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Abstract—In emerging small cell wireless, each femtocell access
point (FAP) can either service its home subscribers exclusively (i.e.,
closed access) or open its access to accommodate a number of
macrocell users so as to reduce cross-tier interference. In this paper,
we propose a game-theoretic framework that enables the FAPs to
strategically decide on their uplink access policy. We formulate
a noncooperative game in which the FAPs are the players that
want to strategically decide on whether to use a closed or an
open access policy in order to maximize the performance of their
registered users. Each FAP aims at optimizing the tradeoff between
reducing cross-tier interference, by admitting macrocell users, and
the associated cost in terms of allocated resources. Using novel
analytical techniques, we show that the game always admits a pure
strategy Nash equilibrium, despite the discontinuities in the utility
functions. Further, we propose a distributed algorithm that can be
adopted by the FAPs to reach their equilibrium access policies.
Simulation results show that the proposed algorithm provides an
improvement of 85.4% relative to an optimized open access scheme
in the average worst-case FAP utility.

I. INTRODUCTION

Femtocell access points (FAPs) are low-cost, low-power base

stations that can be deployed in an indoor or an outdoor environ-

ment so as to satisfy the ever-increasing needs for high wireless

data rates. Overlaying existing networks with femtocells is a

promising solution to increase the capacity of wireless networks

as well as to deliver innovative wireless services.

The deployment of femtocell wireless networks introduces

numerous technical challenges. In particular, interference manage-

ment is challenging in two-tier femtocell networks due to the ab-

sence of coordination between the FAPs, which are often privately

owned, and the existing macrocell base stations. Several existing

works addressed the challenges of interference management in

femtocell networks [1], [2].

One characteristic of femtocell networks is the ability of the

FAPs to operate in three modes: closed access, open access, and

hybrid access (i.e., limited open access). In a closed access mode,

an FAP dedicates all of its resources to a specific number of

registered home users. Hence, in this mode, access to an FAP

is restricted to a handful of pre-registered subscribers (e.g., the

owners of the FAP). In contrast, in an open access mode, the

FAP can also service, along with its home users, nearby macrocell

users to reduce interference and to improve the overall network

performance. Hybrid access is a limited form of open access

in which only a specific number of macrocell users is allowed

to access the femtocell tier. The choice of an access policy can

strongly impact the network’s uplink performance as shown in [3],

this work was extended to the downlink in [4]. In [5], simulation
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results showed that the overall throughput in a network can be

enhanced when the FAP uses a hybrid access policy as opposed

to open access.

Most existing works on femtocell access modes have assumed

that the FAPs can operate exclusively either in closed, open, or

hybrid access [3]–[6]. In practice, due to their self-organization

capabilities, the FAPs have an incentive to strategically adapt

their access modes depending on the network status. In the

uplink, the FAPs face a tradeoff when deciding on their access

policy. For instance, allowing macrocell users to use the FAP

would potentially reduce the interference at the FAP, but it is

accompanied with a cost in terms of dedicating the FAP’s own

resources to these macrocell users. This gives rise to an interesting

competitive scenario. On the one hand, each FAP is interested

in optimizing the performance of its own registered users by

dedicating the maximum resources to them. On the other hand,

this FAP also has an incentive to service some macrocell users so

as to reduce the potentially harmful interference. These multiple

interests are often conflicting. Hence, it is of interest to devise

a scheme that allows the FAPs to strategically decide on their

preferred access policy.

The main contribution of this paper is to model and analyze the

conflicting access mode preferences of the FAPs in an overlaid

femtocell network. To this end, we formulate a noncooperative

game between the FAPs in which the strategy of each FAP

is to select an access mode to optimize the performance of

its home users, given the state of the network in terms of

macrocell user locations, network configuration, and others. We

characterize the optimal access policies for each FAP and we

show that the FAPs have an incentive to strategically select

their access modes, depending on their environment. Using novel

analytical techniques, we show the existence of a pure strategy

Nash equilibrium (PSNE) for the proposed game, despite the

discontinuities in the utility functions. We study this resulting

Nash equilibrium (NE) which dictates the access policies that will

be employed by the FAPs as captured by the amount of resources

allocated to the macrocell users. To solve the game, we present a

distributed algorithm that enables the FAPs to self-organize and

compute their equilibrium access policies with little coordination.

We study various properties of the equilibrium and show that the

proposed algorithm exhibits interesting characteristics.

The rest of the paper is organized as follows. In Section II we

present the system model, and we formulate the noncooperative

game. We analyze the game in Section III and present a best

response distributed algorithm. Simulation results are presented

in Section IV, and conclusions are drawn in Section V.



II. SYSTEM MODEL

Consider the uplink of a network with M FAPs overlaid on

a macrocell wireless network having N users. Let the set of

FAPs be M = {1, ...,M} and the set of macrocell users be

N = {1, ..., N}. Hereinafter, we will refer to the registered FAP

users as femtocell user equipment (FUE) and to the macrocellular

users as macrocell user equipment (MUE). For multiple access,

we consider an OFDMA policy at both network tiers. Let K

be the total number of subcarriers available to each FAP. For

mathematical tractability, we consider that FUEs do not intro-

duce interference at neighboring FAPs, and, thus, there is no

uplink femtocell-to-femtocell interference. This can be achieved

by assigning orthogonal frequency bands to different FAPs using

dynamic OFDMA or other methods such as those in [1], [7].

We consider a Rayleigh fading channel having an exponentially

distributed magnitude with unit mean. We denote the channel

from the n-th MUE to the m-th FAP on the k-th subcarrier by

hnm[k]. Let Pn[k] be the transmit power of the n-th MUE on the

k-th subcarrier; the total transmit power of the n-th MUE is Pn,

with
∑K

k=1 Pn[k] ≤ Pn. Also, let the distance between the n-th

MUE and the m-th FAP be dnm. Assume that each FAP services a

single FUE (our results can be readily extended to femtocells used

by multiple FUEs) having transmit power P0 distributed over the

subcarriers, i.e.,
∑K

k=1 P0[k] ≤ P0. We denote the channel from

each FUE to its corresponding FAP on the k-th subcarrier by

h0m[k] and the distance separating them by d0m. A zero-mean

circular complex Gaussian noise with variance σ2
m[k] is added

on each subcarrier at the terminal of each FAP. The signal-to-

interference-plus-noise ratio at FAP m, SINRm, is given by:

SINRm[k] =
γm[k]

σ2
m[k] +

∑N
n=1

(

∏M
ℓ=1  {δℓn[k]=0}

)

µm
n [k]

,

where γm[k] = |h0m[k]|2P0[k]L(d0m)−β is the received signal

power of the FUE on subcarrier k of FAP m. The constant

L < 1 is the wall penetration loss, and β is the path loss ex-

ponent for indoor-to-indoor communications. Similarly, µm
n [k] =

|hnm[k]|2Pn[k]d
−α
nm is the received signal power of the n-th MUE

on the k-th subcarrier of the m-th FAP, with α being the path

loss exponent for outdoor-to-indoor signalling.

Each FAP needs to decide on an access policy: closed, open,

or hybrid. Although closed access reserves the resources of an

FAP for its FUEs, it can potentially increase the interference in

a network. Open access reduces the interference at the price of

sharing the resources of the FAPs with MUEs. Hybrid access

strikes a balance between both policies as it constraints the

amount of resources shared with MUEs. The choice of an access

policy for an FAP depends, in addition to the interference levels

introduced by MUEs, on the policy choices of the other FAPs.

For example, an FAP prefers to use closed access and keep

its resources for the use of its FUEs solely, when other FAPs

decide to serve the interfering MUEs. Thus, given the scarce radio

spectrum, the FAPs become competitive when deciding on their

preferred access policy.

Hence, we define a noncooperative game between the FAPs

in which each FAP attempts to maximize the rate of its FUE,

by choosing an appropriate access policy. The type of access

employed by an FAP is captured by the resources it allocates to

the interfering MUE. In other words, the strategies of the FAPs

are the fractions of the spectrum that they can allocate to each

MUE, and the utilities are the rates of the FUEs.

Let δmn [k] ∈ {0, 1} indicate whether the k-th subcarrier of FAP

m is to be assigned to the n-th MUE – δmn [k] = 1 indicates that

the subcarrier is to be allocated to the MUE. The utility function

of FAP m can be written as:

Ũm(δm, δ−m) =

K
∑

k=1

M
∏

ℓ=1

 {δℓn[k]=0} · log (1 + SINRm[k]) ,

where  {x=0} = 1 if and only if x = 0. The strategy vector

of FAP m is δm = [δm1 [1], ..., δmN [1], δm1 [2], ..., δmN [K]]T , while

the strategy vectors of all other FAPs are given in δ−m =
[δT1 , ..., δ

T
m−1, δ

T
m+1, ..., δ

T
M ]T .

If FAP m allocates subcarriers to an MUE, the rate of the MUE

should be at least as high as a target minimum rate Rc
min set by

the macrocell user – without loss of generality, we assume all

the MUEs to have the same target rate which is known in the

network a priori. Formally, we can write
(

1−
K
∏

k=1

 {δmn [k]=0}

)

Rc
min ≤

K
∑

k=1

δmn [k] log

(

1 +
µm
n [k]

σ2
m[k]

)

(1)

The strategy space of FAP m is therefore

X̃m =

{

δm ∈ {0, 1}NK :

N
∑

n=1

δmn [k] ≤ 1, (1) is satisfied

}

.

The first constraint in X̃m ensures that a given subcarrier k at an

FAP m can be accessed by only one MUE. We can now write

the optimization problem to be solved by FAP m as:

For fixed δ−m, max Ũm(δm, δ−m) over δm ∈ X̃m. (2)

The outcome of this noncooperative game is governed by the

renowned solution concept of a Nash equilibrium. Formally:

Definition 1: A pair (δ⋆m, δ⋆−m) constitutes a pure

strategy Nash equilibrium (PSNE) if Ũm(δ⋆m, δ⋆−m) ≥
Ũm(δm, δ⋆−m), ∀δm∈ X̃m.

We are interested in studying the existence of a PSNE for

the above problem. However, problem (2) is challenging due the

following reasons: (i) the indicator functions make the objective

functions discontinuous; and (ii) the problem is combinatorial in

nature and requires exponential-time complexity to be solved. We

will address both of these challenges in the next section.

III. GAME FORMULATION AND PROPOSED ALGORITHM

A. Subband Allocation

Although the total number of decision variables in (2), M ·N ·
K, grows linearly in the number of subcarriers, the complexity

of the problem can be large in practice. In addition to subcarrier

allocation being combinatorial in nature [8], solving for the PSNE

increases the complexity as each FAP needs to consider all

possible subcarrier allocations and possible deviations of other

FAPs. Solving (2) is, thus, challenging.

Hereinafter, we consider that the channels are flat-fading or

that they do not vary over the frequency band available to each

FAP, which is a common assumption [3], [4]. Hence, OFDMA



is applied per subband rather than per subcarrier. When applied

over flat-fading channels, OFDMA is geared towards scheduling

users rather than resolving the inter-symbol interference in the

channel. We make use of this fact and formulate the problem as

a subband allocation problem instead of a subcarrier allocation

one. The subbands are defined as clusters of consecutive subcar-

riers. Hence, we assume that each FAP has a frequency band,

orthogonal to the bands of other FAPs, out of which it allocates

fractions to MUEs so as to maximize the rate of the FUE.

Let 0 ≤ ρmn ≤ 1 be the fraction of the band allocated by the

m-th FAP to the n-th MUE – ρm0 is the frequency band fraction

allocated to the FUE. Clearly, an FAP m with
∑N

i=1 ρ
m
i = 0 is

said to employ closed access. An FAP m is said to employ open

access if min{ρm1 , ..., ρmN} > 0 and hybrid access if ∃n for which

ρmn > 0. In the remaining of this sequel, we will refer to both open

and hybrid access by open access; it should be understood that

by open access we mean either adopting all MUEs or employing

limited open access, depending on the network parameters. Thus,

the utility function of FAP m can be written as:

Um(ρm,ρ−m) = (1−
N
∑

n=1

ρmn ) · log (1 + SINRm) , (3)

SINRm =
γm

σ2
m +

∑N
n=1

(

∏M
ℓ=1  {ρℓ

n=0}

)

µm
n

,

where ρm = [ρm1 , ..., ρmN ]T , and ρ−m are the decision variables

of all other FAPs1. The other variables are as defined above with

the subcarrier index k dropped. We will denote (ρm,ρ−m) by ρ.

The minimum rate constraint (1) becomes:
(

1−  {ρm
n =0}

)

·Rc
min ≤ ρmn · log

(

1 +
µm
n

σ2
m

)

, (4)

and the strategy space of FAP m is now

Xm =

{

ρm ∈ [0, 1]N :

N
∑

n=0

ρmn = 1, (4) is satisfied

}

, (5)

where the first constraint ensures that the subband allocations are

well defined. Formally, the optimization in (2) becomes:

For fixed ρ−m, max Um(ρ) over ρm ∈ Xm. (6)

We will refer to this game by the strategic access policy (SAP)

game. With this formulation, we have overcome the complexity

associated with having a large number of subcarriers. However,

the objective function Um(ρ) is still discontinuous. We will

handle the discontinuities in the next subsection.

B. Existence of Pure Strategy NE (PSNE)

The discontinuities in the objective functions prevent us from

using standard theorems of continuous-kernel noncooperative

games, such as those in [9, pp. 173-179]. Here, we will apply

novel analytical techniques such as those in [10] to handle

discontinuities and show that the SAP game admits a PSNE.

Denote the Cartesian product of the strategy spaces of the

players by X = ×M
m=1Xm. Define the graph of the vector

of payoff functions as a subset of X × R
M given by Γ =

{

(ρ,U) ⊆ X × R
M : U = [U1(ρ), ...,UM (ρ)]T

}

. The closure of

Γ is denoted Γ̄. Before studying the PSNE for the SAP game, we

provide the following definitions from [10].

1We dropped ρm0 from the definition of ρm because ρm0 = 1−
∑N

n=1 ρ
m
n

Definition 2: FAP m can secure a payoff Um(ρ) = ν ∈ R at

ρ if there exists a strategy ρ̄m such that Um(ρ̄m,ρ′

−m) ≥ ν for

all ρ′

−m in some open ǫ-neighborhood U ǫ
−m of ρ−m.

In view of the above definition, an FAP m can secure a certain

payoff at ρ if it has a strategy that guarantees at least that payoff

even if other players deviate slightly.

Definition 3: A game is better-reply secure if for every (ρ,U)
in Γ̄ where ρ is a non-PSNE vector, some FAP m can secure a

payoff strictly greater than Um(ρ) that it achieves at ρ.

In essence, a game is said to be better-reply secure if whenever

ρ is a nonequilibrium vector achieving a utility U , some FAP m

possesses a strategy which would provide a payoff strictly better

than Um(ρ) even if all other players deviate slightly from ρ−m.

Lemma 1: For every ρ−m, the utility Um(.,ρ−m) is quasi-

concave in ρm, for all m.

Proof: See the Appendix.

Lemma 2: The SAP game is better-reply secure.

Proof: See the Appendix.

Theorem 1: The SAP game admits a PSNE.

Proof: For every m, the strategy space Xm is nonempty and

compact (a closed and bounded subset of the Euclidean space).

Also, Um(ρ) is bounded for all m. Those facts coupled with the

results of Lemmas 1 and 2 guarantee that Theorem 3.1 in [10],

which characterizes discontinuous games possessing PSNE, holds

true. Thus, the SAP game has PSNE.

C. Distributed Best Response Algorithm

Given the discontinuities in the utility functions, it is difficult

to obtain closed-form expressions for the PSNE solutions. Thus,

we propose a distributed best response algorithm that can be

implemented by the FAPs to reach a PSNE solution while

optimizing their strategies. The essence of the proposed algorithm

is to enable the FAPs to update their strategies, given their view

on the access modes used by all the other FAPs, at any point

in time. Thus, we develop a distributed algorithm based on best

response in order to find the equilibrium access policies.

The proposed algorithm is shown in Table I. The proposed

algorithm uses a parallel update technique in which, at any

iteration i, each FAP computes its optimal strategy given its

observation of the network at i − 1. The proposed algorithm

starts by selecting an initial strategy vector ρ(0) for the FAPs.

In each iteration i, each FAP m searches for the optimal set of

MUEs N
(i)
m that it can serve, given its view on the access policies

(i.e., strategies) of all of the other FAPs which were obtained in

the previous iteration ρ
(i−1)
m . The set N

(i)
m is selected so as to

maximize the utility of the FUE of FAP m over Xm (note that

N
(i)
m can be ∅). The MUEs in N

(i)
m are allocated subbands as per

(7), using the logic in the proof of Lemma 2.

To find its best response, each FAP needs to identify the optimal

subset of MUEs to admit, if it chooses an open access strategy. To

do so, the FAP needs to check its potential utility from servicing a

certain subset of MUEs. In practice, instead of testing all possible

sets of MUEs, which can be complex, the FAP could find this

optimal subset using a branch and bound or a greedy algorithm.

An FAP has, in general, a limited coverage area in which the

number of MUEs is often reasonable, and, hence, identifying the



TABLE I
PROPOSED ALGORITHM

Select a random initial strategy vector ρ(0).

For all n ∈ N , m ∈ M, compute ρm⋆
n as per (7).

iterate

for m = 1 → M

Fix ρ
(i−1)
−m .

Select the optimal set of users N
(i)
m to be served by FAP m.

Set ρ
m,(i)
n = ρm⋆

n , ∀n ∈ N
(i)
m . Set ρ

m,(i)
n = 0, ∀n /∈ N

(i)
m .

end

if ρ
m,(i)
n > 0 for multiple values of m

Pair the n-th MUE to FAP j to which µj
n is highest.

Set ρ
−j,(i)
n = 0.

end

until convergence to a PSNE vector ρ
⋆

best response would require an acceptable complexity. In this

respect, a simple greedy algorithm in which the FAP starts by

accepting the top interfering MUEs first (a similar approach was

used in [3] for handoff) could be adopted for finding the optimal

response while reducing complexity. At the end of each iteration,

the algorithm ensures that no MUE is being served by multiple

FAPs. The MUE is paired with the FAP to which it has the best

channel as characterized by µm
n . Note that if the remaining FAPs

still allocate resources to this MUE, they will be at a disadvantage

as they would be wasting resources. The above steps are repeated

until convergence. In general, best response based algorithms such

as the one proposed in Table I have been shown to converge to

an NE for many classes of noncooperative games; many modified

schemes have also been proposed to ensure convergence [9].

IV. SIMULATION RESULTS

Consider a network of FAPs and MUEs that are scattered

uniformly over a 250 m × 250 m square. We set the noise power

added at the terminals of the FAPs to σ2
m = −110 dBm, for all

m. The transmit power of all FUEs and MUEs is fixed at 100
mW. The wall penetration loss is set to L = 0.5, and the path

loss factors are set to α = 3, β = 2. All MUEs have a minimum

target rate requirement of Rc
min = 5 bits. We fix d0m = 1 m

for all FAPs. All statistical results are averaged over the random

channels and locations of all nodes.

We will benchmark the performance of our algorithm through

comparisons with two different schemes. In the first scheme,

referred to as the all closed scheme, all FAPs use closed access

at all times. In the second scheme, all FAPs use open access

while optimizing their allocated resources, as per (7), in a manner

similar to our algorithm. We refer to this scheme by optimized

open access. The latter is a particular case of our proposed scheme

in which the FAPs choose to employ open access and allocate

resources (if possible) without seeking equilibrium or stability;

this scheme is used as the initial point for our scheme.

In Fig. 1, we show the fraction of FAPs that choose an open

policy at the PSNE resulting from the proposed approach for

networks with 7 MUEs and 10 MUEs as the number of FAPs

varies. In this figure, we can see that the fraction of FAPs

choosing open access starts by increasing because deploying more

FAPs leads to more opportunities for open access. However, this

fraction starts decreasing for M ≥ 6 when N = 7, and for M ≥ 8
when N = 10. For N = 7, it reaches a maximum of 64% and

then starts by decreasing to reach 34.5%. For N = 10, it reaches a
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Fig. 1. Fraction of FAPs using open access as the number of FAPs varies.
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Fig. 2. Average rate per FAP resulting from the proposed algorithm as the
number of FAPs M varies for a network with 10 MUEs.

maximum of 60.8% and then starts by decreasing to reach 43.9%.

This is due to the fact that for a given number of MUEs, as the

number of FAPs becomes much larger than the number of MUEs,

the additional FAPs tend to remain closed as they rely on other

FAPs to service the interfering MUEs. Clearly, most equilibria are

composed of mixed access policies: a fraction of FAPs choosing

open access and another fraction choosing closed access, with

this fraction dependent on various parameters such as M or N .

In Fig. 2, we assess the performance of the PSNE resulting

from the proposed algorithm by showing the average utility

per FAP as the network size varies, for 10 MUEs. First, we

can see that as M increases, the average utility per FAP for

the proposed scheme and the optimized open access scheme

increases. This is due to the fact that as more FAPs are deployed,

there exists more opportunities to use open access and service

highly interfering MUEs. In contrast, the all closed scheme

yields an almost constant average utility at all network sizes.

Fig. 2 shows that the proposed scheme yields significant gains

with respect to the all closed scheme reaching up to 173.8% at

M = 16 FAPs. This figure also highlights the interesting tradeoff

between stability (PSNE) and performance. For small networks,

the optimized open access scheme outperforms the PSNE state.

However, this scheme is not stable, in the Nash sense. This is

because the optimized open access scheme is the starting point of

our algorithm, and the FAPs were able to improve their utilities by

unilaterally deviating from it. Nonetheless, the performance gap
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Fig. 3. Average worst-case FAP rate resulting from the proposed algorithm as
the number of FAPs M varies for a network with 10 MUEs.

is reasonable. Moreover, as more FAPs are deployed, the Nash

solution coincides with the optimized open access network.

In Fig. 3, we show the average worst-case utility. This demon-

strates that, although our scheme has a performance gap in the

average rate when compared to the optimized open access scheme

as in Fig. 2, it can improve the worst-case FAP’s performance. Our

scheme reaches an improvement of 85.4% compared to optimized

open access at M = 4; it also reaches an improvement of 208.9%
over the all closed scheme at M = 16. This is a result of the

selfish nature of the FAPs as captured by the PSNE solution.

The PSNE ensures that no FAP can do better by unilaterally

deviating from the equilibrium; hence, it is expected that, when

acting strategically, no FAP will make a decision that decrease its

own utility for the advantage of another, although this decision

may also be detrimental to the overall welfare of the network.

V. CONCLUSIONS

In this paper, we have introduced a novel game-theoretic

framework which enables the FAPs to strategically decide on their

uplink access policies. Due to the absence of coordination among

FAPs, we have formulated a noncooperative game in which the

FAPs strategically optimize the rates of their home FUEs, given

the tradeoff between reducing the cross-tier interference and the

associated cost due to sharing their resources. We have applied

novel analytical techniques to prove the existence of the Nash

equilibrium solution for the proposed game in which the utility

functions are discontinuous. Moreover, we have proposed a low-

complexity distributed algorithm that can be adopted by the FAPs

to reach their equilibrium access policies through parallel updates.

Simulation results assessed the performance of the proposed

approach in various settings.
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APPENDIX

A. Proof of Lemma 1: A function f(x) is said to be

quasiconcave if every superlevel set Sν = {x|f(x) ≥ ν} is

a convex set. Define the set Nm = {n : ρ−m
n = 0}. When

ν ≤ 0, Um(ρ) ≥ 0 implies that ρm ∈ Xm. The strategy

space of FAP m is a convex set since it is the intersection

of an (N + 1)-dimensional simplex and halfspaces which are

convex sets. Hence, the superlevel sets in this case are convex

sets. When 0 < ν ≤ log(1 + γm

σ2
m+

∑
n∈Nm

µm
n
), where the

upper bound on ν corresponds to the payoff obtained when

FAP m employs closed access, Um(ρ) ≥ ν implies that 0 ≤
1
Tρm ≤ 1− ν

log(1+ γm
σ2
m

)
. The superlevel sets in this case are also

convex sets because they are intersections of halfspaces. Similarly,

when ν > log(1 + γm

σ2
m+

∑
n∈Nm

µm
n
), Um(ρ) ≥ ν implies that

0 < 1
Tρm ≤ 1− ν

log(1+ γm
σ2
m

)
. The superlevel sets in this case are

also convex sets. Finally, if ν > log(1+ γm

σ2
m
), then Sν = ∅ which

is also a convex set. The proof of the lemma is thus complete.

B. Proof of Lemma 2: Consider a nonequilibrium vector

ρ. Given the constraints of (6) and the fact that Um(ρ) is

monotonically decreasing in ρmn > 0, we can find the optimal

subband allocation by FAP m to the n-th MUE (in open access):

ρm⋆
n =

Rc
min

log
(

1 +
µm
n

σ2
m

) . (7)

Let ρ̄m be the resulting strategy after transforming ρm as follows:

I-a) Set ρ̄mn = 0 whenever ρ−m
n > 0. This ensures that

whenever the n-th MUE is allocated a subband by an FAP,

FAP m takes advantage of the fact that an MUE can only

connect to one FAP and refrains from spending extra resources;

I-b) Set ρ̄mn = ρm⋆
n whenever ρmn > 0 and ρ−m

n = 0. This

ensures that FAP m allocates the smallest possible subband to

the n-th MUE. Clearly, Um(ρ̄m,ρ−m) > Um(ρ), where the

assumption that ρ is nonequilibrium was crucial in finding ρ̄m.

Let U ǫ
−m be an ǫ-neighborhood, ǫ > 0, of ρ−m given by

U ǫ
−m = {ρ́−m ∈ X−m :

∣

∣

∣

∣ρ−m − ρ́−m

∣

∣

∣

∣ < ǫ}. We make the

following two observations: II-a) We can always select an ǫ > 0
such that if ρ−m ∋ ρℓn > 0, it still holds that ρ́−m ∋ ρ́ℓn > 0.

Hence, by I-a, ρ̄m would still yield a better payoff for FAP m

even if such deviations occur; II-b) If ρ−m ∋ ρ−m
n = 0, then

ρ́−m
n > 0. In this case, the utility of FAP m will not be affected

as, by I-b, that MUE is allocated a subband at ρ̄m. By II-a and

II-b, we readily conclude that Um(ρ̄m, ρ́−m) ≥ Um(ρ̄m,ρ−m).
Hence, FAP m can secure a payoff Um(ρ̄m,ρ−m) at ρ̄m which

is strictly greater than Um(ρ). Thus, the SAP game is better-reply

secure.


