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Abstract

There has been substantial interest over the last decad=é@hoping low complexity decentralized
scheduling algorithms in wireless networks. In this cohtdke queue-length based Carrier Sense
Multiple Access (CSMA) scheduling algorithms have atteaicsignificant attention because of their
attractive throughput guarantees. However, the CSMA tegsely on the mixing of the underlying
Markov chain and their performance under fading channé¢stas unknown.

In this work, we formulate a partially decentralized randmed scheduling algorithm for a two
transmitter receiver pair set up and investigate its stglproperties. Our work is based on the Fast-
CSMA (FCSMA) algorithm first developed inl[1] and we extensl iesults to a signal to interference
noise ration(SINR) based interference model in which onenore transmitters can transmit simulta-
neously while causing interference to the other. In ordenmprove the performance of the system, we
split the traffic arriving at the transmitter inscxhedule based queuasd combine it with the FCSMA
based scheduling algorithm. We theoretically examine #réopmance our algorithm in both non-fading
and fading environment and characterize the set of arratabrwhich can be stabilized by our proposed

algorithm.



I. INTRODUCTION

We consider the problem of decentralized channel accesbddwo user interference channel.
Classical information theoretic approach assumes thafrémsmitters are always saturated with
information bits. However, in this work, we consider thedamness in arrival of information bits
and hence account for the queuing backlog at the transmitfég consider that the transmission
rates of each transmitter-receiver pair are a function efdignal to interference ration (SINR)
at the receiver.

The work in this paper is comparable to the stream of workatedl to scheduling algorithms
in wireless networks which operate at the packet level arsirae that a fixed number of
packets can be transmitted per time slot . The task then ishedsile a set of non-conflicting
links for transmission donflict graphbased interference model) in order to ensure the long
term stability of the associated queues in the network. Timhaoas in the seminal work of
[2] developed a maximum-weight based scheduling strategigiwis proved to be throughput-
optimal. However, the max-weight based algorithms areraénéd in nature and suffer from high
computational complexity. Subsequently low-complexigcentralized, and possibly suboptimal
scheduling algorithms were developed in series of warkg4RB[5] with varying complexities
and performances. In particular, recently a class of ramzeuinscheduling algorithms namely
the CSMA-based scheduling algorithms| ([6],[7],[8]) haeeeived a lot of attention because of
their attractive throughput guarantees. However, the C3Mged scheduling algorithms rely on
the mixing of the underlying Markov chain which cannot be gueed in a fading environment.
Hence their performance in fading environment is not known.

Specifically, we develop a FCSMA (Fast-CSMA) based schaduigorithm that extends the
earlier results to the SINR-based interference model. TB8NFA operation has advantage over
the CSMA based scheduling algorithms under fading conutia that it quickly reaches one of
the favorable schedules and sticks to it rather than relgimghe convergence of the underlying
Markov chain . Hence, the FCSMA based algorithm can perfoet wnder fading environment
as well.

We first note that the straightforward application of FCSMAthe SINR based interference
model has a low performance. In order to improve the perfogaaf this scheme, we formulate

a dynamic rule to split the incoming traffic inkchedule based queuas the transmitters and



combine it with the FCSMA scheduling. By favorably tuning tbontrol parameter of the traffic
splitting rule, we prove that the FCSMA based algorithm glanith the appropriate traffic
splitting rule can provide a good performance.

Finally, we would like to mention referencel [9] a decentratl queue-length dependent prob-
abilistic scheduling algorithm for the two user multi-assechannel. However, the analysis of
the algorithm is done assuming that the channel realizatiays constant through out and hence
assumes a non-fading scenario. In contrast, we analyzeystens under fading environment as

well.

[I. SYSTEM MODEL

We consider a set up in which two transmitters (Tx) are tryiagcommunicate to their
respective receivers (Rx) over a common frequency band. $8fenae that the system operates
in a time slotted fashion. We denoté;[t] as the amount of information bits that flow into
the Tx during each time slot. The arrival process is assumed to be independent across user
and independently and identically distributed over timasslwith a rate of)\;, « = 1,2, and
A;lt] < K, Vt. Accordingly, there is queue associated with, Whose queue-length at time slot
t is denoted by the notatio@;t]. Let S;[t| denote the number of information bits served from

the queue of Txduring the time slot. The equation for the queue-length evolution is given by

Qilt + 1] = Q;t] + Ai[t] — Si[t] + Ui[t] 1)

whereU;[t] denotes the unused service) < U;[t] < 1if Q;[t] <1 and is selected for service,
elseU;[t] = 0. We say that a queue is stableliifa supy_, . = >, E [Q;[t]] < occ.

We consider the SINR based interference model in which omeooe transmitters can transmit
simultaneously. In this case, the maximum achievable mngwon rate for any Tx-Rx depends
on the SINR at the Rx. In general, the transmission rate for-8X pair during any time slot can
be chosen from a continuous set. However, in order to signfiié analysis, we allow two levels
of rates for every Tx-Rx pair. First, a rate &f; when only one two transmitters transmitting
(while the other transmitter is turned off) and a ratevhen both the transmitters transmitting
simultaneously (in which case, they cause interferencexth ether). These rates correspond to

the three possible scheduling decisions in theS¥et {w;,ws, w3} where the rates obtained in



the three scheduling decisions are given{l®;,0}, {0, R2}, {r1, 2} respectively. A reasonable
assumption is that the maximum achievable rate is an incgdsnction of the SINR. Hence,
we assume that the rates< R; andry < R,. The stability region for this system can be given

as the convex hull of the possible transmission rates.

A= {/\1 < m Ry + m3ry, Ao < Mo Ry + m3rg

3
m <1, m; >0
> J
The stability region of the system is shown in Figlte 1. Adadially, we note the condition

Etez21 which ensures that the stability region goes beyond the shaging region.
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Fig. 1. Stability region for the 2 User System

The objective of this work is to design a decentralized tghgaut optimal scheduling algorithm

in which the transmitters cannot exchange the full CSI of ifes.

IIl. FCSMA ALGORITHM DESCRIPTION

The FCSMA based scheduling algorithm operates in the fatigwvay. At the beginning
of time slott, each Tx independently generates two timers whose valearaexponentially
distributed random variable with med&p [t| R; and Q;[t|r; respectively. These timers correspond
to the respective scheduling decisions in which the dan achieve a non zero rate. We assume
that each Tx maintains a one bit index for the timers assediafith it. Let us assume that the

index of 0 corresponds to the timep;[t|R; and an index ofl indicates that timet); [¢]r;.



The system has four timers. Without the loss of generalggume that one of the timers
associated with Txexpires first among the four timers. The algorithm operatebé following
manner. Tx immediately suspends its second timer (which has not yerexXpand starts to
transmit bits from its queue at the appropriate rate (fataf timer O expires or a rate if
timer 1 expires). Txcommunicates the index of timer which has expired tg. Thpon receiving
the index bit, Tx also suspends both its timers. We assume the following gmeed protocol
between the two Txs. Upon reception of the indexhe Tx, keeps silent during corresponding
time slot¢. Upon reception of the index, the Tx, transmits from its queue at the rate.
We ignore the overhead associated with communicating thibdveen the two Txs. The state

diagram for the FCSMA based scheduling algorithm is showirigure[2. The probabilities

Q2R2

Fig. 2. FCSMA State Diagram



of reaching each of the three possible schedules during @ glott¢ is given by the following

expressions.

RiQ R2Q»
]P)U-H = 5 ng =
@ Z?:k Qr(Ri + 1) @ Zizl Qr(Ry + i)
2
P, (Q) = —y k=t THQE @)

2 Qu(Ri + )

Additionally, the expected value of service rate for thewgat Tx during the time slot can

be given by

_ Qi+ S @
>y Qu(Ri + 1)

Proposition 1. Consider a 2-user perfectly symmetric network in whigh= R, = 1 and

E [Si[1]]|Q[t] = Q] ,i=1,2 (3)

r1 =1y = a. (Note0 < a < 1.) When the mean rate of the arrival process into the two Txs are
the same (i.e.\; = Ay = )), the maximum arrival rate which can be supported by the FEBSM

scheduling algorithm is given by

o? 1

ATl T e D @

Proof: The proof proceeds by considering a quadratic Lyapunovtiomof the form

vl = 33 @

and examining the value of for which the Lyapunov drift is negative outside a bounded se

Here, we only provide the essential technical argumenté®foroof analyze the term

V(Q[t]) = ZQz‘Qz‘[t]v Qi[t] =A—E [Sz‘[tHQ[t] = Q]

which loosely represents the Lyapnov drift in continuouseti We examine the range affor

the which this quantity is negative.

V(Q[t]) = Z Qz‘Qz‘ [t]

2 2
Qi + o Zk:1 Qr
= Ny
;Q ( Z?:k@kaw))




M1+a) (2,00 (T2, Q2+ (1, @)
S Qr(l+ )

_M(1+a)-a?) >, Qi)2 - (2. @) (5)
Z?:k Qk(l + O‘)

(@) a2 a2 1

<0 for a+1§)\§a+1+2(a+1) ©

where (a) follows from the following inequality. For, y, 51, 82 > 0,

Bi(z +y)? = Ba(2® + %) = (B1 — Bo)2® + (B1 — B2)y” + 2B12y
< (B — B2)2* + (B — Bo)y” + Bi(a® + )
= (261 — B2)(z* + ¥?) (7)

Let us denote the numerator term Bf (5) HR) = A((1 +a) — a?) (37, Qi)2 - (X Q).
The condition3; > 0 implies that\ > aa—fl Note that@, > 0 and @, > 0. Rearranging the
term inside the brackets dfl(5), it can be verified that

a? 1

<0f <
g(Q)_Oor)\_a+1+2(a+1) (8)
Combining with the conditior\ > aa—fl we have
a? a? 1
<0f <)\ <
g(Q)_Oora+1_)\_a+5+2(a+1) ©)

Notice that the range of specified in[(8) is just a sufficient conditigiiQ) < 0. We now claim

that

o? 1

9(Q) <0 for 0§A§a+1+2(a+1) (10)

We justify our claim in the following way. Let us define the @ogpound on\ in (10) asAax.

Notice thatg(Q) is an increasing function o for a fixed value of the queue-lengtlig, Q.
Therefore,g(Q)|, < ¢(Q)|,_, <0 for A <\, and hence the claim of (10).

Notice that the bound of (38) was obtained considering a fiadde of(Q; and(),. However,
the argument is true for any positive value @f and ),. Hence repeating the arguments for
any @, and@,, we conclude that the Lyapunov drift is negative for all pesitvalues of queue-
lengths and\ < \,.... We hence claim that the algorithm can stabilize the traffioseharrival
rate is less than,... The exact arguments and the connection to the Foster Lyapheorem

is deferred till the proof of Theorem 2. [ |



Remarks on the FCSMA algorithm: The FCSMA based scheduling algorithm described
above is a partially decentralized algorithm in which thes Texchange one bit information
(index of the timer that expires first). This calls for a salpsially less overhead of information
exchange between the Txs as compared to exchanging theSuIF@bm the plot of the stability
region in Figuré 1L, notice that the maximum achievable ratbé symmetric case s = Ay = A
is A < a. However, the bound specified inl (4) is lesser thatn what follows, we overcome this

problem by combining the FCSMA scheduling scheme with a dyioaraffic splitting algorithm.

IV. FCSMA wITH DYNAMIC TRAFFIC SPLITTING ALGORITHM

In this section, we introduce the conceptswhedule based queuss split the input traffic
arriving into the Txs. Each Tx maintains two different quewse for each scheduling decision.
For the Tx, the queue));; corresponds to the first scheduling decision in which the dan
transmit at the higher rat&;. When selected for service, this queue gets a service rafe.of
Let us define = mod (i,2) + 1. The second queu@;; corresponds to the scheduling decision
in which both the Txs have joint access to the channel and vgedstted for service, gets a
rate ofr;. The traffic splitting policy can be described as follows. IDgrthe time slott, each
transmitter compares the current queue-lengbhs$t] and 6,Q;[t] whered; > 0 is a scaling
factor. If Q;[t] < 6;Q;;[t], the information bits arriving in the respective slot entes ueue));;

and vice versa. Accordingly,

Aq it 8;Qu(t] > Quilt]

0 else
N = E[A[f] = i it 0;Q[t] < Quilt] (11)
0 else

The scheduling algorithm is exactly the same as the FCSMArihgn described in Section
Il B except that the two timers associated with the &re exponential random variables with
mean;;[t|R; and Q;[t]r; respectively (note that the queue-length values assdciaiih the

two mean values are different). The probabilities of eadtedaling decision in this case are



Q11 R11 - Q22[t] Ra2
2 vaz (Q) - 2
> k1 Qrk Bk + Qurrk > k1 Qrk Rk + Qurrk

Zi:l Qi
P, =
@ S QurRe + Qrirk

Also, the expected service rate for each queue is given by

Py, (Q) =

(12)

Qi R?
E [Silt tl = = i
il ”Q[ | ] 22:1 (QrrRi + Qpirr)
2 —
E [S;[1)|Ql] = Q] = i 2y QT i=1,2

S (QreRi + Quire)

Having defined a dynamic traffic splitting policy describdmbae, the next task is to examine
theoretically the set of arrival rate which can be can beilstad by our algorithm. To do the
same, we define a Lyapunov function and examine its progeftie different values of the
gueue-lengths. In order to make things more amenable fargkieal analysis, we restrict our

proofs to a perfectly symmetric system model.

Theorem 2. Consider a 2-user perfectly symmetric network describeBroposition 1. When
the mean rate of the arrival process into the two transmsttare the same (i.ed; = A\, = )),
the maximum arrival rate which can be supported by the traffiitting policy described in
equation(11) followed by the FCSMA scheduling algorithm is given by

a? 1)

A< aT5 T 2 (13)

Proof: Consider the Lyapunov function given by
1 2
=3 > (Al + 0Q3[1]) (14)
=1

wherei = mod (i,2)+1. Our approach to finding the maximum supportable rate is ton@a&
the drift of the Lyapunov function and determine the maximvatue of the arrival rate\ for
which the Lyapunov drift is negative outside a bounded mnegimund the origin. In doing so, we
bound the Lyapunov function by a series of upper bounds dmlttee most restrictive condition
on the arrival rate\.
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The Lyapunov drift in discrete time is given by
AV(Q[H]) = E[V(Q[t +1]) = V(Q[])|Qft] = Q]
where Q = [Q11, Q12, Q21, Q22]". Applying mean value theorem, considerirg;[¢] between

Qi;[t] and Q;;[t + 1],

AV(QI])) = Y B [Rult)(Qult + 1] — Qult]) + 6 Rlt] (Qalt + 1]) — Qalt) |Q(t) = Q]

=1

_ZE[ (Qulf] + Ualf) + SRl (@alr) + Usli) Q1) = Q]

223 t] + 0 Ra[t)U[1]|Q(t) = Q] (15)
= AVi(Ql) }
+ ZZ: E [Rn [1]Quit] + S R[] Qalt]| Q1) = Q] (16)
= AV Q) ’

Let us denote the term in equatidn(15) &%, (Q[t]) and [16) asAV,(QJt]). Consider

AVA(Q ZE i[)Ualt] + O Ra[t)Us(1]| Q(1) = Q] (17)

We would like the bound the terms akV;(Q[t]). First note that ifQ;;[t] = Q;; > 1 then

Uijlt] = 0. Else if Q;;[t] = Q;; < 1 and is selected for service thén< U;; < 1. In this case
Qij[t + 1] < K + 1 (becaused;;[t + 1] < K)and hence

AVI(Q[H]) < b1 K (18)

whereb; is a bounded positive constant. Now consider the termAWBf(Q[¢]). Rewriting, we
have,

AV(QI]) = Y- B RalQult] + R:{1Qs1|QU1) = Q] 1osn

J/

A V:;(?Q t])

+ ZE [Ru‘ [t]Qn‘ [t] + 5Rﬁ[t]Qﬁ[tHQ(t) = Q} losm

J/

AVA(Q[H])
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where 1, is the indicator function. Note that sincé;;[t] < K, we can also conclude that
|A;;[t] — Sij[t]| < K, therefore,
AV3(Q[t]) < bu(K + M)K (19)

In order to bound the terms &V, (Q[t]), first note that for a sufficiently large value %;[t] =

Qi; > M, we have‘}%[ﬂ — 1‘ < ¢ and therefore,
ij

(1 —6)Qij < Ryjlt] < (14 €)Qy;
Thus, we have
Ry;[t]Qi;[t] = Rijlt] (Ay[t] — Si;[t])
= Rij[t] ((Aylt] — Sijlt)+ — (Ailt] — Si[t])-)
< (14 €)Qi;(Ay[t] — Sis[t]) + — (1 — €)Qij (Ag[t] — Sis[t]) -

= Qu(Aylt] — Sylt]) + eQislt]| Aslt] - S5l
< QijQii[t] +eKQjj (20)
where (z); = max{z,0}, (r)- = —min{x,0} and |A;;[t] — Si-[t]‘ < A;[t] < K. Therefore,

we have
2 . . 2 . . 2
Z Ri[t)Qult] + 6 R[t]Qult] < Z QiiQiilt] + 0Q;Q(t] + Ke Z(Qu +0Qs) (21)
=1 =1 =1
We focus on the first term on the right hand side of equafiol). (2dt us denote

NEED [QuQalt) + 5QaQal1]Q() = Q] (22)
where h
AVt =Qu (Bl (0] - o) + 6 (Blaw(n)] - 2 22
+ Qs (BlAm()] - 22 ) + 60u (Blan (o] - T LC) a3

B(Q) = Q11 + a(Q12 + Q21) + Q2. Depending on the relationship between the queue lengths,
we need to consider the four cases for the Lyapunov funcsee equation (11)). These four
cases throw up a series of bounds drunder which the right hand side of equatién](23) is

negative. We take the most restrictive condition of all tloaitds as the upper bound on the
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maximum supportable rate.
Casel:Q1 < 0Q12; Q2 < 0Q1.

In this case,
@)= (A - i) + s (T2 )
con 1) o (%)
_ h(Q)
B(Q)
where

[1(Q) = A (Qu1 + Q) (Q11 + Q12 + Qa1) + Q) — ( 1003 (Quz + Qu)* + Q§2)

Let us examine the behavior of the functign(Q) with respect to the variable9,, and Q2
for a fixed value of@);; and Q... Writing the gradients of the functiori; (Q) with respect to
the variablesng and le,

94(Q)
Q12

= aX (Qu1 + Q) — 20°6(Q12 + Qa1)

< aXd (Qiz + Qa1) — 20°6(Q12 + Q1)

= Q12 (a)\5 — 2a25) + (1 (a)\5 — 2a25)

<0 for A <2« (24)
Similarly taking the gradients with respect &, we have,
91(Q)
<0 for A < 2 25
0Qan ~— - (23)

Therefore, f1(Q) is a decreasing function of botQ;, and @)»;. For a given value of);; and
(22, the functionf;(Q) is maximized whe Q> = @11 andoQs; = Q2o (hitting the boundary

conditions of case 1). Therefore,

H(Q) < H(Q) for  A<2a

0Q12=Q11,0Q21=Q22
2
= MQu + Qo) ((1 + %) (Qu + Q22)> - ( QA% (W%Qm)))
2

= (Qu1 + Q)? ()\ (1 + %) — %) — (@1, +Q3,)

2

¢ (2 <>\ (1+%) _ %) _ 1) Q% + Q3) (26)
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where (a) follows from the inequality[([7). The conditiofi; > 0 implies that\ > aa—j(s Note

that Q,; > 0 and Q; > 0. Rearranging the term inside the brackets[of (26), it can bifiee
that

o? )
<0 for A < 27
Combining with the conditior\ > —a‘fg, we have
o? o? 1
<0f <\ < 2
fl(Q)—OOra+5—A—a+5+2(a+5) (28)

Notice that the range ok specified in [(2F7) is just a sufficient conditiofi(Q) < 0. We now
claim that
a? )

f1(Q) <0 for Og/\§a+5+2(a+5) (29)

We justify our claim in the following way. Let us define the @pgound on\ in (29) as,,ax.
Notice the expression on the right hand side of equalich i€l increasing function of for a
fixed value of the queue-lengtlig;, Q2,. Therefore,f,(Q)|, < fl(Q)}Azxmax < 0for A < Amax
and hence the claim of (R9).

Also, it can be verified that

o + 0 < 2«
a+d  2a+9) —

(the bound of\ < 2« is obtained from[(25)). Hence, in this case, we have that fgivan value
of Q11 and Qa,

a? N )
a+d  2(a+9)
Notice that the result of (30) is true for any value®@f, and@Q,,. Hence repeating the argument

AV5[t] <0 0< A< (30)

for any Q1; and ), we conclude that[(30) is negative for all values of positiaue of
gueue-length and the range dfspecified.
Case2:QQ11 > 0Q12; Q22 > 0()2. In this case,

o? 12 21
@):Qn( @ )+5Q12 (A— (@12 1 Q ))

B(Q) B(Q)
+ Q2 (%) + Qo ()\ - 0‘2@;( 5)6221))
f(Q)
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where

[2(Q) = A6 (Qiz + Q21) (Qu1 + a(Qr2 + Q21) + Qa2) — (Q%l +00*(Qr2 + Qn)* + ng)

Once again, we would like to examine the behavior of the foncf,(Q) for fixed values of

@11 and Q. Writing the gradients of the functiofi,(Q) with respect to the variable3;, and
QQI?

0
gz;g> = A0 (Qu1 + Q22) + (2aXd — 20%6)(Q12 + Q21)
> A% (Qr2 + Qa1) + (206 — 20%6)(Q12 + Q21)
202
> >
>0 for Z 50t s (31)
The function f,(Q) is an increasing function o), for A\ > 22;f5- Similarly it can be shown
that
0£2(Q) 207
> >
909 = 0 for A > 515 (32)

f2(Q) is an increasing function of botf,, and @,; for the range of\ specified. Therefore
for a given value of@Q);; and @2, the function f»(Q) is maximized when@,» = ¢;; and
Q21 = Q. Once again, repeating the arguments like that of case 1 tiequ&8)), we have
a? 1)
< <
f2(Q) <0 for )\_a+5+2<a+5) (33)
From the analysis of Case 2, there are two bounds\(@om equations[(31) and (B3)). It can

be verified that fory > 0,

202 o? )

<
20046 — oz+5+2(oz+5)

and hence,

2 2
200y v 0 (34)

A < f
Vsl =0 or 200406 — a+6  2(a+9)

Once again, we can make arguments similar to that of case ®xedd the inequality if_(34)
for all positive values of the queue-lengths.
Case3:Q11 > 0Q12; Q2 < 0Q2;1.
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In this case,

o? 12 21
23)=Qu (A— @ )+5Q12( (@i 1 Q ))

B(Q) B(Q)
Q22 a2<Q12 + Q21)
Qe (B(Q)) o (A T B )
e
B(Q)

where

f3(Q) = A(Q11 +6Q21) (Qu1 + a(Qr2 + Q1) + Qa2) — ( 1003 Q2+ Qu)* + Q§2)

Writing the gradients of the functioif;(Q) with respect to the variable3;, and Q-

9f3(Q) = A0Q11 + A6 + @)Qa2 + (2078 — 2028)Q1s + (XS — 20%6)Qay

0Q12
> A62Q21 + A6+ @)0Qa + (2aA6 — 2028) Q12 + (NI — 2020) Qa1
202
> >
=0 for ~2a+90

Therefore,f;(Q) is an increasing function af, for the range of\ specified and is maximized

whendQ, = Q2. Examining the behavior of3(Q) with respect toQs,

0f3(Q) = (a\d — 2&25)Q12 — 2@256221 + AaQa2
OQx

< (aAd —2028)Q1z + (aAd — 2020)Qy

<0 for A <2«

9f3(Q)
8Q21

f3(Q) is a decreasing function af,; and hence is maximized whei),; = Q2. Therfore

for a given value of@Q);; and @2, the function f5(Q) is maximized when@,» = ¢;; and

5@21 = Q22-

<0 for A <2«

a? )
< f <A< 35
f3(Q) <0 or 0= T“a+d  2a+9) (35)
Once again, we have that
2 2
AVi[t] <0 for 207 _y< @ i (36)
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Cased:(Q11 > 0Q12; Q22 < 0Q21.
Case4 can be analyzed exactly similar to Case3. Once ageam ibe shown that the function
is maximized whern(@Q; = Q11 and Qa1 = Qoo.
Summary: From the analysis of cases 1- 4, we have shown that
20 a? )

<A< 7
2a+5_)\_a+5+2(0¢+5) 37)

AVt <0 for

for any positive values of the queue-lengths. Notice thatringe of\ specified in[(3F) is just
a sufficient condition for the Lyapunov drift to be negatiViée now claim that
a? )

< <A<
AVst] <0 for 0_A_a+5+2(a+5>

(38)

We justify our claim in the following way. Notice that
_ a? n )
a+6  2a+9)
Also notice from equation_(23) thakVs[¢] is an increasing function ok for a fixed value of
the queue-lengthg X1, Q12, @21, Q22). Hence

AVs[t] =0 for A

a? )
A <A f <
e = A e B

This is true for a given value of queue-lengths. But recadit tthis argument can be extended

for any value of the value of the queue-lengths. Therefd8) (s true of all values of the

queue-lengths and hence the claim[ofl (38). Also note that

a? )
A f <
Vs[t] <0 or 0_>\<a+5+2<a+5>

+ o? é
In other words, forQ € R and0 < A < %5 + 5775,

AMQ1110,,<5Q1, + Q121025012 + 0Q21105,<50s + Q221020>50,,) (@11 + Q12 + Q21) + Q22)

— (@3, +00*(Qr2 + Q21)* + Q3,) <0

Denoting

9(Q) £ (Q111011 <601 + 0Q1210,5501, + 6Q211Qu<5Gs + Q22101 >601,) (40)

Therefore, there existsa> 0 such that,

(Q%l +60*(Qr2 + Q1) + ng) > M1 +1)9(Q) (Qu1 + Q12 + Q21) + Qa2) (41)
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From (21) and[(41), we have

AVL(Qt]) < (=n+ Ke)g(Q) (42)

By choosinge sufficiently small, we can have = —n + Ke > 0, such that

AVL(Qf]) < —9(Q) (43)

Combining the result of (18),(19) and (43), we have
a? N )
a+d  2(a+9)

whereC' < ~o is a bounded positive constant. By Foster-Lyapunov thedf#j) implies that

AV(Q[t]) = —79(Q)lgsm+C  for A<

the queue-lengths are bounded for the FCSMA algorithm with \,... [ |
Remarks on the dynamic traffic splitting algorithm: Note that the result of Theorem 2 can
be generalized to the case when the data rateq &ré}, {r,r}, {0, R}. In this case any rate

2

A< iR T 2(%;) can be stabilized. The FCSMA based algorithm along with theachic
traffic splitting algorithm provides us with a tunable paedar§ which can be varied in order
to achieve better performance. Specifically when= A, = A, by settingd = 0, from the result

of Theorem 2 that any rat® < a can be stabilized by the system (which is also the maximum
achievable rate in the symmetric arrival case from the piohe stability region). The parameter

0 can be calculated based on the point inside the stabilifpmeig which we are operating. Our
theoretical analysis was limited to the case of symmetrivals (\; = A, = )\). Based on the
analysis we can conjecture that by suitably varydh@ny rate point inside the stability region

can be stabilized by our algorithm. The proof is left for fitunvestigation.

V. FADING CHANNELS

Now consider a symmetric block fading model where the chlareaization is fixed during
the time slot but changes after every time glothe set of channels in the network can assume
a states = {1, ..., 5} according to stationary probabilify;. We denote the cardinality of the set
by | S| andZ'f:‘lps = 1. In each time slot, the achievable rate for the three possible scheduling
decisions ard{ R, 0}, {rs, s}, {0, Rs}} if the network is in fading state at time slotz. In this
scenario, when\; = A\, = \, the maximum rate that can be stabilized by the FCSMA policy

along with traffic splitting algorithm is given by
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S| 2
SR?
A<Zps( o (TS—I—&RS)) (44)

Proof: Consider the quadratic Lyapunov function givenib§Q[t]) = 37, 1 (Q% + 6Q%[t]) .

i=1 2
We once again analyze only the following expression of thapnov drift given by

=1

IS]
50 ( o Zps ( (Zk 1 C(Q(I;k)-i- Qkk) )) (45)

where B,(Q) = R;Q11 + 75(Q12 + Q21) + RsQ22. Let us denote the maximum supportable

7(Q) = f}%( al §p5<R2Q“))

arrival rate in the fading case by the notatidp... We will first analyze the Laypunov drift
term atA = \,.... Notice that),., can be written as a convex combination)éf(where \* are
some rate points inside the stability region on the llge= ),) and hence\ .. = >°17 p.As.

Therefore, we can rewrite the Lyapunov drift as

|S] 2

= ps > MN(Qiilg.<sq: +0Qilq.60.:)

s=1 i=1

~ (RQQM + g (Zk 1 Qui + Qkk) )

B.(Q) (46)

From the proof of Theorem 2 , we have proved that each of thestenside the summation

for is negative (every channel state) as long as

r? n SR?
rs +0Rs  2(rs + 0Rs)

A<

and hence from the above observation apd, = 3°! p,\*, we have the result of (#4).

Also note that[(45) is an increasing function bffor a given value of queue-lengths. Hence,

V(Q)|yop < VQ\y
gueue-lengths. Thereforéf,(Q) < 0 for A < A\nax and for all values of queue-length and hence

for A < Anax. Also, this argument holds for any value of the

any rate\ < \,.. is stabilizable. [ |



19

VI. CONCLUSION

In this work, we have formulated a partially decentralizaddomized scheduling algorithm

for a two user set up under a SINR based interference modeurmlgorithm, the transmitters

have to exchange only one bit information between themsel@eir algorithm has advantage

over existing scheduling algorithms since it is decertealiin nature and can perform well under

fading conditions.
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