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ABSTRACT
In this work, we address the problem of power allocation for
interfering transmitter-receiver pairs so that the probability
that each queue length exceeds a specified threshold is fixed
at a desired value. One application is satisfying QoS require-
ments in a dense cellular network. We address this problem
using heavy traffic approximation techniques which lead to an
asymptotic model described by a (controlled) stochastic dif-
ferential equation. The power control strategy consists in al-
locating most of the power according to the wireless channel
state and a smaller fraction according to the queue lengths.
Simulation results in a simple setting illustrate that the pro-
posed control policy can yield desirable results in practical
systems.

1. INTRODUCTION
The explosive growth in the demands of mobile users, mainly
due to video and data applications being increasingly popular
on mobile phones, poses a serious challenge to cellular net-
work operators. A promising way to deal with this demand is
the concept of Small Cell Networks (SCN), which are dense
cellular networks with low power base stations and frequency
reuse one [1]. One of the key issues arising in these networks
is that the intercell interference becomes severe. Coopera-
tion between the base stations of a cellular network has been
shown to mitigate the intercell interference and increase spec-
tral efficiency [2]. However, this is not always feasible due to
practical limitations in the backhaul capacity. Moreover, in
these works incoming traffic pattern is not taken into account.
Therefore a better approach for practical cases is to make the
resource allocation at the base stations taking into account the
real-time traffic characteristics and queue states.

Regarding the problem of simultaneous transmissions over
interfering channels, substantial work has been done in power
allocation so that the SINR at each receiver is above a speci-
fied threshold [3]. This approach however is not suited for the
traffic nature of data and video streaming applications, as the
resulting power control algorithms do not adapt to the traffic,
queue states and/or the specific requirements of the applica-
tion requested. Closer to this direction, in [4] a scheduler
based on H-infinity control was proposed in order to regulate
the buffers of small cell base stations around a target length.

The authors in [5] address the problem of minimizing a global
function of the queue lengths that corresponds to the expec-
tation of the sum of the delays in each base station . Therein,
an algorithm that uses dynamic scheduling (inside the cell)
and power allocation (for intercell interference mitigation) is
proposed.

In this paper we consider a system ofK transmitter-receiver
pairs. Our goal is to set the probability that the queue length
at each transmitter exceeds a specified threshold at a desired
value, i.e.

Pr
¦
qk(t) > qthrk

©
= δk,∀k = 1, ...,K. (1)

These constraints can correspond to fixing the data loss ratio
due to buffer overflow or regulating the delay for each user.
The setting of the interfering pairs can correspond to small
cells employing the same subcarrier(s) to serve the users.

The approach followed in this paper is based on the heavy
traffic asymptotic modeling [6]. In this method, the network is
examined for the case when the offered traffic is almost equal
to the mean service rate. In this regime, the system model
becomes more tractable to study analytically and obtain con-
trol strategies. Our work is based on [7] and [8], where this
method was used for power control in a point-to-point link
and a single cell multiuser system respectively. However, they
do not consider neither restrictive constraint as in (1) nor in-
terference. We extend therefore these works in interfering
channels, where the main issue is that the power allocation
at each transmitter affects all the others. The general idea is
that power is allocated first according to the channels so that
the average rate is equal to the average incoming traffic rate
and a small reserve amount is added for the system to adapt
to the instantaneous traffic dynamics. The reason behind this
reserve power allocation is that when the average rate equals
the average input rate, the delay becomes unbounded [9]. We
consider a centralized approach with full knowledge of all the
channels and the queue lengths at each transmitter. The con-
tributions of this paper are:(i) the heavy traffic modeling of
power control in interference channels and (ii) the derivation
of a method to satisfy (1) for all users under this centralized
assumption.

The rest of this paper is organized as follows: In Sec. 2
we derive the heavy traffic model as a controlled Stochas-



tic Differential Equation which we use in Sec.3 to devise a
power control algorithm so that (1) is satisfied. Finally, Sec.
4 presents the corresponding simulation results and Sec. 5
concludes the paper.

2. HEAVY TRAFFIC SYSTEM MODEL
We consider a system of K transmitters each serving one
receiver using bandwidth W , as illustrated in Fig. 1. For
notational simplicity, we index the transmitters and the re-
ceivers so that transmitter k serves user k. Also, let gij(t)
denote the power gain of the channel between transmitter i
and user j at time t. Each of these channel gains is assumed
to evolve independently of the others as an ergodic finite state
Markov chain [10]. Under this assumption then, the matrix
G(t) = [gij(t)] of all channel gains at time t will also evolve
as an ergodic finite state Markov chain with, say,MG possible
states . Let us define the set of possible channel realizations
as SG = {G1, ...,GMG

}. We shall denote the event that
the channel gain matrix is in the m-th state as G(t) = Gm.
The corresponding ergodic probability will then be denoted as
πm, and Eπ {} denotes the expectation over this probability
distribution. When transmitter k uses power pk(t), the rate
rk(p(t),G(t)) over the link with its corresponding receiver
will be assumed as the Shannon rate treating interference as
Gaussian noise, that is

rk (p(t),G(t)) = W log2

 
1 +

gkk(t)pk(t)PK
i=1,i6=k gik(t)pi(t) + σ2

!
,

(2)
where σ2 is the noise variance and p(t) the vector of trans-
mission powers.

For each queue we suppose that the instantaneous arrivals
ak(t) at time t are i.i.d. with mean λk and (finite) variance
σ2
a,k and independent of the arrivals at the other queues and

the channel process.
We will work in the Heavy Traffic regime [6], which intu-

itively means that the average transmission rate at each trans-
mitter will be almost equal to the mean rate of the incoming
traffic. Formally, as it is fairly standard in the literature [6],
time and magnitudes are scaled by n and the system in the
limit as n→∞, derived from some form of central limit the-
orem, is examined. The interpretation of the parameter n can
be as the order of magnitude of the arrivals; i.e. at any time
interval ∆t there are O(n∆t) arrivals. The limit implies that
in the heavy traffic situations there are too many arrivals in
the transmitters and they are almost never idle. Let a(n)k (t)
denote the arrival process at transmitter k at the n-th system.
Then, for transmitter k we assume that a(n)k (t) → ak(t) ,
where a(n)k (t) have mean rate λ(n)k → λk and σ(n)

a,k → σa,k.
Also, denote p(n)(t) the power allocation vector at time t for
the n-th system.

Following [7] and [8], we also parametrize the number of
channel changes with the integer n and assume that the chan-
nels change also fast but at a slower rate than the incoming

traffic. Thus, at the time interval ∆t there will be O(nν∆t)
channel changes, for a 0 < ν < 1. In other words, the ex-
ponent ν is selected such that nν is the order of the rate with
which the channels change. Now, let qk(t) denote the queue
length of transmitter k at time t,and x(n)k (t) the scaled version
as follows:

x
(n)
k (t) =

1

n
ν
2
qk(nνt), (3)

that is the time and queue lengths are scaled based on the rate
at which the environment (channels) changes. The use of cen-
tral limit theorems as n goes to infinity implies thus an aver-
aging of the system’s behaviour over many channel changes.
The power allocation corresponding to the n-th system is

p
(n)
k (t) = p̄k(G(n)(t)) +

1

n
ν
2
uk(x(n)(t),G(n)(t)), (4)

where p̄k(G(n)(t)), called ”equilibrium allocation” for the
rest of this paper, satisfies

λk = Eπ {rk(p̄(G(t)))} ,∀k = 1, ...,K. (5)

Also, uk is a function of the queue lengths and channel states
and corresponds to the reserve power allocation around the
equilibrium. Using (4) and a Taylor expansion of (2), the
rate at each transmitter for the sequence of systems can be
described as

r
(n)
k (t) = rk(p̄(Gm))+

1

n
ν
2

KX
i=1

ak,i(Gm)ui(x(t),Gm)+O(n
− ν

2 ),

(6)
where ak,i(Gm) = ∂rk(p̄(Gm))

∂pi
Moreover, the scaled queue

length (3) at each transmitter k is

x
(n)
k (t) = x

(n)
k (0) + 1

nν/2

R nνt
0 a

(n)
k (s)ds

+ 1
nν/2

R nνt
0 r

(n)
k (s)ds+ z

(n)
k (t),

(7)

where z(n)k (t) is such that the queue length process is nowhere
negative. Intuitively, it represents a ”wasted” service until
time nνt, i.e. the number of bits that would have been trans-
mitted in the periods where the queue was empty.

As n → ∞ we can show, using the techniques in [7] and
[8], that the vector of the scaled queue length processes con-
verges weakly to x(t) = [x1(t), ..., xK(t)]T , given as

x(t) = x(0)−
Z t

0
f(u(s))ds+ Σw(t) + z(t). (8)

In the above, w(t) is a vector of K independent standard
Wiener processes, f is the vector of the functions

fk(u(t)) =

MGX
m=1

πm

KX
j=1

ak,j (Gm)uj(t) (9)

and the matrix Σ = [σij ] satisfies

ΣΣT = ΣaΣ
T
a + ΣdΣ

T
d . (10)



In the above equation, Σa = diag(σa,k) while the elements
of the covariance matrix ΣdΣ

T
d = [sij ] are given as [8]

sij = 2E
�Z +∞

0
r̂i(0)r̂j(t)dt

�
, (11)

where r̂k(t) = rk (p̄(G(t)))−λk. Note that Σd is not diago-
nal since the equilibrium rates depend on the same stochastic
process, the matrix of the channel gains in our case.

Finally, the elements of z(t) are given as

zk(t) =�
−mins≤t

¦
xk(0)−

R t
0 fk(u(s))ds+

PK
j=1 σkjwj(t)

©�+ ,

(12)
where [x]+ = max {0, x}, so that xk(t) ≥ 0 . If there was
routing of incoming data from one transmitter to another, in
the equation there would be this process multiplied by a cor-
responding matrix (reflection matrix [6]); since here this is
not the case, this reflection matrix is the unitary.

Note also that (9) implies that the drift in (8) is actually the
expected value, under the ergodic probability distribution of
the channel gain matrix, of the effect of the fluctuations u(t)
of the power around the equilibrium allocation. Therefore, the
heavy traffic model can be seen as an averaged model over the
random environment.

3. PROPOSED POWER CONTROL POLICY

3.1. Equilibrium Power Allocation
As we can see from (4), the resource allocation policy consists
of two parts: (i) determining the equilibrium power allocation
according to the state of the channels and (ii) determining the
reserve power allocation according to the channels and queue
lengths. In this work, we set the equilibrium power allocation
such that the rates at each possible state of the channels are
equal to the mean rates of the incoming traffic (assuming this
is feasible). This corresponds to each link having the same
SINR at the receiver for each state of the channel gain matrix,
so the equilibrium power allocation can be computed solving
a system of linear equations for each Gm [3]. Under this equi-
librium allocation, Σd is a zero-element matrix, since there is
no variation of the rate in the equilibrium allocation for differ-
ent channel states. We also set the reserve power allocation to
depend only on the queue lengths, i.e. u(t) = u(x(t)). The
intuition behind this feedback control form is that the goal of
the reserve power allocation is to actually regulate the queue
lengths while the equilibrium power allocation deals with the
channel states. In this case then, we can write (9) in the fol-
lowing form (with the differentials being in the Itô sense):

dx(t) = Bu(x(t))dt+ Σdw(t) + dz(t). (13)

In the above equation Σ = diag (σa,k) and B = [bij ] with
bij = −

PMG

m=1 ai,j(Gm)πm.

3.2. Reserve Power Allocation
We now focus on the reserve power allocation, namely deter-
mining the fluctuation around the equilibrium powers in order
to regulate the queue lengths.

Proposition 1. With the equilibrium allocation of the pre-
vious section, the overflow requirements for the asymptotic
system can be satisfied by the following policy:

u(x(t)) = B−1Cx(t), (14)

with C = diag (−|ck|) and

|ck| =
1

2

�
σa,k
xthrk

erfc−1 (δk)

�2

. (15)

By erfc(x) we denote the complementary error function, that
is erfc(x) = 2√

π

R +∞
x e−t

2

dt and xthrk is the corresponding
threshold in the asymptotic regime.

Proof. Let us first start by establishing the probabilistic frame-
work of the stochastic differential equation in (13). Let now
(Ω,F , {Ft}t≥0,P) be a complete probability space satisfy-
ing the usual hypotheses, i.e., Fo contains all the P-null sets
ofF and {Ft}t≥0 is a right continuous filtration of σ-algebras.
The Wiener Process w(t) = (w1(t), . . . , wK(t))

T
t≥0 is {Ft}t≥0-

adapted with stationary and independent increments. This
process is also independent of the initial state x0 which is an
Fo-measurable random variable with finite second moment.
The reflection process z(t) = (z1(t) . . . zK(t))

T
t≥0 is a con-

tinuous non-decreasing {Ft}t≥0-adapted RK+ valued process
and each zk(t) increase only when xk(t) = 0. We define our
control policy in the class of Markov feedback control (i.e.
the control depends on x(t)). It is well known that the exis-
tence of Markov control is related to the existence of solution
for the corresponding SDE. Applying the proposed controller,
the states are decoupled as

dxk(t) = −|ck|xk(t)dt+ σa,kdwk(t) + dzk(t). (16)

Our control policy makes the evolution of the queues decou-
pled which is very useful to ensure the existence of a solu-
tion to the SDE. Since the states are decoupled and using the
reflection direction in (12), we can show that the controlled
process x(t) is positive recurrent. Using the main result of
[11], the controlled process in (16) has a unique invariant
probability measure which is absolutely continuous with re-
spect to the Lebesgue measure, i.e. has a density that can
be obtained using the Fokker-Planck equation as φ(xk) =É
|ck|
πσ2

a,k

e−|ck|x
2
k/σ

2
a,k . According to the ergodic properties of

recurrent diffusion processes, we can use the above density
of the invariant measure to compute the overflow of the con-
trolled stochastic process x(t)

Pr
¦
xk(t) > xthrk

©
= erfc

�
xthrk

È
2|ck|

σa,k

�
. (17)



Replacing the overflow probability with its desired value and
solving (17) we get (15), which completes the proof.

Note that the control policy regarding the reserve power is
a closed form expression of the queue lengths. Given that the
equilibrium power allocation is precomputed and under the
assumption of complete queue and CSI knowledge this im-
plies that at each time the control policy can be implemented
in one shot instead of having an iterative algorithm (as it is
done e.g. in [5]).

3.3. Practical Implementation
So far we worked on continuous time models whereas a prac-
tical communications system the time is slotted so power allo-
cation decisions are taken into discrete time instances. More
specifically, let the duration of each timeslot of the ”real” (un-
scaled) system be Ts; this implies that at the n-th system of
the sequence the timeslot duration is T (n)

s = Tsn
−ν . More-

over, the derivation of the control policy was concerned with
an asymptotic system model, that is a model as a parameter
n goes to infinity. However, the control policy presented in
the previous section has to be modified in order to operate
on a real system, so the results obtained for the asymptotic
case have to be converted into results for the unscaled system.
This is done using (3) and (4), where the scaling parameter n
is now a big finite number. By definition, at a time interval δt
there areO(nδt) arrivals, hence we can argue that in practical
cases n is in the same order of magnitude as average bit rates
in the system. As far as the exponent ν is concerned, it can be
obtained using the fact that during the coherence time, Tcoh,
there must be only one channel change, thus nνTcoh = 1. Fi-
nally, the timeslot duration is chosen to be smaller than the
coherence time, so that the channels can be considered static
within one timeslot.

Based on the previous analysis, at the system where the
queue lengths are q(lTs) at the beginning of timeslot l, the
power allocated for the duration of this timeslot will become
(applying time slotting and unscaling using (3))

p(lTs) = p̄(G(lTs)) + B−1C′q(lTs), (18)

where C′ = diag(|c′k|) is obtained by (15) replacing the
scaled queue length threshold with its unscaled value, qthrk .
Note also that since in (17) both quantities inside the proba-
bility are scaled ones, this is also the probability in (1), that
is, the original objective.

Consider now the dynamics of the asymptotic system in
discrete time; unscaling the quantities in (16) we get that the
queue lengths evolve along timeslots approximately as

qk((l + 1)Ts) = [(1− |c′k|Ts) qk(lTs) + Tsσa,knk(lTs)]
+

(19)
where nk(lTs) is a discrete time AWGN with unitary vari-
ance. For the above not to diverge there must hold the condi-
tion ‖1− |c′k|Ts‖ < 1 thus

qthrk ≥ σa,k
2

p
Tserfc

−1 (δk) . (20)

The above gives a lower bound on the thresholds that can be
exceeded with a given probability using our control policy.

4. SIMULATION RESULTS
In order to illustrate the results of the power control method
proposed in this paper, let us consider a simple scenario with
3 interfering transmitter - receiver pairs, using the same spec-
trum with bandwidth 5 MHz. For simplicity, we consider that
each channel gain has only two possible values. Also, the
arrivals at each transmitter are set as Poisson processes with
mean rates 1, 1.5 and 2 Mbps. The overflow thresholds are
set to 500, 750, 1000 bits at each transmitter respectively and
the overflow probability to 0.01 for all transmitters. The co-
herence time of the channels is set to 20ms, modelling slow
fading channels, for instance in indoor or low mobility en-
vironments. The timeslot duration is set to 2ms, as is the
shortest frame duration in HSDPA.

For this setting, we found that all the equilibrium pow-
ers are in the order of magnitude of mW . The expected
values of the equilibrium powers over the ergodic distribu-
tion of the channel gains matrix were found by simulations
to be 33.1mW , 41.1mW , 45.9mW for transmitters 1, 2 and
3 respectively. Also, for our proposed algorithm simulations
showed that the reserve power allocated is in the order of mag-
nitude of 10−5W , thus confirming the assumption of the re-
serve power being much smaller than the equilibrium power.
Besides, we found that the average reserve powers used was
0.7 × 10−5W , 0.7 × 10−5W , 0, 8 × 10−5W for each trans-
mitter.

We compare our proposed method with the policy where
all powers take their equilibrium values, and also with the
following heuristic power allocation strategies: In the first
one, the power at each transmitter is constant for every queue
length and channel state and equal to the expectation of the
equilibrium power over the ergodic distribution of the channel
gain matrix plus the average reserve power presented above.
The other heuristic strategy consists of adding the average re-
serve power to the equilibrium allocation. In the presentation
of the results, the former is denoted as ”Static power allo-
cation” and the latter as ”Channel-aware power allocation”.
These configurations were made to ensure that the amount of
power available in the heuristic schemes is approximately the
same as the power used in our proposed method, thus making
a fair comparison. Due to space limitations we show only the
results concerning the queue of one transmitter.

The performance of the aforementioned power allocation
policies for each queue are shown in Fig. 2. We can see that
equilibrium and static power allocations perform very bad.
For the static power allocation case, the reason for this bad
performance is the fact that the power does not take into ac-
count at all the channel states and the queue lengths. As far as
the equilibrium power allocation is concerned, the bad perfor-
mance is explained because the traffic and the queue lengths
are not taken into account. Analyzing this policy further, as
implied by (14) putting the vector of the reserve powers u



equal to zero, the queue lengths behave like Wiener processes
as confirmed also in our simulation setting in Fig. 3. In Fig.
2 it is clearly illustrated that assigning slightly more power
in the equilibrium power for each channel state, as it is done
in the channel-aware power allocation scheme defined ear-
lier, leads to a much better performance, even if this extra
power is really small. This was also expected as an increase
in all the powers leads to an increase in the average rates.
The equilibrium power allocation is exactly the point where
the mean arrival rates equal the mean service rates thus even
a small increase of the service rates is enough to stabilize
the system. Achieving a better performance than the static
power allocation case was also expected due to the transmis-
sion powers adapting to the channel conditions. Finally, we
can observe that our proposed method of power allocation
does even better, illustrating the additional advantage of tak-
ing the queue lengths into account when allocating the reserve
power. Moreover, the overflow ratio is very close to the de-
sired one, which implies the validity of the asymptotic model
in a practical system operating under heavy load.

In addition, in Fig. 3 we can see the evolution of the
queue length over time for a simulation run. We can ob-
serve that the queue length under the proposed power control
method behaves in a much more controlled manner compared
to the equilibrium power allocation and is below its respective
threshold for most of the time, as suggested by our theoretical
analysis.

5. CONCLUSIONS
In this paper we worked in the heavy traffic asymptotic regime
in order to model the evolution of the queue lengths at the
transmitters in a system of interfering wireless links and to
propose a power allocation policy to keep the exceedence
probabilities of the queue lengths in a desired value. Simu-
lations showed that the closed form policy derived can give
good results when applied in a practical system. Future work
will address the problem in a decentralized setting.
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