
and hence
SK*R8  8C

for some C' > 0 such that E[sup;, |en ;|*] < 8K sup, E[|en ;|*] < C/N2. Similarly, we have for the third difference
\fifi — ei&i| < |fillfi — el + leillfi — il
P R -
< 7 swlfi —el + o suplfi — &l
(1—cy)e— .

This result can be used to upperbound the second difference term, which writes

_ 1 ~
Ifi — e < m <P2 Slz}P|fi —eil + Plfifi — €i€z‘|>

1 P R 7o
< A= 2& (PQSHPD% —el+ P [wsupm —e| + msupm —€i|D
P2 +1) RP __—
< msgp\fz—€z|+msgp|fz—ez| .
Hence
8(a 4 4pa
o< 8PP+ sR'PY 8)

-2 " Bia—c, 5
For any z satisfying |z| > %, we have % < 1/2 and thus
< 16P8(c_ + 1)4a
(1—c )22
Plugging this result into (37) yields
128 K*R8P3(2 — ¢)* 8C

T RRA e “TNE
. 128'/3RP\/K(c_+1) 128K*R®P®(c_+1)*
Take 0 < & < 1. It is easy to check that for |z| > Qe 2P ay/s’ (e e < 1 — ¢ and thus
8C

Since C' does not depend on N, « is clearly summable which, along with Markov inequality and the Borel Cantelli

lemma, concludes the proof.
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Finally, taking the same steps as previously, we also have
8C
E — o i
ma(z) —mn (] < =
for some |z| large enough. For these z, the same conclusion holds: my (z) —my () =2 0. From Vitali convergence
theorem, since f; and e; are uniformly bounded on all closed sets of C\ R, we finally have that the convergence
is true for all z € C\ R*. The almost sure convergence of the Stieltjes transform implies the almost sure weak

convergence of Fy — Fy to 0, uniformly over every compact set of R*, which is our final result.

This concludes the proof of Theorem 7 for lim sup, ¢; < 1 and surely bounded R;.

2) Case max; limsup, ¢; = 1:

We now need to extend the previous result to the case limsup, c; = 1 for some 7. The previous approach no
longer holds as Lemma 5 is no longer valid. We will assume here without loss of generality that ¢; = ... =
cx = 1. Since Py,...,Pg are allowed to have null eigenvalues, this assumption also covers the case presented
in the previous section. Observe in particular that this assumption does not alter the fundamental equations in
(e1,...,ex,€1,...,€x) that do not depend on the ¢;.

For a given matrix By, we now define the matrix BS\?) as

K N

(n) H ¢yH

By’ =By — E E pi, Hiwy, wi H'
i=1 lLi=nt1

That is, Bg\?) corresponds to B with all columns of szzPle'H':' of index superior to n discarded. We will

further define ¢ = limn/N.

(n)

Similarly, we shall denote Pgn) = diag(pi,1,- .. Din), & (n)

and ¢, ’ the unique solutions to

n 1 n n n - —\n n -1
o) = L Pl (P 4 (g — e,

7 N %

-1

1 K
egn) = —trR; Z ’(.n)Rj — 21y

N J
j:l
such that égn) € [0,061-/65”)) and
—1
! K .
_ (n) sn
my = Ntr g €; R; —2In
j:l

We will prove that the Stieltjes transforms and its deterministic equivalent for By and Bg\?) are within any € > 0
for n chosen such that n/N — ¢ for some ¢ < 1. This will ensure that for all large N, the Stieltjes transform of
By and its deterministic equivalent are within 2¢ in the large N limit, € being arbitrary. This will complete the
proof.

We start by proving the uniqueness of the solution to the fundamental equations for By . The only step that needs
to be modified compared to the proof for limsupec; < 1 lies in (33) where the strict inequality (due to ¢; < 1)

becomes a loose inequality. We then see that (34) becomes an equality if and only if the equality (33) is established
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for all ¢. This requires, from the statement of the Cauchy-Schwarz theorem, that, for each given ¢, all p;; be equal.
But this means that P; = ¢,In, for all ¢ and for some ¢; > 0 and therefore By becomes Zle t;R;, which is
deterministic. Since this case is trivial, we discard it and assume that for at least one i, P; is not proportional to
the identity matrix. This implies that the difference (34) is positive and therefore h is still a standard function. By

noticing that e; < IL:\’ we necessarily have that

R (R R>
72hz I EEREERT)
2| K |2

and therefore Theorem 8 can be applied to h.

We can therefore uniquely define ey, ...,ex,é€1,...,€x the solution to

1 -
e; = N tr PZ (61P1 + [Ei - éiei]IN) !

—1

—trR Zej —zIN

such that &; € [0,¢;/e;).> We can therefore uniquely define 7y (z) the holomorphic function equal to

K
1
my(z) = Ntr ZéjRj —zIy
i=1

One of the major problems we will face here is that the former inequality e; < ﬁ is no longer useful when

-1

¢; = 1. We need to refine this inequality with the following remark.

Note that we have from the definitions above

G = Z C’L ezez + €iPil
=
C; — €i€; + €;p;
N; N,
(_ _) 1 - 1 + 1 d €iPil
= (¢ —eie)—= E ——— + = _—
N = ci—eiei+epy N1 ¢ —ei€+eipi
1 & 1
=G —€eie;)— ——————— + €€
(& —e Z)N = Ci — €i€i + eipil o

from which follows that

1 1
(Ci — ei€i) 1—*2— =0.

Ci —€i€; + €iPil

But we also know that 0 < &; < ¢;/e; and therefore ¢; — e;e; > 0. This entails
N.
1 1
s (40)
N = ¢ — eie; + eipil
Since this sums to 1, necessarily max;(¢; — e;€; + e;p;1) > ¢; or equivalently e;e; < e; max; p;;. Since e; > 0

whenever one of the R; is non identically zero, this entails &; < max;(p;;). Hence, we can state the refined

2Note that, if all pi are non zero, ¢;/e; is the second solution of the implicit equation in €;, which has to be excluded from the interval.

Hence the importance of opening the right edge of the interval.
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inequality

g < P.

We are now in position to complete the proof. Following the approach pursued in Step 3, we have the following

differences

K 1 K -1 K -1
67(;”) —e; = Z(éj - é;"))ﬁ trR; (Z exrRy — ZIN> Rj (Z éin)Rk _ ZIN>

5=l k=1 k=1

n ™ oy . [ (n) (n) _ __} N,
g —e™ = iz pile; €i) —pi € & €;€; Z o
l N = (@ + paei — eiei) (@ + pael” — é§7”)e§") + pae; — €
) — ety = e — ) + s — &)

(n)

Remembering that e,”” — 0 whenever z — —oo (irrespective of N or ¢), and noticing, due to €; < P, that we

also have e; — 0 whenever z — —o0, we can set z < zg for some zg < 0 to be such that
min (Ei — €;€; + €;Pi1, Ci — eE—")eﬁ Mgl )Pu) =1

for some 7 > 0. For these z, we therefore have

KR?
" — el < o smwle =2 @D
z
i o PP P P
e, —el| < — buple( )—ez|+n suple e )—eiéi\+5+(1—c)g
n)_(n — n R e g\
|€z(' )ez(. )—eiei\ gPsup|ez(- )—€i|+‘7|5up|ei_ez(' )|'

Denoting 3 = sup; |&; — é§”>|, together this implies

2KP’R? PR
B<p
2202 2l

P
+ci(l—c)—.
+( )77

2 p2
We now take z < 2o to be such that Qﬁﬁnfj + |P|§

chosen independently of N or c). Therefore, for these z,

< 1 — k for some ~ such that 0 < k < 1 (note that « is

P

The same reasoning holds for fng\?) in the sense that, there exists z; < 0, such that for z < z1,

P

i (z) = m ()] S e (1= )

(CNXN

Now, for any matrix A € with spectral norm bounded by A, we also have from K (N — n) iterations of

the rank-1 perturbation (Lemma 7), that

1 1 .
NtrA(BN —2Iy) - NtrA (BS\/) — ZIN)

KA
NZ Z C)W

1=11l;=n+

Take € > 0. With z < 21, one can now choose ¢ < 1 sufficiently close to 1 such that

_ P _ KA
max c+(1—c)ﬁ—n,c+(1—c)ﬁ <é€
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Letting n and N grow large, with n/N < ¢ < (n+ 1)/N, we have

1 _ 1 _ 1 n -1
SR (By —2Ly) " —e(2)| < ‘NtrRl— (By —2Iy) ' = - trR; (BS\,) - zIN)
1 n _1 n n
—|—‘NtrRi (BSV)—ZIN) —el(. )(z) + eg )(z)—ei(z)
for A = R,; and
ma(2) =i (2)] < [mav(z) = m ()| + |y (2) =m0 )| + [m (2) = (2)
for A = 1.

Taking the limit superior for N on both sides, we finally have

1 _
limsup |— trR; (By — 2Iy) " — ei(2)] < 2¢
N | N
almost surely and
limsup |mpy(z) — my(2)] < 2e
N
almost surely, since we have proved in the previous section that % trR; (Bg\?) — 21 N>7 — el(-n)(z) 2% 0 and

— (n) a.s.
Mg (2) —my’ () =— 0.
Since ¢ was arbitrary, this means that

1 —_ a.s.
NtrRi By — 2In) " —ei(2) 250

and

my(z) —mn(2) 23 0.

Since my (z) and 7y (z) are uniformly bounded on all compact sets of C\IR™, from Vitali convergence theorem,
we finally have my(z) — mx(z) =2 0 for all z < 0. The uniqueness of holomorphic functions defined on a set
with a cluster point then ensures the uniqueness of the Stieltjes transform my (z) for z € C\ R,

We complete the proof with the relaxation of the constraint ||R;|| < R surely to |R;|| < R almost surely.

3) Almost sure boundedness of |R;]|:

To extend Theorem 7 to the case where |R;|| is only almost surely bounded, we merely apply the Tonelli theorem
(Lemma 9).

Call (Qr, TR, Pr) the probability space that generates the sequences of matrices of growing sizes {R;,1 <
i < K,N; € N} and (Qw,Fw, Pw) the probability space that generates the sequences of matrices of growing
sizes {W;,1 <i < K,N; € N} and (Qr x Qw,Fr X Fw, Q). Denote A the subspace of Fr x Fy, for which

Fy — Fn — 0. Then, from Tonelli theorem,

mm=4 Qummmenaéz;ummmmmmw»

Take r such that the ||R;|| are all uniformly bounded with growing N. Then, from Theorem 7, for this r,
wi 1a(r,w)Pw (dw) = 1. But these r € Qi belong to a space of probability one, as the intersection of K

spaces of probability one, and finally Q(A) = 1.
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APPENDIX B

PROOF OF THEOREM 3

It is easy to see (e.g. [11, Definition 3.2]) that, for F' a probability distribution function with support in RT

/OOO log (1 + i) dF(t) = /:o (‘1 - mFH)) o

where mp(z) is the Stieltjes transform of F' (this is sometimes called the Shannon-transform in 1/x). In particular,

@ 1 1 o 1
I](V)(U2) = v log det (IN + CT2BN> = / <_t + mN(—t)> dFN(t).

2

We will first show that the expression I_](\‘,l) (02) given in Theorem 3 satisfies the same property with Fl.

For notational simplicity, we will write ¢; = e;(—c?) and &; = &;(—0?).

We take here ¢; < 1 from the beginning. First note that the system of equations (13) is unchanged if we extend
the P; matrices into N; x N; diagonal matrices filled with N; — n; zero eigenvalues. Therefore, we can assume
that all P; have size N; x N; although we restrict the F¥i to have a mass 1 — ¢; in zero. Since this does not alter
the equations (13), we have in particular €; < ¢;/e; for o2 > 0.

This being said, jz(\?) is given by

K

K

- 1 1 1

I](\?)(g2) = N log det (IN + ? E ész> -+ E |:N logdet ([52 — eiéi]IN + 62P7.) —C; log(él)} .
i=1

i=1
Calling I the function

I:(‘%1,.“,551(;5?17“-752'1(70—2)

K K
1 1 _ 1 _ _ _ _
— N log det (IN + o E xiRZ) + Eﬁ [N logdet ([¢; — ;@) In + z;P;) — & log(ci)} ,

i=1 i=1
we have
31( _ _ 2) .1 1
€lyeey €K €Ly e- €K, O°) = & — Ej— e
Ox; N = ¢ —eiei + eipu
— N;
ol 1 1

- > 2
—(e1,...,€K,€1,...,6K,0°) =€ —€— » ——————.
3%( oo CH By By ) N Ci — €i€; + €Pil

From (40), we conclude that

~ _ 2
(e1,...,ex,€1,...,8x,0°) =0
&zzi

_ _ 2
—(e1,...,6K,€1,...,€x,0°) =0.
8,%2‘
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We therefore have, from the differentiation chain rule,

d =(a) oI Oe; oI Oe; oI
() = ;{8618024—8@ 802] 902

do?2™ N
o

-1

1 &1 K
:_ﬁzéiﬁtr i IN+ Z

11 W 1 &

Uzﬁtr (ZoﬂeiRi+IN_IN> IN+§ZéjR
‘ =

1

K
1
=ty 021N+ZéjR

Recognizing the Stieltjes transform of Fy, we therefore have, along with the fact that I ](\‘,l)(oo) =0,

~a /11 1
W= [ (G- (o))
a)( 2 - t =
IN (0’ ):/0 log <1+0_2) dFN(t)

In order to prove the almost sure convergence IJ(\?) (%) — f](\?)(JZ) 2% 0, we simply need to remark that the

and therefore

support of the eigenvalues of By is bounded. Indeed, the non-zero eigenvalues of W,; W have unit modulus and
therefore |By|| < K PR. Similarly, the support of Fy is the support of the eigenvalues of Zf; e;R;, which are
bounded by K PR as well.

As a consequence, for By, B, ... a realization for which Fiy — Fy = 0 (these lie in a space of probability

one), we have, from the dominated convergence theorem

/000 log <1 + ;) d[FN — Fy](t) = 0

Hence the almost sure convergence of the instantaneous mutual information.
Because of sure boundedness of ||By ||, an immediate application of the dominated convergence theorem on the
probability space ) that engenders the sequences of matrices B (w), Ba(w), ..., w € Q, entails convergence in the

first mean as well.

APPENDIX C

PROOF OF THEOREM 5

To prove Theorem 5, we will pursue a similar approach as for the proof of Theorem 7, but we can now take
advantage of all results derived so far.

First denote d; the unique positive solution, for e; > 0, to

i plld
1 +pzld .
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This solution exists and is unique due to the arguments given in the introduction of Step 2 of the proof of Theorem 7.
Whatever the value of ¢;, we will proceed as previously by extending the matrix P; to an NV;-dimensional matrix

with the last IV, — n; diagonal entries filled with zeros. This way, we can write
N; N;
1 pud; 1 d;
‘ <N ; 1+ pad; N ; 1+ pud;
Since d; is a continuous mapping of e; and e; < %, it follows that d; is bounded from above.

Remember now that for limsup ¢; < 1 for all i and, for some zy < 0, we have that z < zy implies
4

N’.
1 «— d; C
Ellfi —el ] =E ||fi — — E — -
for some constant C' > 0. Also, from (17),
N; 4
1 «— 0; Ch
Ellfi-—Y —% —1
J N ; 1+ pud; N2
for some C; > C. From these two inequalities, we have
N; N; 4
1 « 0; 1 d; 16C
El|lLy % Lyn di ) 166
N~ 1+pudi N = 1+pad; N2

Also, from an immediate application of the trace lemma, Lemma 5, we remind that

[ —1 4 02
E ‘WSH? (B —2In)  Hiwy — 0 ] < N2
for some Cy > Cj.
Together, this implies that for z small enough and for any & € {1,...,nx},
. v _ 4
E 1 i di 1 i W:‘kHlj (B(z,k) —ZIN) 1Hiwik
N T+xn.d N -1
Nz T+padi N = 14 pywhHY By — 2In) Hywy,
N; N; 4
1 «— d; 1 «— 05
< 8lE[|=y 2 N _ %
- N lz:; 1+ pyd; N lz:; 1+ pud;
LE||S i _ o L So wHHEN (B —2ly) Hiwg
-1
N T+pudi N L+ pawi HY (Bigy — 2Iv) Hiwg
_ 4
- s|E 1 i 41 S 0;
B N & 1+pydi N 1+pad;
- 4
+E 1 Al 51 - Wi-lkHt' (B(Lk) - ZIN) ! Hiwik
N -1
N = (1 +pudi) (1 + pywh HY (Biix — 2In)  Hiwgy)
136C,
< e
This ensures that for z < z,
N; N; H tTH -1
1 wi H' (B )y — 21 H;w; as
ikt ( (i,k) N) k 25 (43)

1 d;
AT 1T L9 N —1
N l:zl 1+padi N ; L+ pawi HY (Bigy — 2Iy)  Hiwgg
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irrespectively of the choice of k.
Since the function f : 2 — + Zl]\il 17,5 is continuous and has positive derivative, it is a one-to-one continuous
= Pu
function. Therefore, for B, Bo, ... a realization such that the convergence of (43) is ensured, we also have by

continuity d; — wh H (B, ) — zIN)f1 H;w;; — 0. Finally,

d; — wHHY (B(g — 2In) " Hywy, 230 .

Noticing from (30) that d; = f;'iéi , we have proved the convergence for z < zq. The Vitali theorem then ensures
that the convergence holds true for all z € C\ R*. This is however only valid to this point for lim sup vei <1
for all 4.

To extend the result to the case where ¢; = 1 for some 7, we proceed as in the proof of Theorem 7. Take n < N
and let ¢ = n/N. We first have that, for some k& < n (this does not restrict the generality up to a change in the
ordering of the eigenvalues),

-1

wiHY (B(ix) — «211\1)71 H,w,), — wi, HY! (Bgli) - ZIN) H;wij,

K N;
-1 n -1
= W?kH:' (B(z7k) — ZIN) Z pjylejole?le? (Bgli) - ZIN) Hq;Wik
j=1lj=n+1
_ KR?P
<@- C)C+W

n)
i,

with BE 5 the matrix B; ;) with entries p;;, [ > n, set to 0.
Note now that d; introduced above is well defined if ¢; = 1 for some ¢. Denoting dl('n) the term d; with By

replaced by Bg\?), we have shown previously that d; is a continuous mapping of e; and d§") is a continuous mapping
(

of ei”). Also, from (41) and (42), for some z; < zg, we also have that

sup |e; — el(»")’ <(1-¢)Cs
i
for some further constant C's. This implies by continuity that

d; —d\™

sup <(1-1¢)Cy

for another constant Cy.

As a consequence, for some realization of By, B, ... for which

Wr‘kHzH (B(n)

~1
= Av) Hiwy = d” =0

we have

d; — wiHY (B i) — ZIN)_1 H;w,

—1
- ZIN) H;w;;

(n) HgH (1)
+’di —wha (B(M)

1 B
+ ‘W?kH? (B(ZL) - ZIN) Hiwi, — whHY (B — 2Iy) " Hiwiy

|
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. . . . 2 . . .
whose superior limit is less than (1 — ¢) (KII;IZP + C’4). For this realization, and for some € > 0, we can therefore

choose ¢ such that

lim sup max |d; — W:IkHi—' (B(i’k) - ZIN)_1 Hw;| <e
n i
Since ¢ is arbitrary, we finally have
max i—'kle—' (B(i,k) — ZIN)il H;w,;,| — 0.

The realization of By, B, ... being taken from a set of probability one, we finally have, for all ¢ and k, and for

z < Z1,

d; — wiH (B — ZIN)il Hyw;, 230, (44)

Again, we complete the proof of the almost sure convergence by invoking the Vitali theorem to ensure that this
holds for all z € C\ R*.

Since the quantities d; and Wm (B(l k) — zIN) ! H,w;; are uniformly bounded for all V (a result that
holds surely since we assumed the H; deterministic), the dominated convergence theorem also ensures that the
convergence holds in the first mean.

In order to prove Corollary 1 in the almost sure form, we simply invoke the continuous mapping theorem [39,
Theorem 2.3] for the function ¢ : z — + Zszl >+ log(1 + pirx) on the convergence (44). The convergence
in the mean sense is obtained using the boundedness of d; and winHf' (B(i,k,) —zI N)fl H,w;;, uniformly on N

and hence the boundedness of their image by ¢. The dominated convergence theorem then gives the result.

APPENDIX D

PROOF OF THEOREM 2

It was shown in (32) that, for any fixed by (c?) > 0, the following equation in by (c0?):

bk(O’Q) = %U‘Pk <bk(02)Pk + [Ek — bk(02)6k(02)] Ink)il

has a unique solution, satisfying 0 < by(02) < cpéx/br(02). Thus, by(c?) is uniquely determined by by (o?).
Consider now the following functions for k£ € {1,..., K} and o2 > 0:

Ck]
h g
k(:rh y & N 1+bk<k]

where by, € [0, cxx/7x) and (ij(0?) > 0 are the unique solutions to the following fixed-point equations:

1 5 -
-1
K Ng T
1 1 bRy 5
(0?) = —tuRy,; | — T tol ' *
Crj(0?) N vk szl+bkaj(02) o o
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Similar to the proof of Theorem 1, it is now sufficient to prove that the K-variate function h : (z1,...,2x) —
(h1,...,hK) is a standard function and to apply Theorem 8 to conclude on the existence and uniqueness of a

solution to x; = hy(x1,...,zk) for all k. The associated fixed-point algorithm follows the recursive equations

:cgf—‘_l) :hk(x(lt),...,x([?), k=1 K

for t > 0 and for any set of initial values xgo)’ - ,x(lg) > (, which then converge, as ¢ — oo, to the fixed-point.

2 > 0, we have (jj(0?) > 0 by Theorem 9 in Appendix G and

Showing positivity is straightforward: For o
br > 0 by its definition. Thus, hy(z1,...,2x) > 0 for all 2q,..., 25 > 0.
To prove monotonicity of hy(z1,...,zk), we first recall the following result from (31). Let z; > 17;« and

consider by, and b}, the corresponding solutions to (45). Then,
(i) by < b, (i) zrby > x}.b,. 47)

We now prove a further result. Let 0 > 0 and assume by, > bj.. Consider (z;(0?) and ¢;;(0?) as the unique

solutions to (46) for b and U, respectively. Then,
) Cij(0?) < ¢y(0?) (i) brCrj(0?) > biGis(a?). (48)

Proof: The proof is based on the consideration of an extended version of the random matrix model assumed

LN XLNy,
e CHYXENE

in Theorem 9. Let us consider the following random matrices Hé , given as

1 3 3
A= L [®E) Zh o (R 2

where Rﬁj = diag(Rg;, ..., Ry;) € CEN*EN are block-diagonal matrices consisting of L copies of the matrix
Ry, and Zﬁj e C**" are random matrices composed of i.i.d. entries with zero mean, unit variance and finite

moment of order 4 + ¢, for some € > 0. We define the following matrices which will be of repeated use:

K K
B' =Y pHL(EY)", B =uHLE)"+ Y oH (H)"
k=1 I=1,1k

N -1 N -1
Q= (BL + UQINL) ) Q= (B/L + UQINL) '
One can verify from Theorem 9 that for any fixed N, Ny,..., Nk, the following limit holds:
1 L (RL 2 b as 2
R (B to INK> —2 5 Gy (o).
Thus, any properties of the random quantities on the left-hand side of the previous equation also hold for the
deterministic quantities Cj;j(0?). We will exploit this fact for the termination of the proof. The matrices B~ and
~ L _ _ _
B’ differ only by by. This assumption will be sufficient for the proof since the case b, > b) for [ € {1,..., K}
follows by simple iteration of the case b, = b} for [ # k and by, > b,.
To prove (i), it is now sufficient to show that, for any L,
1

NtrRﬁ’j (Q-Q) <o.
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By Lemma 6, this is equivalent to proving (Q)™' — (Q’)”" > 0, which is straightforward since
— -1 = ~ L - - H
Q7" —(Q) =B~ B = (b — W)H{ (Hy)" - 0.
Thus,

1 , a.s /
ﬁtrRﬁﬁj (Q-Q) ;;j ij(02) - ij(az) <0

since Cxj(0®) and (j;(0?) do not depend on L.

For (ii), we need to show that

bk trR Q- trRka > 0.

v LN
Similarly to the previous part of the proof, it is sufficient to show that (BkQ)_l - (EﬁcQ’)_l < 0. Hence,

(BkQ)_l - (7%Q/)_1 = Bl <]§L + O'ZINL) — l%’ (P;’L +021NL)

k k
o2 (Lo D)+ o Z nHE ()"
b U, bi !
1=1,l#k
<0
since 02 > 0, by > b}, and b; > 0 for all [. ]
Consider now (1, ...,7x) and (x4, ..., 2% ), such that 7, > =}, Vk, and denote by (by,...,bx) and (b],. .., b%)
the corresponding solutions to (45). Denote by (x;(c?) and ¢}, y (02) the unique solutions to (46) for (b1, ..., bx) and

(b}, ..., bh), respectively. It follows from (47), that by < b}, Vk. Equation (48) now implies that (y;(c2) > Crj (0?)
and by.Crj(0?) < b},¢p,;(0?). Combining these results yields

hy, (x Z _ GloT) %’“: Ck] o) = hp(2} )
eZ1,...,T N 1—|—bkck N 1+b<k7 ) X1, TR

which proves monotonicity.

To prove scalability, let o > 1, and consider the following difference:

(@)
G (o Gy (o)
h .
wlazy,...,00K) = Z 1+ by ( ‘72 1+ bka)gk? (%)

1 %’i {O‘ij(a ) — ij)(UQ):| + ij(UQ)CIE?)(UQ) [al;](ca) — Ek}
= [T+ brCrj(0?)] [1 + b(“)((a)( )}

O[h]{;(xl,.-.,f[{) -

where we have denoted by Eé,a) the solution to (45) with zj, replaced by azj and by (,g?)(oz) the solution to (46)
for Eéa). We have from (47)-(i) that 5,&0‘) < by, and from (47)-(ii) that

Ozl’kl_)gca) > l’kl_)k <= Oél_)gca) — I_)k > 0. 49)
It remains now to show that also a(;(0?) — ¢ (a)(az) > 0. To this end, consider the following difference:

0y (07) ~ (5 (0) = Ry (aT(0?) — T (0%))
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where
-1

T(o?) = li% M + 0%y
N &~ = 14 br(rj(o?)

-1
K N

k=1 j— 11+b ij( 2)

-1

By Lemma 6, it is now sufficient to show that (T(®)(2))" = (@'T(2))"'. Write therefore

(263)” - (ero)
(1 ) I 1 i% [al}éa) _ Bk} + BI(CO‘)Bk [aij(UQ) _ Cziq)(UQ)}
- Ca NN 7 a) (o
Nz 1j=1 o [1 4 byCj(02)] [1 + b( )(( (o )}
The first summand is positive definite since 0> > 0 and o > 1. All other terms are also positive definite since

aB,(Ca) — b > 0 from (49) and aB,(Ca)Bkaj( 2) > bkb(a Cka)( 2), since ab( @ > by, and biCrj(0?) > B,(ca)c,i’;‘) (0?)

-1

kj-

by (48)-(ii) and (47)-(i). Since the sum of positive definite matrices is also positive definite, we have a(y; (02) —
¢ ,i?)(az) > (. This terminates the proof of scalability.
Thus, we have shown h : (21,...,2x) — (h1,...,hk) to be a standard function. Moreover, from the series

convergence in Theorem 1 and Theorem 9, we have the following algorithm to compute bj, and Crj(0?):
by = lim 5" Coi(0?) = lim ¢ (0?)
t—o00 k> J kj
where

Bg) %trP;C (mkPk + {ck - mkb (¢~ 1)] Ink>71

—1
K N

bRy, 2
SUICOTRETU N ) o) gL SN
J Nk 1= 1+bk<]% 1)(02)

and b,g ) can take any value in [0, ¢xCr/x) and C(O)( %) =1/0? for all k, j.

APPENDIX E

PROOF OF THEOREM 4

We begin by proving the following result:

max |ax (o) — br(a?)| 220 (50)
mlgx|ak(02) —br(eH)] 30 (51)

where ay(02), ap(o?) are defined in Theorem 1 and by, (c?), by (c?) are defined in Theorem 2, assuming that the

matrices Hj, are random and modeled as described in (2). For notational simplicity, we will drop from now on the
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dependence on o2. From standard lemmas of matrix analysis, we have

K -1
1 _
ap = NterHII: (; CLZHlH;_l =+ O'QIN>

1 Ny, K -1
=5 > hy (Z a; H;H + 021N> hy;
j=1

i=1

-1
2 (S aHEY - Gyl +o'ly) by

= —1
N j=11+ akhgj (Zszl C_lZHlH? — akhkjhzj + O'QIN) hkj

where the last step follows from Lemma 3. If @; were not dependent on hy;, we could now simply proceed by
applying Lemma 4 to the individual quadratic forms, i.e.:

K -1 K -1

h}) (Z aH;HY — ahyhl, + 02IN> hy; = %trRkj (Z a;H;HY — aphy;hf; + 0’2IN>

i=1 =1
where, in the following, for {an } and {by} two sequences of random variables, we denote a =< by the equivalence
relation ay — by =2 0 for N — 0.

However, in order to show that this step is correct, in a similar manner as in the proof of Theorem 7, we need

the following intermediate arguments. Define a; ; and a;j; as the unique solutions to the following fixed-point

equations:

1 K o

aip; = —trH; ;HY i Hy Y+ 0%

i,kj — N 1,kj 44 kg Lkt ki ] kg N
=1

1 _
Qi fj = NtrPi (@i 1 Pi + [k — @i ki k5 1n,]) !
fori e {1,..., K}, where

H;;; = )
(hgy - hyj_thpjer - -hgy,), k=i

Thus, @; x; and a; ; are independent of hy;. Following similar steps as in the proof of Theorem 7 (Step 3), one

can show that for ¢ € {1,..., K} and all &, j,
Qi k5 — G4 ﬂ) 0, di,kj —a; 2) 0. (52)

Thus, we have
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-1
h,':j (Zszl C_I,Z'HiHi--| — akhkjhzj + O'2IN> hy;

1
N Z: = hH K = H_ - H oy )7
j=11+ akhkj Zi:l aszHz — akhk.jhkj + o?Iy hkj

1
K _ _
@ 1 Ng hzj (Zi:l ai,ijiH;" . ak,kjhkjhgj + JzIN) hy;

T
=114 (ikhgj (Zfil a; p; H;HY — dk,kjhkjhgj + UQIN) hy;

—1
K _ _
® 1 Ny, %trRkj (Zi:l ai,ijiH;-' — ak,kjhkjhzj + 0'2IN)

=
NiZis ak v trR; (Zfil a; k HiHY — @y, phyghi + O'QIN)

- N — _ 1 K _ H 2 -1
j=11+ athI'Rkj Zi:l azHin + 021N

—1
%U‘Rk]‘ <ZZK:1 C_LiHiHi--| + O'QIN)

_ 53
1+ aptrRy; T 43

@ 1 N %H’Rkj':_[‘
¥
j=1

where (a) follows from (52), (b) follows from Lemma 4 and Lemma 8, (c) is again due to (52) and Lemma 7, and

(d) follows from an application of Theorem 9, where we have defined

-1
_ 1ok @Ry,
T = N ,; ]; H%—tr;{k{f + 0%y
Note again that Theorem 9 cannot be directly applied here since the quantities a; depend on the matrices H,.
However, it is immediate to show that the result extends in this case, by replacing a,; by a; x; at each necessary
step of the proof.
Hence, we can write
K -1 N 1 _
ap = %terHg (Z c‘ziHiHiﬂ + 021N> = % Z % +ENE
i=1 j=1 N J
for some sequences of reals ey, satisfying ex j — 0.
Recall now the following definitions for £k =1,..., K:

Ny, 1 T
ap = — — = T €Nk
N ; 1+ agtrRy; T

b 1 % %tI‘Rij
k= ) e
N = 1+ bk%trRij
= LS Pki
N = Ci, — apay + akpkj’

0 < ay < cklr/ak

ng

_ 1 Pkj - _
bk:*E — = , 0 < b < cxCi /b
N = C — bkbk + bkpkj /
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where

=
Il

1 &KX axR
kIVkj 2
— + o“IN
N ;2 1+ fn e~ trRy; T
1

Ty bRy
T=|— S R I
N ;; 1+ by trRy,; T

A. Case: limsupc, < 1

We will first assume that limsupc, < 1 for all k. The case limsupc, = 1 will be treated separately in the
subsequent section. Denote P = maxy,{lim sup||P||}, R = max,, {limsup||R,||}, ¢; = max;{limsupc;} and
¢_ = min,{liminf &}, ¢4 = maxy{limsupc}. Since we are interested in the asymptotic limit N — oo, we

assume from the beginning that IV is sufficiently large, so that the following inequalities hold for all k:
c<cp, eo<a<er, |[Pul<P Ryl <R

We then have the following properties:

_ P _
ap < ————, by < ————, brbp < cyiy, ap < c4Cy. 54
WS Toe ST oepa RO <orles arlr <y (54)
For notational simplicity, we define the following quantities:
§ = max|ay — by, f_:mgxmk—z’ﬂ-

We will show in the sequel that £ 2% 0 and € 22 0 as N — oo.

Consider first the following difference:

K N[ — 7
1 aiRyym, biRim -
—trR — — = = | T
i T <N Z Z 1+a Ry, T 1+ bl}vtrleT> ’

=1 m=1

1 _
sup |—trRy; (T - T)' = sup
kj | NV k.j

sup i i N a; — Bl + (ili)l (%tl‘leT - %U’le’i‘) itrR TR, T
ki |N &~ = (1+a5uRy,T) (1 +bLuR,T) N 700
2

< — K maxey [max |G — br| + max |abg| sup ; (T — T)‘

o k k k k.j
< B e e L LeRy; (T—1T)

c ———sup | —trRy,; (T —

=gttt (1 —cy)2eE2 ,wp N M

where the first equality follows from Lemma 2. Rearranging the terms yields:

1 _ P’Ke .
sup | —trRy; (T — T)‘ <— (55)
by [N o e

RP
for O' > W
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Consider now the term ¢ = maxy, |ap — by|:

&= max zk: w Ry (T —T) + (b, — <_1k)ﬁtrRkj ~tuRy; T
(1+ ar+tRi;T) (1 + by 2 trRy; T)

+ Nk

_ R? _
<e —t R.: (T—-T Ci—- ar — b
7c+s]1€1jp Nr k]( )‘+c+0_4 m]iaux|a;€ k|+ml?x|eN,k\
P2Ké _ ELR?_
< Rz—;z £+ +4 €+maX|EN7k’|
0.4 _ o k

(I1—cy)2e2

P?’Ke e R?| -
== R;}_’? + +4 §+m]?X|€N,k‘ (56)

T e ¢

where the last inequality follows from (55). Similarly, we have for §_ = maxy |ar — l_)k|:

arax — bebk + pr; (bx — ay)
e £S5 ¢
(ex — aray + agpr;)(Cx — brbr + brpr;)
pk maxy \ak — bk‘ maxg [sz|ak — bk] | + maxy bk‘(lk — Bk‘
R e o [l — D
N (1—cy (1 —c4)%c
P2 1 PRe, -
<1+ ikt S
=M= ( * <1—c+>a_>“ M= )28
2PRe RP
Thus, for 02 > max { (1—c+)2+537 ST } we have
_ 2P? 1
< 1 . 57
SSer 2(*(1—(:+>c_>E oD
Replacing (57) in (56) leads to
P2K¢c? ¢y R? 2P? 1
< t 4+ (1+ ) + max |ex k.
T s B ot | (-2 (I—c)e &+ max fen.i|

2

For o“ sufficiently large, we therefore have

0<E<Cen — 0

for some C' > 0. This implies that £ 2% 0 and, by (57), that é 2% 0 . Since by, Gy, by, are uniformly bounded

2 2

for o* spanning any closed subset of R, and a, is almost surely uniformly bounded for o* spanning any closed
subset of R, , we have from Vitali’s convergence theorem [37] that the almost sure convergence holds true for all

02 € R,. This terminates the proof for ¢ < 1.

B. Case: limsupcg =1

It was shown in Appendix A (reminding that a;(c?) = é,(—0?)) that the following refined inequalities hold for

Ckili

Using these inequalities instead of (54) in the proof for the case ¢, < 1, one can show that £ =2 0 and £ 2% 0

as N — oo.
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C. Convergence of the mutual information

Consider now the first term of Vi (o 2) in Theorem 10. Due to the convergence of ax — b =2 0 and the almost

sure boundedness of the H;H!! matrices, sz (@ — bp)H HY|| 25 0, and we have immediately that

K
1 1 _ H 1 1 T H a.s,
N 10g det (IN + p ké_l Clk;Hk;Hk> — N 1ogdet (IN + ; ké_l bk;Hka> — 0.
Applying Corollary 3 to the second term yields

%log det <IN + % ékakH2> — Vn(o?) 25 0. (58)
Consider now 1\ )( 2) and 1 b )( 2) as defined in Theorems 3 and 4. It follows from (50), (51) and (58), that
1Y (%) = IV (%) 23 0.
This implies also that
19(0%) - 1V (6?) 2% 0. (59)

To prove convergence in the mean, we can no longer use the fact that [ (b)( 2) is bounded for all N as in Appendix B,

which is now untrue. Instead, we will use the same arguments as in [5]. Denote
—1

(®) 1 (®) -\ —2)R
b —1 _ (b k,J
= —tr(By — 21 = t —z1
my (2) Nr( ~N—2z2In)7T, My (2) = r ZZI—Fbk (20 (=) 21N
where m(Nb)(z) is the Stieltjes transform of B . It is easy to see that
_ * /1 1
EIY (02) — IV (o) = / ([ - Em§3>(w)] - [ - mgyw)D dw.
o2 w w
We now apply the argument from [5, pp. 923] which shows that
(1 b) L _w
— _E (b _ _ | d
[ ([5-En0) - |2 - alw)] ) o
[ee] K Nk
1 (b) w)Rp,j
< — | E tdFy — d;
_/02 w? ‘ /0 ()‘ szlﬂ’k W) G (w) N

the right-hand side of which exists for all N and is uniformly bounded by 2 (K PR). Since mg\l;)( —w) —mg\l}) (—w) 2%
0 (as a consequence of the convergence aj — by, =23 0), the boundedness of mg\,)(—

convergence) that Emgy (—w) — mg\?) (—

w) then ensures (by dominated
w) — 0. Since the integrand tends to zero and is summable independently
of N, the dominated convergence theorem now ensures that

EI{ (6%) — IV (62) — 0.

We now turn to the proof of Proposition 1.

Proof of Proposition 1: By the chain rule of differentiation, we first have
dI{ (0?)  oIY(0?) Rl O(o2) ob; . 1Y (02) b,
dpr; O < by p; db;  pr;
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Consider now the partial derivative
oIV (0%) _ 0Vn(e?) 1 N 1 S (1)
ob; ob; + N r ( * [C ] 1) N 7:21 ¢; — bib; + b,‘pij ¢; — b;b;
Vn(o?) - 1—c)e 1 & 1
L W (TS S N
8[)2 C; — bibi N Cz - b b + bzp”
. 8‘_/]\[(0'2)
R
where the last equality follows from
N._n. —
C; — b; b + bzp” 1 ¢ —bb;
0=¢; — Nzcl—bb +b1pw N ; Ei—bigi
1 ¢ 1 1 ¢ Dij H—m
=C; — _ifbigif _— bzf S _1717151]\[7]){
¢- (@ )N ]; ¢; — bib; + bipy; N N ; Ci — bib; + bipyj (e )51' — b;b;
_ 1—¢)e 1 & 1
= (& — bib;) 1—(,70)70—N P T
Ci — bibi S = by + bipy;
and ¢; > ¢;c; > biBi by definition.
Similarly, we have
oIV (0%) _ 9Vn(0®) p [Q-cde 1 i 1
8131 N 861 ! C; — bJ)L N ]:1 —b; b + blpb]
o 8‘7]\[(0'2) b
o ’
It remains now to calculate the partial derivatives 6‘73’17(:72) and 8‘7”l—ff’2). To this end, note that
K Ny 1
1 1 -1 +trRy ;T
1= —uTT '=0>_—uT+ ) by— A
N N I; N ; 1+ by ﬁtI‘Rkth
1 K
— 2 5
=0 NtrT + Z brby.
k=1
Replacing Zszl brby, in (8) by %trTT*1 — o tr'T yields
_ 1 1 , 1 L
Vn(o?) = N log det (O'QT) — NtrTTf1 +o NtrT + — N I;jzllog (1 + bkftrRk b )
Taking the derivative with respect to b; and denoting T/ = 2L Jeads to
_ N 71 T N; 1
OV (02) 1 ) K by L tRy ;T 1 LuR, ;T
———=——tuT T trT — —_— 4 — = :
db; N +o” + ZZ 1+ by~ Ry ;T N Z +b; % tuR; ;T
KN BkﬁtrRmT’ trT, s 72’3% by trRy, ; T
=1 =1 1+ bk%tl‘RkJT

1

2 /o

—0“—trT E E T 1. .
N <1+ by Ry, ;T

+b;
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This implies that 2 N ((, ) = 0. We similarly have
8VN (0’2) -0
ob;
1Y (0%) . .
and hence 55— = 0. Putting the last results together yields
di{ (0?) oI (0?) by ©0)
dpy; Opr;j N (Ek — bpby + bkpkj) '
We can calculate the second derivative in a similar manner:
IV (0%) _ PIN(0Y) _ G -0
dp%j 8pij N (Ek — brby, + bkpkj)2 -

since by > 0. Thus, I_](\?) (02) is a concave function in py; for all k, 5. It is straightforward to verify that also IJ(\Z;) (0?)
is concave in all py;.

Consider now the Lagrangian functions related to the power constraints (/) and (/1):

100 =S (X —B) (D)

L(Aa)\la'"a)\K7p115"'apKNK): b (61)
IV (o) - (Zk 1 nlk Z] 1Prj — ) (1)
We have from (60)
by A
0L _ N(Ek—bk5k+bkpkj) Tk (I) (62)
Opej | ____ e A (qp
N(Ek—bkbk+bkpkj) Nk ’
Solving for the Karush-Kuhn-Tucker conditions [40] for both cases yields the desired result.
Take now the optimal solutions P* £ (P7,... ,P%) and P* 2 (Py,... ,P%.) and consider the following dif-

ference:
19(P") — 1Q(P*) = 10 (") = Y (PY)| + [1¥(P*) — IV (B)] + |10 (P*) — 17 (P)]

where we used I (P*) and I (P*) to denote I (52) and I\ (52) evaluated for the matrices (P%,...,P%)

and (P7,...,P%) , respectively. Assuming that maxy lim sup y ||P%|| < oo, we have from Theorem 4
Iy (P*) - I (P*) 2% 0
Iy () - 1) (P*) 2% 0.

Since IJ(\I,’)(P*) - I](\?) (P*) >0 and fj(\?)(P*) - 1:](\?)(13*) < 0, we can conclude that
10@*) - 19@*) 2% 0.

It remains now to show that the matrices P} satisfy indeed maxg limsup||P%| < co. Consider therefore the

following expression:

IEI](é))fE—logdet <1N+ B + 2 kakjwkjﬂk)
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which is clearly strictly concave in py; for all £, j. The corresponding derivative with respect to py; reads

ORI 1 1 1 -

1 1 -

Similar to (62), the derivative of the Lagrangian to the optimization problem (9) is given as

—1

oL EagwiiHY (Iv + 5By) Hewy; — 22 (1)

Opri h 1 :

P | Edpwi HY (Iy + 5By) Hywy — 2 (1)
Consider now constraint (I). At the optimal point, we need to have % = 0, and therefore

-1
Since the right-hand side is independent of j, it follows that P} = p,IL,,, where pj is a parameter to be optimized.
Since niktrP; = pr < Py, we have maxg limsupy||P%|| = pr < Py < oo. The same arguments hold for the
sum-power constraint (I7). [ |
Proof of Theorem 6: The proof follows directly from (50), (51), and Theorem 5. [ ]

Proof of Corollary 2: The almost sure convergence follows directly from Theorem 6 and the continuous
mapping theorem [39, Theorem 2.3]. For the convergence in mean, note first that, RS\?)(UQ) < I](\l;) (0?) and also

RV (0?) < I¥(02). Thus, for N sufficiently large, we have
RY (%) — RV (0®)| < limsup I (02) + IV (0%) £ ¢(o?).
N
Since E¢(0?) < oo, it follows from the dominated convergence theorem that

ER{ (02) - RY (0?) —— 0.

N—oc0

APPENDIX F

FUNDAMENTAL LEMMAS

Lemma 1 (Defining properties of Stieltjes transforms, Theorem 3.2 in [11]): If m is a function analytic on Cc*t
such that m(z) € C* if z € C* and
lim —iy m(iy) =1 (63)

Y—+00
then m is the Stieltjes transform of a distribution function F' given by

b
F(b) — F(a) = lim l/ Im[m(x + iy)]dx.

y—=0 T

If, moreover, zm(z) € C* for z € C*, then F(0~) = 0, in which case mn has an analytic continuation on C\R™.
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Lemma 2 (Resolvent identity): For invertible matrices A and B, we have the following identity:

A'-B!' = A B-AB'.

CNXN

Lemma 3 (A matrix inversion lemma, Equation (2.2) in [41]): Let A € be Hermitian invertible, then for

any vector x € C" and any scalar 7 € C such that A 4+ rxx" is invertible
HA -1
H Hy—1 XA
A =
x (A4 Txx") Ty ——
Lemma 4 (Trace lemma [30, Lemma 2.7]): Let A1, Ao, ..., with Ay € (CNXN, be a sequence of matrices with

uniformly bounded spectral norm and let xy =€ C" be random vectors of i.i.d. entries with zero mean, variance

1/N and eighth order moment of order O(1/N*), independent of A y. Then, as N — oo,

1 a.s,
le-\i/'ANXN — NtrAN — 0. (64)

Lemma 5 (Trace lemma for isometric matrices, [8]): Let W be n < N columns of an N x N Haar matrix and
suppose w is a column of W. Let By be an NV x N random matrix, which is a function of all columns of W

except w and B = supy || Bn|| < oo, then
4

c
<

E _ﬁa

tI‘(HBN)

WHBNW—
-n

where IT = Iy, — WWH + ww! and C is a constant which depends only on B and N

NXN
CX

Lemma 6 (Trace inequality): Let A,B,R € , where A and B are nonnegative-definite, satisfying B > A,

and R is nonnegative-definite. Then
tR(A™'—=B™') >0. (65)
Proof: Note that B = A implies by [42, Corollary 7.7.4] B=! < A~!. Thus, for any vector x € CN,
x" (AT -B ) x> 0. (66)

Consider now the eigenvalue decomposition of the matrix R = UAU", where U = [uy,...,uy] and A =

diag(A1,...,An). Since \; > 0 Vi, we have
N
rR(A™' =B => " Au' (A" =B ") u; >0. (67)
i=1

||
Lemma 7 (Rank-1 perturbation lemma [41]): Let z <0, A € CN*N B e CN*Y with B Hermitian nonnega-
tive definite, and v € C~. Then,
A

E

‘tr (B—2Iy)""—(B+ vt — 2In)7Y) A‘ <

Lemma 8: [15, Lemma 1] Denote ay, ax, by and by four infinite sequences of complex random variables
indexed by N and assume ay < @y and by < by. If |ay/|, |by| and/or |ax|,|by| are uniformly bounded above
over N (almost surely), then axby < ayby. Similarly, if |ay|, |bx|~! and/or [ay|,|bx|~! are uniformly bounded

above over N (almost surely), then ay /by < Gy /by.
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Lemma 9 (Tonelli theorem [36, Theorem 18.3]): If (0, F, P) and (', F’, P’) are two probability spaces, then

for f an integrable function with respect to the product measure Q on F x F,

/stz/ fey)Qd(z,y)) = /Q { N f(x,y)P’(dy)} P(dz)

| s = | [/ f(,v) dy] /().

APPENDIX G

and

RELATED RESULTS

Theorem 9 ([1, Theorem 1]): Let By = XX", where X € CYN*"™ is random. The jth column x; of X is given
as X; = R]% z;, where the entries of z; € CY are i.i.d. with zero mean, variance 1/N and finite moment of order
4 + ¢, for some common € > 0, and R; € CM*N are Hermitian nonnegative definite matrices. Let Dy € CN*N
be a deterministic Hermitian matrix. Assume that both R; and Dy have uniformly bounded spectral norms (with
respect to N). Then, as n, N — oo such that 0 < liminf N/n < limsup N/n < oo, the following holds for any
z€ C\Ry:

S

1 a1 8.8,
D~ (By — 2Iy) - DN Tx(2) =50

where Ty (z) € CV*V is defined as
-1

R .
TN(Z) = J — ZIN
N — 1+ 5J(Z)
and where d1(z),...,0,(z) are given as the unique solution to the following set of implicit equations:
-1
1 1< R;

0;(z) = =ttR; | — e | =1,... 68

](Z) Nr 9 N]=11+5J(Z) ZiN ’ J ) 1 ( )
such that (01(2),...,d,(2)) € 8™. For z < 0, 01(2),...,dn (%) are the unique nonnegative solutions to (68) and
can be obtained by a standard fixed-point algorithm with initial values 6](-0)(,2) = —1/zfor j =1,...,n. Moreover,

let F'y be the empirical spectral distribution (e.s.d.) of By and denote by Fy the distribution function with Stieltjes

transform %trT ~N(z). Then, almost surely,

FN—FN:>0.

Theorem 10 ({43]): Under the assumptions of Theorem 9, let o > 0 and define VN(ch) = % log det (IN + %BN).

Then, as N,n — oo,
EVN(O'Z) — VN(UQ) — 0

where

1 1 1
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and where §; = §;(—0?) for j =1,...,n are given by Theorem 9.

Corollary 3: Under the assumptions of Theorem 10, assume additionally that the matrices R;, j = 1,...,n, are

drawn from a finite set of Hermitian nonnegative-definite matrices. Then, as N,n — oo,
V(0% = V(%) 230 (69)

where Vi (02) and Vi (02) are defined as in Theorem 10.

Proof: It was shown in [44, Proof of Theorem 3] that By has almost surely uniformly bounded spectral norm
as N,n — oo if the matrices R; are drawn from a finite set of matrices. Thus, F'y and F'x as defined in Theorem 9
have (almost surely) bounded support. Consider now a set A C 2, € generating the matrices B, for which By
has bounded spectral norm, and a set B C Q for which Fy — Fy = 0. Since P(A) = P(B) = P(ANB) =1, it

follows from [45, Theorem 25.8 (ii)], that, as N,n — oo

/log(l + 27 N dFN(N) — /log(l + 27 N dEN(N) 230 (70)
which is equivalent to stating that Viy(z) — Vi (z) &3 0. [ |
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