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Abstract

There has been substantial interest over the last decade in developing low complexity decentralized

scheduling algorithms in wireless networks. In this context, the queue-length based Carrier Sense

Multiple Access (CSMA) scheduling algorithms have attracted significant attention because of their

attractive throughput guarantees. However, the CSMA results rely on the mixing of the underlying

Markov chain and their performance under fading channel states is unknown.

In this work, we formulate a partially decentralized randomized scheduling algorithm for a two

transmitter receiver pair set up and investigate its stability properties. Our work is based on the Fast-

CSMA (FCSMA) algorithm first developed in [1] and we extend its results to a signal to interference

noise ration(SINR) based interference model in which one ormore transmitters can transmit simulta-

neously while causing interference to the other. In order toimprove the performance of the system, we

split the traffic arriving at the transmitter intoschedule based queuesand combine it with the FCSMA

based scheduling algorithm. We theoretically examine the performance our algorithm in both non-fading

and fading environment and characterize the set of arrival rates which can be stabilized by our proposed

algorithm.
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I. INTRODUCTION

We consider the problem of decentralized channel access forthe two user interference channel.

Classical information theoretic approach assumes that thetransmitters are always saturated with

information bits. However, in this work, we consider the randomness in arrival of information bits

and hence account for the queuing backlog at the transmitters. We consider that the transmission

rates of each transmitter-receiver pair are a function of the signal to interference ration (SINR)

at the receiver.

The work in this paper is comparable to the stream of works related to scheduling algorithms

in wireless networks which operate at the packet level and assume that a fixed number of

packets can be transmitted per time slot . The task then is to schedule a set of non-conflicting

links for transmission (conflict graphbased interference model) in order to ensure the long

term stability of the associated queues in the network. The authors in the seminal work of

[2] developed a maximum-weight based scheduling strategy which is proved to be throughput-

optimal. However, the max-weight based algorithms are centralized in nature and suffer from high

computational complexity. Subsequently low-complexity,decentralized, and possibly suboptimal

scheduling algorithms were developed in series of works [3],[4],[5] with varying complexities

and performances. In particular, recently a class of randomized scheduling algorithms namely

the CSMA-based scheduling algorithms ([6],[7],[8]) have received a lot of attention because of

their attractive throughput guarantees. However, the CSMAbased scheduling algorithms rely on

the mixing of the underlying Markov chain which cannot be guaranteed in a fading environment.

Hence their performance in fading environment is not known.

Specifically, we develop a FCSMA (Fast-CSMA) based scheduling algorithm that extends the

earlier results to the SINR-based interference model. The FCSMA operation has advantage over

the CSMA based scheduling algorithms under fading conditions in that it quickly reaches one of

the favorable schedules and sticks to it rather than relyingon the convergence of the underlying

Markov chain . Hence, the FCSMA based algorithm can perform well under fading environment

as well.

We first note that the straightforward application of FCSMA to the SINR based interference

model has a low performance. In order to improve the performance of this scheme, we formulate

a dynamic rule to split the incoming traffic intoschedule based queuesat the transmitters and
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combine it with the FCSMA scheduling. By favorably tuning the control parameter of the traffic

splitting rule, we prove that the FCSMA based algorithm along with the appropriate traffic

splitting rule can provide a good performance.

Finally, we would like to mention reference [9] a decentralized queue-length dependent prob-

abilistic scheduling algorithm for the two user multi-access channel. However, the analysis of

the algorithm is done assuming that the channel realizationstays constant through out and hence

assumes a non-fading scenario. In contrast, we analyze our system under fading environment as

well.

II. SYSTEM MODEL

We consider a set up in which two transmitters (Tx) are tryingto communicate to their

respective receivers (Rx) over a common frequency band. We assume that the system operates

in a time slotted fashion. We denoteAi[t] as the amount of information bits that flow into

the Txi during each time slott. The arrival process is assumed to be independent across users

and independently and identically distributed over time slots with a rate ofλi, i = 1, 2, and

Ai[t] ≤ K, ∀t. Accordingly, there is queue associated with Txi whose queue-length at time slot

t is denoted by the notationQi[t]. Let Si[t] denote the number of information bits served from

the queue of Txi during the time slott. The equation for the queue-length evolution is given by

Qi[t+ 1] = Qi[t] +Ai[t]− Si[t] + Ui[t] (1)

whereUi[t] denotes the unused service, ,0 < Ui[t] ≤ 1 if Qi[t] ≤ 1 and is selected for service,

elseUi[t] = 0. We say that a queue is stable iflim supT→∞
1
T

∑T−1
t=0 E [Qi[t]] < ∞.

We consider the SINR based interference model in which one ormore transmitters can transmit

simultaneously. In this case, the maximum achievable transmission rate for any Tx-Rx depends

on the SINR at the Rx. In general, the transmission rate for a Tx-Rx pair during any time slot can

be chosen from a continuous set. However, in order to simplify the analysis, we allow two levels

of rates for every Tx-Rx pair. First, a rate ofRi when only one two transmitters transmitting

(while the other transmitter is turned off) and a rateri when both the transmitters transmitting

simultaneously (in which case, they cause interference to each other). These rates correspond to

the three possible scheduling decisions in the setΩ = {ω1, ω2, ω3} where the rates obtained in
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the three scheduling decisions are given by{R1, 0}, {0, R2}, {r1, r2} respectively. A reasonable

assumption is that the maximum achievable rate is an increasing function of the SINR. Hence,

we assume that the ratesr1 ≤ R1 andr2 ≤ R2. The stability region for this system can be given

as the convex hull of the possible transmission rates.

Λ =
{

λ1 < π1R1 + π3r1, λ2 < π2R2 + π3r2

3∑

i=1

πi ≤ 1, πi ≥ 0
}

The stability region of the system is shown in Figure 1. Additionally, we note the condition
r1
R1

+ r2
R2

≥ 1, which ensures that the stability region goes beyond the timesharing region.

R10

R2

λ
1

λ 2

(r
1
,r

2
)

Fig. 1. Stability region for the 2 User System

The objective of this work is to design a decentralized throughput optimal scheduling algorithm

in which the transmitters cannot exchange the full CSI of theUTs.

III. FCSMA ALGORITHM DESCRIPTION

The FCSMA based scheduling algorithm operates in the following way. At the beginning

of time slot t, each Tx independently generates two timers whose values are an exponentially

distributed random variable with meanQi[t]Ri andQi[t]ri respectively. These timers correspond

to the respective scheduling decisions in which the Txi can achieve a non zero rate. We assume

that each Tx maintains a one bit index for the timers associated with it. Let us assume that the

index of 0 corresponds to the timerQi[t]Ri and an index of1 indicates that timerQi[t]ri.
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The system has four timers. Without the loss of generality, assume that one of the timers

associated with Tx1 expires first among the four timers. The algorithm operates in the following

manner. Tx1 immediately suspends its second timer (which has not yet expired) and starts to

transmit bits from its queue at the appropriate rate (rateR1 if timer 0 expires or a rater1 if

timer 1 expires). Tx1 communicates the index of timer which has expired to Tx2. Upon receiving

the index bit, Tx2 also suspends both its timers. We assume the following pre-agreed protocol

between the two Txs. Upon reception of the index0, the Tx2 keeps silent during corresponding

time slot t. Upon reception of the index1, the Tx2 transmits from its queue at the rater2.

We ignore the overhead associated with communicating the bit between the two Txs. The state

diagram for the FCSMA based scheduling algorithm is shown inFigure 2. The probabilities

{0, 0}

{R1, 0}

{r1, 0}

{0, r2}

{r1, r2}

Q1R1

Q1r1

Q2r2 1

1

{0, R2}

Q2R2

Fig. 2. FCSMA State Diagram
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of reaching each of the three possible schedules during a time slot t is given by the following

expressions.

Pω1
(Q) =

R1Q1

∑
2

i=k Qk(Rk + rk)
, Pω2

(Q) =
R2Q2

∑
2

k=1
Qk(Rk + rk)

Pω3
(Q) =

∑
2

k=1
rkQk

∑
2

k=1
Qk(Rk + rk)

(2)

Additionally, the expected value of service rate for the queue at Txi during the time slott can

be given by

E
[
Si[t]

∣
∣Q[t] = Q

]
=

R2
iQi + ri

∑2
k=1 rkQk

∑2
i=k Qk(Rk + rk)

, i = 1, 2 (3)

Proposition 1. Consider a 2-user perfectly symmetric network in whichR1 = R2 = 1 and

r1 = r2 = α. (Note0 ≤ α ≤ 1.) When the mean rate of the arrival process into the two Txs are

the same (i.e.,λ1 = λ2 = λ), the maximum arrival rate which can be supported by the FCSMA

scheduling algorithm is given by

λ <
α2

α + 1
+

1

2(α+ 1)
(4)

Proof: The proof proceeds by considering a quadratic Lyapunov function of the form

V (Q[t]) =
1

2

2∑

i=1

Q2
i [t]

and examining the value ofλ for which the Lyapunov drift is negative outside a bounded set.

Here, we only provide the essential technical arguments of the proof analyze the term

V̇ (Q[t]) =
2∑

i=1

QiQ̇i[t], Q̇i[t] = λ−E
[
Si[t]

∣
∣Q[t] = Q

]

which loosely represents the Lyapnov drift in continuous time. We examine the range ofλ for

the which this quantity is negative.

V̇ (Q[t]) =

2∑

i=1

QiQ̇i[t]

=
2∑

i=1

Qi

(

λ−
Qi + α2

∑2
k=1Qk

∑2
i=k Qk(1 + α)

)
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=
λ(1 + α)

(∑2
i=1Qi

)2
−
(
∑2

i=1Q
2
i + α2

(∑2
k=1Qk

)2
)

∑2
i=k Qk(1 + α)

=
λ((1 + α)− α2)

(∑2
i=1Qi

)2
−
(∑2

i=1Q
2
i

)

∑2
i=k Qk(1 + α)

(5)

(a)

≤ 0 for
α2

α + 1
≤ λ ≤

α2

α + 1
+

1

2(α+ 1)
(6)

where(a) follows from the following inequality. Forx, y, β1, β2 ≥ 0,

β1(x+ y)2 − β2(x
2 + y2) = (β1 − β2)x

2 + (β1 − β2)y
2 + 2β1xy

≤ (β1 − β2)x
2 + (β1 − β2)y

2 + β1(x
2 + y2)

= (2β1 − β2)(x
2 + y2) (7)

Let us denote the numerator term of (5) asg(Q)
△

= λ((1 + α)− α2)
(∑2

i=1Qi

)2
−
(∑2

i=1Q
2
i

)
.

The conditionβ1 > 0 implies thatλ ≥ α2

α+1
. Note thatQ1 ≥ 0 andQ2 ≥ 0. Rearranging the

term inside the brackets of (5), it can be verified that

g(Q) ≤ 0 for λ ≤
α2

α + 1
+

1

2(α+ 1)
(8)

Combining with the conditionλ ≥ α2

α+1
, we have

g(Q) ≤ 0 for
α2

α + 1
≤ λ ≤

α2

α + δ
+

1

2(α+ 1)
(9)

Notice that the range ofλ specified in (8) is just a sufficient conditiong(Q) ≤ 0. We now claim

that

g(Q) ≤ 0 for 0 ≤ λ ≤
α2

α + 1
+

1

2(α+ 1)
(10)

We justify our claim in the following way. Let us define the upper bound onλ in (10) asλmax.

Notice thatg(Q) is an increasing function ofλ for a fixed value of the queue-lengthsQ1, Q2.

Therefore,g(Q)
∣
∣
λ
≤ g(Q)

∣
∣
λ=λmax

≤ 0 for λ ≤ λmax and hence the claim of (10).

Notice that the bound of (38) was obtained considering a fixedvalue ofQ1 andQ2. However,

the argument is true for any positive value ofQ1 andQ2. Hence repeating the arguments for

anyQ1 andQ2, we conclude that the Lyapunov drift is negative for all positive values of queue-

lengths andλ ≤ λmax. We hence claim that the algorithm can stabilize the traffic whose arrival

rate is less thanλmax. The exact arguments and the connection to the Foster Lyapunov theorem

is deferred till the proof of Theorem 2.
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Remarks on the FCSMA algorithm: The FCSMA based scheduling algorithm described

above is a partially decentralized algorithm in which the Txs exchange one bit information

(index of the timer that expires first). This calls for a substantially less overhead of information

exchange between the Txs as compared to exchanging the full CSI. From the plot of the stability

region in Figure 1, notice that the maximum achievable rate in the symmetric case isλ1 = λ2 = λ

is λ < α. However, the bound specified in (4) is lesser thanα. In what follows, we overcome this

problem by combining the FCSMA scheduling scheme with a dynamic traffic splitting algorithm.

IV. FCSMA WITH DYNAMIC TRAFFIC SPLITTING ALGORITHM

In this section, we introduce the concept ofschedule based queuesto split the input traffic

arriving into the Txs. Each Tx maintains two different queues one for each scheduling decision.

For the Txi, the queueQii corresponds to the first scheduling decision in which the Txi can

transmit at the higher rateRi. When selected for service, this queue gets a service rate ofRi.

Let us definēi = mod (i, 2)+1. The second queueQīi corresponds to the scheduling decision

in which both the Txs have joint access to the channel and whenselected for service, gets a

rate of ri. The traffic splitting policy can be described as follows. During the time slott, each

transmitter compares the current queue-lengthsQii[t] and δiQīi[t] where δi ≥ 0 is a scaling

factor. If Qii[t] < δiQīi[t], the information bits arriving in the respective slot enter the queueQii

and vice versa. Accordingly,

λii = E[Aii[t]] =







λi if δiQīi[t] > Qii[t]

0 else

λīi = E[Aīi[t]] =







λi if δiQīi[t] ≤ Qii[t]

0 else
(11)

The scheduling algorithm is exactly the same as the FCSMA algorithm described in Section

II B except that the two timers associated with the Txi are exponential random variables with

meanQii[t]Ri and Qīi[t]ri respectively (note that the queue-length values associated with the

two mean values are different). The probabilities of each scheduling decision in this case are
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Pω1
(Q) =

Q11R11

∑
2

k=1
QkkRk +Qkk̄rk

,Pω2
(Q) =

Q22[t]R22

∑
2

k=1
QkkRk +Qkk̄rk

Pω3
(Q) =

∑
2

k=1
Qkk̄rk

∑
2

k=1
QkkRk +Qkk̄rk

(12)

Also, the expected service rate for each queue is given by

E
[
Sii[t]

∣
∣Q[t] = Q

]
=

QiiR
2

i
∑

2

k=1
(QkkRi +Qkk̄rk)

E
[
Sīi[t]

∣
∣Q[t] = Q

]
=

ri
∑

2

k=1
Qkk̄rk

∑
2

k=1
(QkkRk +Qkk̄rk)

, i = 1, 2

Having defined a dynamic traffic splitting policy described above, the next task is to examine

theoretically the set of arrival rate which can be can be stabilized by our algorithm. To do the

same, we define a Lyapunov function and examine its properties for different values of the

queue-lengths. In order to make things more amenable for theoretical analysis, we restrict our

proofs to a perfectly symmetric system model.

Theorem 2. Consider a 2-user perfectly symmetric network described inProposition 1. When

the mean rate of the arrival process into the two transmitters are the same (i.e.,λ1 = λ2 = λ),

the maximum arrival rate which can be supported by the trafficsplitting policy described in

equation(11) followed by the FCSMA scheduling algorithm is given by

λ <
α2

α+ δ
+

δ

2(α+ δ)
(13)

Proof: Consider the Lyapunov function given by

V (Q[t]) =
1

2

2∑

i=1

(
Q2

ii[t] + δQ2
īi[t]
)

(14)

whereī = mod (i, 2)+1. Our approach to finding the maximum supportable rate is to examine

the drift of the Lyapunov function and determine the maximumvalue of the arrival rateλ for

which the Lyapunov drift is negative outside a bounded region around the origin. In doing so, we

bound the Lyapunov function by a series of upper bounds and take the most restrictive condition

on the arrival rateλ.
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The Lyapunov drift in discrete time is given by

∆V (Q[t]) = E [V (Q[t + 1])− V (Q[t])|Q[t] = Q]

whereQ = [Q11, Q12, Q21, Q22]
T . Applying mean value theorem, consideringRij[t] between

Qij [t] andQij [t+ 1],

∆V (Q[t]) =

2∑

i=1

E
[
Rii[t](Qii[t+ 1]−Qii[t]) + δRīi[t] (Qīi[t+ 1])−Qīi[t])

∣
∣Q(t) = Q

]

=

2∑

i=1

E
[

Rii[t](Q̇ii[t] + Uii[t]) + δRīi[t](Q̇īi[t] + Uīi[t])
∣
∣Q(t) = Q

]

=
2∑

i=1

E
[
Rii[t]Uii[t] + δRīi[t]Uīi[t]

∣
∣Q(t) = Q

]

︸ ︷︷ ︸

∆V1(Q[t])

(15)

+

2∑

i=1

E
[

Rii[t]Q̇ii[t] + δRīi[t]Q̇īi[t]
∣
∣Q(t) = Q

]

︸ ︷︷ ︸

∆V2(Q[t])

(16)

Let us denote the term in equation (15) as∆V1(Q[t]) and (16) as∆V2(Q[t]). Consider

∆V1(Q[t]) =

2∑

i=1

E
[
Rii[t]Uii[t] + δRīi[t]Uīi[t]

∣
∣Q(t) = Q

]
(17)

We would like the bound the terms of∆V1(Q[t]). First note that ifQij [t] = Qij > 1 then

Uij [t] = 0. Else if Qij[t] = Qij < 1 and is selected for service then0 < Uij ≤ 1. In this case

Qij [t+ 1] < K + 1 (becauseAij[t + 1] < K)and hence

∆V1(Q[t]) ≤ b1K (18)

whereb1 is a bounded positive constant. Now consider the terms of∆V2(Q[t]). Rewriting, we

have,

∆V2(Q[t]) =
2∑

i=1

E
[

Rii[t]Q̇ii[t] + δRīi[t]Q̇īi[t]
∣
∣Q(t) = Q

]

1Q≤M

︸ ︷︷ ︸

∆V3(Q[t])

+
2∑

i=1

E
[

Rii[t]Q̇ii[t] + δRīi[t]Q̇īi[t]
∣
∣Q(t) = Q

]

1Q>M

︸ ︷︷ ︸

∆V4(Q[t])
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where 1(.) is the indicator function. Note that sinceAij [t] ≤ K, we can also conclude that

|Aij[t]− Sij[t]| ≤ K, therefore,

∆V3(Q[t]) ≤ b4(K +M)K (19)

In order to bound the terms of∆V4(Q[t]), first note that for a sufficiently large value ofQij [t] =

Qij > M, we have
∣
∣
∣
Rij [t]

Qij
− 1
∣
∣
∣ < ǫ and therefore,

(1− ǫ)Qij ≤ Rij[t] ≤ (1 + ǫ)Qij

Thus, we have

Rij [t]Q̇ij [t] = Rij[t] (Aij [t]− Sij [t])

= Rij [t] ((Aij [t]− Sij[t])+ − (Aij [t]− Sij [t])−)

< (1 + ǫ)Qij(Aij [t]− Sij [t])+ − (1− ǫ)Qij(Aij [t]− Sij [t])−

= Qij(Aij [t]− Sij[t]) + ǫQij [t]
∣
∣
∣Aij[t]− Sij[t]

∣
∣
∣

≤ QijQ̇ii[t] + ǫKQij (20)

where (x)+ = max{x, 0}, (x)− = −min{x, 0} and
∣
∣
∣Aij[t] − Sij [t]

∣
∣
∣ ≤ Aij [t] ≤ K. Therefore,

we have
2∑

i=1

Rii[t]Q̇ii[t] + δRīi[t]Q̇īi[t] ≤
2∑

i=1

QiiQ̇ii[t] + δQīiQ̇īi[t] +Kǫ

2∑

i=1

(Qii + δQīi) (21)

We focus on the first term on the right hand side of equation (21). Let us denote

∆V5[t]
△

=

2∑

i=1

E
[

QiiQ̇ii[t] + δQīiQ̇īi[t]
∣
∣Q(t) = Q

]

(22)

where

∆V5[t] =Q11

(

E[A11(t)]−
Q11

B(Q)

)

+ δQ12

(

E[A12(t)]−
α2(Q12 +Q21)

B(Q)

)

+Q22

(

E[A22(t)]−
Q22

B(Q)

)

+ δQ21

(

E[A21(t)]−
α2(Q12 +Q21)

B(Q)

)

(23)

B(Q) = Q11 + α(Q12 +Q21) +Q22. Depending on the relationship between the queue lengths,

we need to consider the four cases for the Lyapunov function (see equation (11)). These four

cases throw up a series of bounds onλ under which the right hand side of equation (23) is

negative. We take the most restrictive condition of all the bounds as the upper bound on the
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maximum supportable rate.

Case1:Q11 ≤ δQ12;Q22 ≤ δQ21.

In this case,

(23)=Q11

(

λ−
Q11

B(Q)

)

+ δQ12

(
α2(Q12 +Q21)

B(Q)

)

+Q22

(

λ−
Q22

B(Q)

)

+ δQ21

(
α2(Q12 +Q21)

B(Q)

)

=
f1(Q)

B(Q)

where

f1(Q) = λ (Q11 +Q22) (Q11 + α(Q12 +Q21) +Q22)−
(
Q2

11 + δα2(Q12 +Q21)
2 +Q2

22

)

Let us examine the behavior of the functionf1(Q) with respect to the variablesQ12 andQ21

for a fixed value ofQ11 andQ22. Writing the gradients of the functionf1(Q) with respect to

the variablesQ12 andQ21,

∂f1(Q)

∂Q12
= αλ (Q11 +Q22)− 2α2δ(Q12 +Q21)

≤ αλδ (Q12 +Q21)− 2α2δ(Q12 +Q21)

= Q12

(
αλδ − 2α2δ

)
+Q21

(
αλδ − 2α2δ

)

≤ 0 for λ ≤ 2α (24)

Similarly taking the gradients with respect toQ21, we have,

∂f1(Q)

∂Q21

≤ 0 for λ ≤ 2α (25)

Therefore,f1(Q) is a decreasing function of bothQ12 andQ21. For a given value ofQ11 and

Q22, the functionf1(Q) is maximized whenδQ12 = Q11 andδQ21 = Q22 (hitting the boundary

conditions of case 1). Therefore,

f1(Q) ≤ f1(Q)
∣
∣
∣
δQ12=Q11,δQ21=Q22

for λ ≤ 2α

= λ(Q11 +Q22)
((

1 +
α

δ

)

(Q11 +Q22)
)

−

(

Q2
11 +Q2

22 + α2δ

(
(Q11 +Q22)

2

δ2

))

= (Q11 +Q22)
2

(

λ
(

1 +
α

δ

)

−
α2

δ

)

− (Q2
11 +Q2

22)

(a)

≤

(

2

(

λ
(

1 +
α

δ

)

−
α2

δ

)

− 1

)

(Q2
11 +Q2

22) (26)
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where (a) follows from the inequality (7). The conditionβ1 ≥ 0 implies thatλ ≥ α2

α+δ
. Note

that Q11 ≥ 0 andQ22 ≥ 0. Rearranging the term inside the brackets of (26), it can be verified

that

f1(Q) ≤ 0 for λ ≤
α2

α + δ
+

δ

2(α + δ)
(27)

Combining with the conditionλ ≥ α2

α+δ
, we have

f1(Q) ≤ 0 for
α2

α + δ
≤ λ ≤

α2

α+ δ
+

δ

2(α + δ)
(28)

Notice that the range ofλ specified in (27) is just a sufficient conditionf1(Q) ≤ 0. We now

claim that

f1(Q) ≤ 0 for 0 ≤ λ ≤
α2

α + δ
+

δ

2(α + δ)
(29)

We justify our claim in the following way. Let us define the upper bound onλ in (29) asλmax.

Notice the expression on the right hand side of equation (26)is an increasing function ofλ for a

fixed value of the queue-lengthsQ11, Q22. Therefore,f1(Q)
∣
∣
λ
≤ f1(Q)

∣
∣
λ=λmax

≤ 0 for λ ≤ λmax

and hence the claim of (29).

Also, it can be verified that

α2

α + δ
+

δ

2(α+ δ)
≤ 2α

(the bound ofλ ≤ 2α is obtained from (25)). Hence, in this case, we have that for agiven value

of Q11 andQ22,

∆V5[t] ≤ 0 0 ≤ λ ≤
α2

α + δ
+

δ

2(α + δ)
(30)

Notice that the result of (30) is true for any value ofQ11 andQ22. Hence repeating the argument

for any Q11 and Q22, we conclude that (30) is negative for all values of positive value of

queue-length and the range ofλ specified.

Case2:Q11 ≥ δQ12;Q22 ≥ δQ21. In this case,

(23)=Q11

(
Q11

B(Q)

)

+ δQ12

(

λ−
α2(Q12 +Q21)

B(Q)

)

+Q22

(
Q22

B(Q)

)

+ δQ21

(

λ−
α2(Q12 +Q21)

B(Q)

)

=
f2(Q)

B(Q)
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where

f2(Q) = λδ (Q12 +Q21) (Q11 + α(Q12 +Q21) +Q22)−
(
Q2

11 + δα2(Q12 +Q21)
2 +Q2

22

)

Once again, we would like to examine the behavior of the function f2(Q) for fixed values of

Q11 andQ22. Writing the gradients of the functionf2(Q) with respect to the variablesQ12 and

Q21,

∂f2(Q)

∂Q12
= λδ (Q11 +Q22) + (2αλδ − 2α2δ)(Q12 +Q21)

≥ λδ2 (Q12 +Q21) + (2αλδ − 2α2δ)(Q12 +Q21)

≥ 0 for λ ≥
2α2

2α + δ
(31)

The functionf2(Q) is an increasing function ofQ12 for λ ≥ 2α2

2α+δ
. Similarly it can be shown

that

∂f2(Q)

∂Q21
≥ 0 for λ ≥

2α2

2α + δ
(32)

f2(Q) is an increasing function of bothQ12 and Q21 for the range ofλ specified. Therefore

for a given value ofQ11 and Q22, the functionf2(Q) is maximized whenδQ12 = Q11 and

δQ21 = Q22. Once again, repeating the arguments like that of case 1 (equation (26)), we have

f2(Q) ≤ 0 for λ ≤
α2

α+ δ
+

δ

2(α+ δ)
(33)

From the analysis of Case 2, there are two bounds onλ(from equations (31) and (33)). It can

be verified that forδ ≥ 0,

2α2

2α + δ
≤

α2

α+ δ
+

δ

2(α + δ)

and hence,

∆V5[t] ≤ 0 for
2α2

2α + δ
≤ λ ≤

α2

α + δ
+

δ

2(α+ δ)
(34)

Once again, we can make arguments similar to that of case 1 andextend the inequality in (34)

for all positive values of the queue-lengths.

Case3:Q11 ≥ δQ12;Q22 ≤ δQ21.
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In this case,

(23)=Q11

(

λ−
Q11

B(Q)

)

+ δQ12

(
α2(Q12 +Q21)

B(Q)

)

+Q22

(
Q22

B(Q)

)

+ δQ21

(

λ−
α2(Q12 +Q21)

B(Q)

)

=
f3(Q)

B(Q)

where

f3(Q) = λ (Q11 + δQ21) (Q11 + α(Q12 +Q21) +Q22)−
(
Q2

11 + δα2(Q12 +Q21)
2 +Q2

22

)

Writing the gradients of the functionf3(Q) with respect to the variablesQ12 andQ21,

∂f3(Q)

∂Q12
= λδQ11 + λ(δ + α)Q22 + (2αλδ − 2α2δ)Q12 + (αλδ − 2α2δ)Q21

≥ λδ2Q21 + λ(δ + α)δQ21 + (2αλδ − 2α2δ)Q12 + (αλδ − 2α2δ)Q21

≥ 0 for λ ≥
2α2

2α+ δ

Therefore,f3(Q) is an increasing function ofQ12 for the range ofλ specified and is maximized

whenδQ12 = Q22. Examining the behavior off3(Q) with respect toQ21,

∂f3(Q)

∂Q21
= (αλδ − 2α2δ)Q12 − 2α2δQ21 + λαQ22

≤ (αλδ − 2α2δ)Q12 + (αλδ − 2α2δ)Q21

≤ 0 for λ ≤ 2α

∂f3(Q)

∂Q21

≤ 0 for λ ≤ 2α

f3(Q) is a decreasing function ofQ21 and hence is maximized whenδQ21 = Q22. Therfore

for a given value ofQ11 and Q22, the functionf3(Q) is maximized whenδQ12 = Q11 and

δQ21 = Q22.

f3(Q) ≤ 0 for 0 ≤ λ ≤
α2

α + δ
+

δ

2(α + δ)
(35)

Once again, we have that

∆V5[t] ≤ 0 for
2α2

2α + δ
≤ λ ≤

α2

α + δ
+

δ

2(α+ δ)
(36)
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Case4:Q11 ≥ δQ12;Q22 < δQ21.

Case4 can be analyzed exactly similar to Case3. Once again itcan be shown that the function

is maximized whenδQ12 = Q11 andδQ21 = Q22.

Summary: From the analysis of cases 1- 4, we have shown that

∆V5[t] ≤ 0 for
2α2

2α + δ
≤ λ ≤

α2

α + δ
+

δ

2(α+ δ)
(37)

for any positive values of the queue-lengths. Notice that the range ofλ specified in (37) is just

a sufficient condition for the Lyapunov drift to be negative.We now claim that

∆V5[t] ≤ 0 for 0 ≤ λ ≤
α2

α + δ
+

δ

2(α + δ)
(38)

We justify our claim in the following way. Notice that

∆V5[t] = 0 for λ =
α2

α + δ
+

δ

2(α+ δ)

Also notice from equation (23) that∆V5[t] is an increasing function ofλ for a fixed value of

the queue-lengths (Q11, Q12, Q21, Q22). Hence

∆V5[t]
∣
∣
∣
λ
≤ ∆V5[t]

∣
∣
∣
λ= α2

α+δ
+ δ

2(α+δ)

for λ ≤
α2

α+ δ
+

δ

2(α + δ)
(39)

This is true for a given value of queue-lengths. But recall that this argument can be extended

for any value of the value of the queue-lengths. Therefore, (39) is true of all values of the

queue-lengths and hence the claim of (38). Also note that

∆V5[t] < 0 for 0 ≤ λ <
α2

α+ δ
+

δ

2(α + δ)

In other words, forQ ∈ R
+ and0 ≤ λ < α2

α+δ
+ δ

2(α+δ)
,

λ (Q111Q11≤δQ12 + δQ121Q11≥δQ12 + δQ211Q22≤δQ21 +Q221Q22≥δQ12) (Q11 + α(Q12 +Q21) +Q22)

−
(
Q2

11 + δα2(Q12 +Q21)
2 +Q2

22

)
< 0

Denoting

g(Q)
△

= (Q111Q11≤δQ12 + δQ121Q11≥δQ12 + δQ211Q22≤δQ21 +Q221Q22≥δQ12) (40)

Therefore, there exists aη > 0 such that,

(
Q2

11 + δα2(Q12 +Q21)
2 +Q2

22

)
≥ λ(1 + η)g(Q) (Q11 + α(Q12 +Q21) +Q22) (41)
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From (21) and (41), we have

∆V4(Q[t]) ≤ (−η +Kǫ)g(Q) (42)

By choosingǫ sufficiently small, we can haveγ = −η +Kǫ > 0, such that

∆V4(Q[t]) ≤ −γg(Q) (43)

Combining the result of (18),(19) and (43), we have

∆V (Q[t]) = −γg(Q)1Q>M + C for λ ≤
α2

α + δ
+

δ

2(α + δ)

whereC < ∞ is a bounded positive constant. By Foster-Lyapunov theorem[10], implies that

the queue-lengths are bounded for the FCSMA algorithm withλ ≤ λmax.

Remarks on the dynamic traffic splitting algorithm: Note that the result of Theorem 2 can

be generalized to the case when the data rates are{R, 0}, {r, r}, {0, R}. In this case any rate

λ < r2

r+δR
+ δR2

2(r+δR)
can be stabilized. The FCSMA based algorithm along with the dynamic

traffic splitting algorithm provides us with a tunable parameter δ which can be varied in order

to achieve better performance. Specifically whenλ1 = λ2 = λ, by settingδ = 0, from the result

of Theorem 2 that any rateλ < α can be stabilized by the system (which is also the maximum

achievable rate in the symmetric arrival case from the plot of the stability region). The parameter

δ can be calculated based on the point inside the stability region in which we are operating. Our

theoretical analysis was limited to the case of symmetric arrivals (λ1 = λ2 = λ). Based on the

analysis we can conjecture that by suitably varyingδ, any rate point inside the stability region

can be stabilized by our algorithm. The proof is left for future investigation.

V. FADING CHANNELS

Now consider a symmetric block fading model where the channel realization is fixed during

the time slot but changes after every time slott. The set of channels in the network can assume

a states = {1, . . . , S} according to stationary probabilityps. We denote the cardinality of the set

by |S| and
∑|S|

s=1 ps = 1. In each time slott, the achievable rate for the three possible scheduling

decisions are{{Rs, 0}, {rs, rs}, {0, Rs}} if the network is in fading states at time slott. In this

scenario, whenλ1 = λ2 = λ, the maximum rate that can be stabilized by the FCSMA policy

along with traffic splitting algorithm is given by
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λ <

|S|
∑

s=1

ps

(
r2s

rs + δRs

+
δR2

s

2(rs + δRs)

)

(44)

Proof: Consider the quadratic Lyapunov function given byV (Q[t]) =
∑2

i=1
1
2

(
Q2

ii + δQ2
īi
[t]
)
.

We once again analyze only the following expression of the Lyapunov drift given by

V̇ (Q) =

2∑

i=1

Qii



E[Aii(t)]−

|S|
∑

s=1

ps

(
R2

sQii

Bs(Q)

)




+ δQīi



E[Aīi(t)]−

|S|
∑

s=1

ps




r2s

(
∑

2

k=1
Qkk̄ +Qkk̄

)

Bs(Q)







 (45)

whereBs(Q) = RsQ11 + rs(Q12 + Q21) + RsQ22. Let us denote the maximum supportable

arrival rate in the fading case by the notationλmax. We will first analyze the Laypunov drift

term atλ = λmax. Notice thatλmax can be written as a convex combination ofλs (whereλs are

some rate points inside the stability region on the lineλ1 = λ2) and henceλmax =
∑|S|

s=1 psλ
s.

Therefore, we can rewrite the Lyapunov drift as

V̇ (Q) =

|S|
∑

s=1

ps

2∑

i=1

λs(Qii1Qii≤δQiī
+ δQīi1Qii≥δQiī

)

−




R2

sQii + r2s

(
∑

2

k=1
Qkk̄ +Qkk̄

)

Bs(Q)



 (46)

From the proof of Theorem 2 , we have proved that each of the terms inside the summation

for is negative (every channel state) as long as

λs <
r2s

rs + δRs

+
δR2

s

2(rs + δRs)

and hence from the above observation andλmax =
∑|S|

s=1 psλ
s, we have the result of (44).

Also note that (45) is an increasing function ofλ for a given value of queue-lengths. Hence,

V̇ (Q)
∣
∣
λ≤λmax

< V̇ (Q)
∣
∣
λ=λmax

for λ < λmax. Also, this argument holds for any value of the

queue-lengths. Therefore,V̇ (Q) ≤ 0 for λ < λmax and for all values of queue-length and hence

any rateλ < λmax is stabilizable.
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VI. CONCLUSION

In this work, we have formulated a partially decentralized randomized scheduling algorithm

for a two user set up under a SINR based interference model. Inour algorithm, the transmitters

have to exchange only one bit information between themselves. Our algorithm has advantage

over existing scheduling algorithms since it is decentralized in nature and can perform well under

fading conditions.
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