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Abstract—We consider the uplink of a one-dimensional 2-cell
network with fixed base stations (BSs) and randomly distributed
user terminals (UTs). Assuming that the number of antennas
per BS and the number of UTs grow infinitely large, we derive
tight approximations of the ergodic sum rate with and without
multicell processing for optimal and sub-optimal detectors. We
use these results to find the optimal BS placement to maximize
the system capacity. This work can be seen as a first attempt
to apply large random matrix theory to the study of networks
with random topologies. We demonstrate that such an approach
is feasible and leads to analytically tractable expressions of the
average system performance. Moreover, these results can be used
to optimize certain system parameters for a given distribution of
user terminals and to assess the gains of multicell cooperation.

I. INTRODUCTION

Multicell processing or base station (BS) cooperation is

an effective means to counter intercell interference and to

increase the spectral efficiency of mobile networks [1], [2],

[3]. Although this topic is under heavy research since several

years, the theoretical analysis has been limited for a long time

to simple Wyner-type models [4], [5] or simulations [6]. Only

recently, more complex system models accounting for realistic

features, such as limited backhaul capacity, imperfect channel

state information (CSI), and path loss, were considered using

asymptotic results of large random matrix theory (RMT) [7],

[8], [9], [10]. However, all these works assume a deterministic

placement of the user terminals (UTs) and BSs, and RMT is

only used to average over the random channel gains.

A promising approach to deal with large random networks

is stochastic geometry [11], [12]. This technique assumes that

the UTs and the BSs form independent spatial point processes

with known stochastic properties. The main goal is then to

characterize the distribution of the signal-to-interference-plus-

noise ratio (SINR) at a typical receiver and to derive related

metrics such as the throughput or the outage probability.

Although a very powerful tool, stochastic geometry has not

yet led to tractable results considering multicell processing.

First steps in this direction were taken in [13], [14]. However,

these works consider only interference coordination but not

data sharing or joint decoding/precoding.

The aim of this paper is to extend the existing random

matrix methods for the analysis of multicell cooperative sys-

tems to account for random user locations. This allows one to

find approximations of the average system performance (with

respect to fading and to user locations) and to answer questions

Fig. 1. Sketch of the system model.

of the type: For a given area and user distribution, where

should one deploy the BSs? How much do we gain on average

from multicell cooperation? How does cooperation affect the

optimal BS placement? In order to explain our approach and

to keep the presentation simple, we restrict ourselves in this

work to a one-dimensional network consisting of two BSs and

randomly deployed UTs on a line. Under a large system limit

where the number of antennas per BSs and the the number

of UTs grow infinitely large, we derive tight approximations

of the uplink sum-rate with and without multicell processing

for optimal and sub-optimal detectors. We then leverage these

results to find the BS placement which maximizes the system

capacity. Simulations demonstrate that the asymptotic results

provide tight performance approximations for realistic system

dimensions. Many extensions of this work are possible, e.g.,

2/3-dimensional networks topologies, downlink transmissions,

or more realistic path-loss models accounting for directional

antennas.

II. SYSTEM MODEL

The focus of this paper is on the uplink of a one-dimensional

system where two BSs and K UTs are located on a line of

length D (see Fig. 1). We assume that one BS and half of the

UTs are located in each of the intervals [0, D/2] and [D/2, D].
These will be referred to as cell 1 and 2, respectively. Each UT

is indexed by a couple (i, k), i ∈ {1, 2}, k ∈ {1, . . . ,K/2}.

The BSs are equipped with N/2 antennas; the UTs have a

single antenna. BS i is located at position Ri; UT k in cell i
is located at position xi,k. The UTs in both cells are assumed

to be randomly uniformly distributed. We will distinguish

between two scenarios: cooperation and no cooperation. In

the first scenario, both BSs jointly decode the messages for

the UTs in both cells. We ignore any practical constraints,



such as limited backhaul capacity, and assume that the BSs

can cooperate without any restriction. Thus, they can be seen

as a distributed antenna system with N antennas. In the second

scenario, each BS only decodes the messages from the UTs

in its own cell.

A. Uplink channel model

Denote yi ∈ C
N/2

the received signal vector at BS i. Then,

the stacked received signal vector y ∈ C
N

at both BSs reads

y =

(

y1

y2

)

=
√
ρ

ul
Hs+ n =

√
ρul

(

H1

H2

)(

s1
s2

)

+

(

n1

n2

)

=
√
ρul

(

H1,1 H1,2

H2,1 H2,2

)(

s1
s2

)

+

(

n1

n2

)

(1)

where si ∼ CN (0, IK/2) is the transmit vector of the UTs

in cell i, ρul is the transmit signal-to-noise ratio (SNR),

ni ∼ CN (0, IN/2) is a noise vector at BS i, and Hi,j =
[

hi,j,1 · · ·hi,j,K/2

]

∈ C
N/2×K/2

is the channel matrix from

the UTs in cell j to BS i. We model Hi,j as

Hi,j =
1√
K

Gi,jT
1

2

i,j (2)

where Gi,j ∈ C
N/2×K/2

is a standard complex Gaussian

matrix, Ti,j = diag(fi(xj,k))
K/2
k=1 ∈ (R

+
)K/2×K/2 is a path

loss matrix, with fi(x) the path loss function from a UT at

position x to BS i. We assume the widely used path loss model

fi(x) =
1

(1 + |Ri − x|)β
(3)

where β is a path loss exponent and the term “1+” ensures

that fi is bounded. However, any other bounded path loss

function could be considered. One could for example account

for different heights of the BSs or introduce more complex

path loss functions, e.g., to model directional antennas.

B. Performance measures

We consider two different performance measures, namely

the ergodic mutual information and the ergodic sum-rate with

minimum-mean-square-error (MMSE) detection, normalized

by N . Both quantities must be understood as averages over

both the channel realizations and the positions of the UTs.

We assume that full CSI is available at the BSs, while the

UTs are unaware of the channel realizations.
1) Cooperation: For the case of full cooperation, the er-

godic mutual information and MMSE sum-rate per antenna are

respectively defined as (log(x) denotes the natural logarithm)

Ic(ρul) =
1

N
E
[

log det
(

IN + ρulHHH
)]

(4)

and

RMMSE
c (ρul) =

1

N

2
∑

i=1

K/2
∑

k=1

E
[

log
(

1 + γc
i,k(ρul)

)]

(5)

where

γc
i,k(ρul) = hH

i,k

(

HHH − hi,kh
H

i,k +
1

ρul

IN

)−1

hi,k (6)

and hi,k ∈ C
N

is the kth column of the matrix (HT

1,iH
T

2,i)
T.

2) No Cooperation: For the case of no cooperation, both

quantities are respectively defined as

Inc(ρul) =
1

N

2
∑

i=1

E
[

log det
(

IN + ρHiH
H

i

)

− log det
(

IN + ρHi,̄iH
H

i.̄i

)]

(7)

where ī = mod(i, 2) + 1 and

RMMSE
nc (ρul) =

1

N

2
∑

i=1

K/2
∑

k=1

E
[

log
(

1 + γnc
i,k(ρul)

)]

(8)

where

γnc
i,k(ρul) =

∣

∣

∣hH

i,i,kQi,khi,i,k

∣

∣

∣

2

hH

i,i,kQi,khi,i,k + hH

i,i,kQi,kHi,̄iH
H

i,̄i
Qi,khi,i,k

(9)

and

Qi,k =

(

Hi,iH
H

i,i − hi,i,kh
H

i,i,k +
1

ρul

IN/2

)−1

. (10)

III. DETERMINISTIC EQUIVALENTS: FROM FIXED TO

RANDOM USER LOCATIONS

Computing the above performance measures for finite sys-

tem dimensions is in general intractable by exact analysis. We

will therefore consider a large system limit where N and K
grow infinitely large at the same speed. This allows us to derive

asymptotically tight approximations of all quantities which are

shown by simulations to be accurate for small (N,K). We will

first recall some existing results of RMT (slightly adapted to

our notations). These will be extended to account for random

user locations and are needed for the derivations in Section IV.

Theorem 1 ([15, Theorems 2.4, 4.1 and Lemma 6.1]): Let

Y ∈ C
N×N ′

be defined as

Y =









X1,1D
1/2
1,1 · · · X1,CD

1/2
1,C

...
. . .

...

XB,1D
1/2
B,1 · · · XB,CD

1/2
B,C









where Xi,j ∈ C
Ni×nj is random with i.i.d. entries [Xi,j ]k,l ∼

CN (0, 1/n) and Di,j = diag(gi(zj,k))
nj

k=1 for some nonnega-

tive bounded function gi and sequence of reals (zj,k)1≤k≤nj
.

Denote N =
∑

iNi, N
′ =

∑

j nj , ci = Ni

n , and c̄i = Ni

N .

Assume that N1, . . . , NB , n1, . . . , nJ , n → ∞ such that 0 <
lim inf Ni

nj
≤ lim sup Ni

nj
< ∞ ∀i, j and 0 < lim inf ci ≤

lim sup ci < ∞ ∀i. Then, for any ρ > 0 and any Hermitian

nonnegative definite matrix R ∈ C
N×N

with bounded spectral

norm,

1

N
trR

(

YYH +
1

ρ
IN

)−1

− 1

N
trRΨ

a.s−→ 0

where Ψ = diag(Ψ1IN1
, . . . ,ΨBINB

) and (Ψ1, . . . ,ΨB) is

the unique solution to the following set of B implicit equations

Ψi =





1

ρ
+

1

n

C
∑

j=1

nj
∑

k=1

gi(zj,k)

1 +
∑B

b=1 cbgb(zj,k)Ψb





−1



such that Ψi ≥ 0 for i = 1, . . . , B. Moreover,

1

N
E
[

log det
(

IN + ρYYH
)]

− V (ρ) → 0

where

V (ρ) =

B
∑

i=1

c̄i log

(

ρ

Ψi

)

+
1

N

C
∑

j=1

nj
∑

k=1

log

(

1 +

B
∑

i=1

cigi(zj,k)Ψi

)

− 1

N

C
∑

j=1

nj
∑

k=1

∑B
i=1 cigi(zj,k)Ψi

1 +
∑B

i=1 cigi(zj,k)Ψi

.

Theorem 2 ([16, Proof of Lemma 3]): Under the assump-

tions of Theorem 1, the following holds

1

N
trR

(

YYH +
1

ρ
IN

)−2

− 1

N
trRΨ′ a.s.−−→ 0

where Ψ′ = diag(Ψ′
1IN1

, . . . ,Ψ′
BINB

) and Ψ′ =
[Ψ′

1 · · ·Ψ′
B ]

T is given as

Ψ′ = (IB − J)
−1

v

for v = [Ψ2
1 · · ·Ψ2

B ]
T and J ∈ (R

+
)B×B with elements

[J]i,b =
1

n

C
∑

j=1

nj
∑

k=1

cbgb(zj,k)gi(zj,k)Ψ
2
i

(

1 +
∑B

l=1 clgl(zj,k)Ψl

)2

where (Ψ1, . . . ,ΨB) is given by Theorem 1.

In the above theorems, the functions gi can be identified

with our path loss functions fi and the quantities zj,k with

the positions of the UTs xi,k. However, the values of zj,k
are assumed to be deterministic while we require them to be

random. The following propositions extend Theorems 1 and 2,

respectively, to the case where zj,1, . . . , zj,nj
are i.i.d. random

variables with distribution Fj .

Proposition 1: Under the conditions of Theorem 1, assume

additionally that (zj,k)1≤k≤nj
is a family of i.i.d. random

variables with distribution Fj , for all j. Then,

1

N
trR

(

YYH +
1

ρ
IN

)−1

− 1

N
trRΨ̄

a.s−→ 0

where Ψ̄ = diag(Ψ̄1IN1
, . . . , Ψ̄BINB

) and (Ψ̄1, . . . , Ψ̄B) is

the unique solution to the following set of B implicit equations

Ψ̄i =





1

ρ
+

C
∑

j=1

nj

n

∫

gi(z)

1 +
∑B

b=1 cbgb(z)Ψ̄b

dFj(z)





−1

(11)

such that Ψ̄i ≥ 0 for i = 1, . . . , B. Moreover,

1

N
E
[

log det
(

IN + ρYYH
)]

− V̄ (ρ) → 0

where

V̄ (ρ) =

B
∑

i=1

c̄i log

(

ρ

Ψ̄i

)

+
C
∑

j=1

nj

N

∫

log

(

1 +

B
∑

i=1

cigi(z)Ψ̄i

)

dFj(z)

−
C
∑

j=1

nj

N

∫
∑B

i=1 cigi(z)Ψ̄i

1 +
∑B

i=1 cigi(z)Ψ̄i

dFj(z).

Sketch: The uniqueness of solutions to the fixed-point

equations (11) can be easily proved by arguments from stan-

dard interference functions [17] (see, e.g., [18] for a detailed

explanation of this approach). Under the assumption that

zj,1, . . . , zj,nj
are i.i.d. with distribution Fj , it follows from

the strong law of large numbers (SLLN) and the boundedness

of the functions gi that

1

nj

nj
∑

k=1

gi(zj,k)

1 +
∑B

b=1 cbgb(zj,k)Ψb

a.s.−−−−→
nj→∞

∫

gi(z)

1 +
∑B

b=1 cbgb(z)Ψb

dFj(z). (12)

Using this observation, one can show that for some constant

A and for all 0 < ρ <
√
A−1, the following holds:

max
i

|Ψi − Ψ̄i| ≤
ǫn

1−Aρ2
(13)

where ǫn
a.s.−−→ 0 (see, e.g., [18, Theorem 4] for a similar proof).

By the Vitali convergence theorem [19], it follows that the

analytic extension of Ψi− Ψ̄i to C is an analytic function and

that the following convergence holds for all ρ > 0 :

Ψi − Ψ̄i
a.s.−−→ 0 ∀i. (14)

The last step is then to show that

1

N
E
[

log det
(

IN + ρYYH
)]

− V̄ (ρ) → 0. (15)

This can be done by dominated convergence arguments similar

to the proof of [15, Theorem 4.1].

Proposition 2: Under the conditions of Theorem 1, assume

additionally that (zj,k)1≤k≤nj
is a family of i.i.d. random

variables with distribution Fj , for all j. Then,

1

N
trR

(

YYH +
1

ρ
IN

)−2

− 1

N
trRΨ̄

′ a.s.−−→ 0

where Ψ̄
′

= diag(Ψ̄′
1IN1

, . . . , Ψ̄′
BINB

) and Ψ̄
′

=
[Ψ̄′

1 · · · Ψ̄′
B ]

T is given as

Ψ̄
′
=
(

IB − J̄
)−1

v̄

for v̄ = [Ψ̄2
1 · · · Ψ̄2

B ]
T and J̄ ∈ (R

+
)B×B with elements

[

J̄
]

i,b
=

C
∑

j=1

nj

n

∫

cbgb(z)gi(z)Ψ̄
2
i

(

1 +
∑B

l=1 clgl(z)Ψ̄l

)2 dFj(z)

where (Ψ̄1, . . . , Ψ̄B) is given by Proposition 1.



Proof: First, by the SLLN

1

n

C
∑

j=1

nj
∑

k=1

cbgb(zj,k)gi(zj,k)Ψ
2
i

(

1 +
∑B

l=1 clgl(zj,k)Ψl

)2

−
C
∑

j=1

nj

n

∫

cbgb(z)gi(z)Ψ
2
i

(

1 +
∑B

l=1 clgl(z)Ψl

)2 dFj(z)
a.s.−−→ 0 (16)

where Ψi are defined in Theorem 1. Second, Ψi−Ψ̄i
a.s.−−→ 0 ∀i,

as shown in the proof of Proposition 1. Thus,

[J]i,b −
[

J̄
]

i,b

a.s.−−→ 0 ∀i, b (17)

where J is given by Theorem 2. This implies that

Ψ′
i − Ψ̄′

i
a.s.−−→ 0 ∀i. (18)

IV. MAIN RESULTS

Equipped with the results from the last section, we are now

able to derive large system approximations of the performance

measures introduced in Section II. We assume from now on

that N,K → ∞ while 0 < lim inf c ≤ lim sup c < ∞,

where c = N
K . Since the UTs in both cells are randomly

uniformly distributed over the intervals [0, D/2] and [D/2, D],
respectively, it follows that xi,k ∼ Fi, where Fi has density

dFi(x) =

{

2
D1
(

0 ≤ x ≤ D
2

)

, i = 1
2
D1
(

D
2 ≤ x ≤ D

)

, i = 2
. (19)

The application of Proposition 1 leads then to our first result:

Proposition 3 (Mutual information with cooperation):

Ic(ρul)− Īc(ρul) −−−−→
N→∞

0

where

Īc(ρul) =
1

2

2
∑

i=1

log

(

ρul

ψi

)

+
1

cD

∫ D

0

log

(

1 +
c

2

2
∑

i=1

fi(x)ψi

)

dx

− 1

cD

∫ D

0

c
2

∑2
i=1 fi(x)ψi

1 + c
2

∑2
i=1 fi(x)ψi

dx

and (ψ1, ψ2) ∈ (R
+
)2 are given as the unique fixed-point of

ψi =

(

1

ρul

+
1

D

∫ D

0

fi(x)

1 + c
2

∑2
b=1 fb(x)ψb

dx

)−1

, i = 1, 2.

Our next result provides an asymptotically tight approxima-

tion of the sum-rate with MMSE detection:

Proposition 4 (MMSE Sum-rate with cooperation):

RMMSE
c (ρul)− R̄MMSE

c (ρul) −−−−→
N→∞

0

where

R̄MMSE
c (ρul) =

1

cD

∫ D

0

log

(

1 +
c

2

2
∑

i=1

fi(x)ψi

)

dx

and (ψ1, ψ2) are defined in Proposition 3.

Proof: By Lemmas 1 and 2 (see Appendix), the following

holds

1

K
tr

(

f1(xi,k)IN/2 0

0 f2(xi,k)IN/2

)(

HHH +
1

ρul

IN

)−1

− γc
i,k

a.s.−−→ 0. (20)

Direct application of Proposition 1 to the first term leads to

γc
i,k − c

2

B
∑

b=1

fb(xi,k)ψi
a.s.−−→ 0. (21)

By the SLLN and (21), we have

1

N

2
∑

i=1

K/2
∑

k=1

log
(

1 + γc
i,k

)

− 1

cD

∫ D

0

log

(

1 +
c

2

B
∑

b=1

fb(xi,k)ψi)

)

a.s.−−→ 0. (22)

Since the functions fi are bounded and ψi ≤ ρ, it follows from

dominated convergence arguments that the last convergence

also holds in the first mean. This concludes the proof.

Next, we provide a deterministic equivalent of the normal-

ized ergodic mutual information without cooperation:

Proposition 5 (Mutual information without cooperation):

Inc(ρul)− Īnc(ρul) −−−−→
N→∞

0

where

Īnc(ρul) =

2
∑

i=1

Īi,i(ρul)− Īi,̄i(ρul)

with

Īi,i(ρul) =
1

2
log

(

ρul

ψi

)

+
1

cD

∫ D

0

log
(

1 +
c

2
fi(x)ψi

)

dx

− 1

cD

∫ D

0

c
2fi(x)ψi

1 + c
2fi(x)ψi

dx

Īi,̄i(ρul) =
1

2
log

(

ρul

2υi

)

+
1

2c

∫

log (1 + cfi(x)υi) dFī(x)

− 1

2c

∫

cfi(x)υi
1 + cfi(x)υi

dFī(x)

and where (Ψ1,Ψ2) ∈ (R
+
)2 and (υ1, υ2) ∈ (R

+
)2 are given

respectively as the unique fixed points of the following sets of

equations:

ψi =

(

1

ρ
+

1

D

∫ D

0

fi(x)

1 + c
2fi(x)ψi

dx

)−1

, i = 1, 2

υi =

(

2

ρ
+

∫

fi(x)

1 + cfi(x)υi
dFī(x)

)−1

, i = 1, 2.

Proof: The proof follows directly from an application

of Proposition 1 to each of the four individual terms in the

expression of Inc(ρul).



Our last result is an asymptotically tight approximation of

the MMSE sum-rate without BS-cooperation:

Proposition 6 (MMSE Sum-rate without cooperation):

RMMSE
nc (ρul)− R̄MMSE

nc (ρul) −−−−→
N→∞

0

where

R̄MMSE
nc (ρul) =

2
∑

i=1

R̄MMSE
i (ρul)

with

R̄MMSE
i (ρul) =

1

2c

∫

log

(

1 +
cfi(x)υi

1 +
υ′

i

2υi

∫

fi(x)dFī(x)

)

dFi(x)

and where (υ1, υ2) ∈ (R
+
)2 is the unique fixed point of the

following set of equations

υi =

(

2

ρ
+

∫

fi(x)

1 + cfi(x)υi
dFi(x)

)−1

, i = 1, 2

and (υ′1, υ
′
2) are given by

υ′i =
2υ2i

1−
∫ cf2

i (x)υ
2

i

(1+cfi(x)υi)
2 dFi(x)

, i = 1, 2.

Sketch: By repeated application of Lemmas 1, 2 (see

Appendix), and the SLLN, one can show the following con-

vergence:

cfi(xi,k)
1
N tr

(

Hi,iH
H

i,i +
1

ρulIN/2

)−1

1 +
1

N tr
(

Hi,iH
H

i,i+
1

ρulIN/2

)

−2

1

N tr
(

Hi,iH
H

i,i+
1

ρulIN/2

)

−1

1
2

∫

fi(x)dFī(x)

− γnc
i,k(ρul)

a.s.−−−−→
N→∞

0. (23)

By Proposition 1, we have

1

N
tr

(

Hi,iH
H

i,i +
1

ρulIN/2

)−1

− υi
a.s.−−−−→

N→∞
0. (24)

By Proposition 2, we have

1

N
tr

(

Hi,iH
H

i,i +
1

ρulIN/2

)−2

− υ′i
a.s.−−−−→

N→∞
0. (25)

By the continuous mapping theorem, it follows that

γnc
i,k(ρul)−

cfi(xi,k)υi

1 +
υ′

i

2υi

∫

fi(x)dFī(x)

a.s.−−−−→
N→∞

0. (26)

Using the last result, we have by the SLLN that

1

n

2
∑

i=1

K/2
∑

k=1

log
(

1 + γnc
i,k(ρul)

)

− R̄MMSE
nc (ρul)

a.s.−−−−→
N→∞

0. (27)

By dominated convergence arguments one can then show

that the last convergence also holds in the first mean. This

concludes the proof.
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nc and their asymptotic approximations
by Propositions 3, 4, 5, and 6 versus R1. Markers correspond to simulation
results, solid lines to the asymptotic approximations.

V. NUMERICAL EXAMPLE

Let us now verify the accuracy of the asymptotic results of

the last section for a system of finite size. We assume N = 16
(8 antennas per BS), K = 14 UTs (7 UTs per cell), path loss

exponent β = 3.7, transmit SNR ρul = 10 dB and a cell radius

of 1 (i.e., D = 4). We further suppose R2 = D − R1 so that

the BSs are placed symmetrically to the inner cell edge. In

Fig. 2, we show the normalized ergodic mutual information

and MMSE sum-rate with and without cooperation and their

asymptotic approximations by Propositions 3, 4, 5, and 6

versus R1. We can see a good fit between the simulations and

the asymptotic results over the full range of R1; the accuracy

is slightly worse for the MMSE sum-rate. Moreover, one can

observe that the BSs should be located closer to the inner cell

edge if they cooperate. Otherwise they should be placed closer

to the outer cell edges to reduce intercell interference.

Next, we will use the asymptotic results to approximately

solve an optimization problem which would have required

otherwise a huge computational effort by Monte Carlo simu-

lations. We will vary the path loss exponent β and seek to find

for each value the optimal BS position R1 which maximizes

the mutual information and MMSE sum-rate with and without

cooperation. In Fig. 3 and 4, we show respectively the optimal

values of R1 and the ergodic rates as a function of β. From

Fig. 3, we can see that, irrespective of the type of detection

and cooperation, the BSs should be located closer to their

cell centers when the path loss is high. The gains of multicell

processing in this regime are low as can be seen from Fig. 4.

We can also observe that cooperation has a higher impact on

the optimal BS placement when MMSE detection is applied.

With cooperation, the BSs should be placed closer to each

other than with optimal detection; without cooperation the

contrary is true.
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Īnc

R̄MMSE
c

R̄MMSE
nc

Fig. 3. Optimal BS position R1 versus β.
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VI. CONCLUSIONS

Based on RMT, we have developed deterministic equiva-

lents for the performance analysis of cooperative multicell

systems with random user locations. These results provide

tight approximations of the average system performance and

can be used to optimize certain system parameters, e.g., the

optimal placement of BSs. Many extensions of this work are

possible. Especially the combination of RMT and stochastic

geometry seems a promising venue for future research.

Lemma 1 ([20, Lemma 2.7]): Let A ∈ C
N×N

and x =
[x1 . . . xN ]

T ∈ C
N

be a random vector of i.i.d. entries,

independent of A. Assume that E [xi] = 0, E
[

|xi|2
]

= 1,

E
[

|xi|8
]

<∞, and lim supN‖A‖ <∞. Then,

1

N
xHAx− 1

N
trA

a.s.−−→ 0.

Lemma 2 ([21, Lemma 2.1]): Let z < 0, A ∈ C
N×N

, B ∈
C

N×N
Hermitian nonnegative definite, and x ∈ C

N
. Then,

∣

∣

∣
tr
(

(B− zIN )
−1 −

(

B+ xxH − zIN
)−1
)

A

∣

∣

∣
≤ ‖A‖

|z| .
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