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Abstract—In this work, we address the problem of decentral-
ized power allocation for satisfying individual QoS constraints
in video streaming in a Small Cells Network.They QoS metric
we use here is the probability that the queue length at each
transmitter exceeds some threshold: we want this probability to
be fixed at a desired value. We focus on a model with interfering
transmitter-receiver pairs. Using heavy traffic asymptotic mod-
elling we propose a power control algorithm for the case where
each base station has access to local SINR feedback, information
about the queue length of its user and delayed information of
the queues in the other base stations. Simulation results suggest
that the proposed algorithm is quite robust in the case of delayed
information sharing.

I. INTRODUCTION
A. Video Provisioning in Small Cell Networks

Current wireless networks experience an increasing demand
on offered services to end users as well as the necessity to
ensure high quality of service and data rates of the provided
applications. A promising way to deal with these demands
is the concept of Small Cell Networks (SCN), which are
dense cellular networks with low power base stations and
full frequency reuse one [1], able to provide higher spectral
efficiencies.

One of the key issues arising in these networks is that the
intercell interference becomes severe. Also, video applications
are becoming more and more important in mobile networks
for both service providers and users. These applications have
hard requirements in terms of Quality of Service, as they are
delay-sensitive and also require transfer of big amounts of
data to ensure high quality at the end users. Currently, the
infrastructure of wireless networks does not provide enough
support for the Quality of Service required for streaming
high quality video. Therefore, there is a need for dynamic
resource allocation algorithms (like power control, bandwidth
allocation, scheduling, rate adaptation, coding...) to be de-
signed, taking into account the requested video content, traffic
requirements and QoS constraints. Additionally, an issue in
Small Cell Networks is the limited and diverse backhaul.
This limits the control information that can be exchanged
between the Base Stations, making full coordination very

difficult. Typically, each base station will have only local
information (e.g. about the channels and queues of the users
that are attached to it) and delayed versions of the information
about the other base stations (due to the limited backhaul for
signalling).

B. Assumptions and Problem Statement

In this work we focus on the power control problem at the
Base Stations of a Small Cell Network taking into account the
incoming traffic characteristics of the requested video streams
so that the Quality of Service criteria are met. Traditionally
power control is used to satisfy some SINR constraints and/or
to maximize the systems totel throughput, without taking the
incoming traffic into account [2]. In this work, we consider a
system of K interfering transmitter-receiver pairs, as depicted
in Figure 1. The traffic arriving at each user is assumed to
be independent with finite mean )\, and variance O’ik and
the channels gains from base station ¢ to receiver j , 92] are
assumed to evolve as finite state ergodic Markov chains [3],
and independent with each other and the arrival processes.
This setting can correspond to a Small Cell Network of K cells
with frequency reuse 1, using the same subcarriers to serve the
users, where each user is attached to one cell. Also, we assume
that the channels change slower than the arrivals, meaning that
within a channel coherence time there are many bits arriving
at each base station. The transmission rates are given as
Shannon rates treating interference as noise. For convenience
(and without any loss of generality) we index the base stations
and the users so that user k is served by base station k. The
Quality of Service aspect on which we focus is the data loss
due to buffer overflows or, most importantly for the delay
constrained nature of video applications, the probability that
the delay in the queue of each transmitter k, exceeds some
threshold, which must be set to some desired value ;. Via,
for example, Littles law [?], we can choose an appropriate
queue length threshold, q,’;hr , so that our aforementioned goals
correspond to setting the probability that the queue length
gr(t) at each transmitter k exceeds a specified threshold at
the desired value, namely



Pr{q(t) > g} = o (1)

which means setting a buffer (equivalently, delay) outage prob-
ability in some values that can be tolerated by the application.

Note that these overflow constraints have to be met for
any transmitter individually. In a recent previous work [4],
we considered a centralized approach with full knowledge of
CSI and the queue lengths at each transmitter. The main idea
of the proposed algorithm is to allocate the biggest fraction
of power according to the channel states and mean arrival
rate of the requested stream and then add a small amount of
reserve power according to the queue lengths to adapt to the
instantaneous traffic pattern.

In this paper, we move to a more decentralized approach
where we assume that each base station has access ti the
following information:

e Local SINR feedback (i.e. feedback from the user at-
tached to it only) and its own queue length

o Delayed information of the queue lengths at the other
base stations

o The statistics of the traffic at the other base stations,
model parameters

After a brief discussion of the heavy traffic model in Section
II, we propose in Section III a power control algorithm under
the above conditions. We give numerical results for a simple
setting in Section IV. Finally, Section V concludes the paper.

II. HEAVY TRAFFIC SYSTEM MODEL AND POWER
CONTROL PoOLICY

The approach followed is based on the heavy traffic asymp-
totic modeling. In this method, the network is examined for
the case when the offered traffic is almost equal to the mean
service rate. Then, the system model becomes more tractable
to study analytically in order to obtain control strategies. Our
model is an extension of [5] and [6], where this method was
used for power control in a point-to-point link and a single cell
multiuser system respectively, to a full interference scenario.
Basically, the power is allocated in two steps: one part is
according to the channels so that the average rate is equal
to the average incoming traffic rate (equilibrium allocation)
and then a small reserve amount (reserve allocation) is added
for the system to adapt to the instantaneous traffic dynamics
and satisfy the QoS requirements. The motivation for this
reserve power allocation is that when the average rate equals
the average input rate the delay becomes unbounded [5], [7].

As discussed in [4], a way to satisfy (1) in a centralized
setting is to allocate the power at transmitter k in two steps:
(1) Allocate an equilibrium power such that the mean service
rates match the mean arrival rates (ii)add some small reserve
power uj depending only on the queue lengths at the time of
the allocation. Small reserve power implies that the average
service rates are very close to the average incoming rates.
This case corresponds to the so-called Heavy traffic asymptotic
regime of the network [8] and the evolution of the vector of

the queue lengths over time can be approximated analytically
as [4]

dx(t) = Bx(t)dt + Xdw(t) + dz(t) (2)

In the above, x(t) represents the queue lengths in the ap-
proximate model, B is a matrix with elements that correspond
to the effect that power allocation in a transmitter has on the
transmission rate of the others. The first term corresponds to
the change of the queue lengths due to the reserve power
allocation. The second term is a random term (w is a vector
of Wiener processes and its differential can be viewed as a
white noise). It models the change of the queue lengths due
to the (random) arrivals and equilibrium power allocation: as
the equilibrium power depends only on the channel states and
these change at random, the corresponding rate is also random.
The third term is required to keep the queue lengths positive
and represents wasted service when power is allocated at a
transmitter whose queue is empty.

Based on this model, the proposed solution in [4] is, at every
time slot /, to have the equilibrium power allocation p(l) such
that the corresponding SINR is the same for each realization
of the channels and the corresponding rates are equal to the
mean arrival rates at each base station. Then, there is added a
vector of reserve powers of the form

u(l) =B~'Cq(l) 3)

In the above, q(l) is the vector of the queue lengths in
the system at the beginning of this timeslot and C a ma-
trix properly derived from the asymptotic model as C =

diag {% (U“,;,’f. erfc‘l(ék))2 }

q;

III. CONTROL POLICIES UNDER IMPERFECT STATE
INFORMATION

In practical systems, it is desirable that the power control
is done in a way that is as decentralized as possible. More
specifically, it is unrealistic to suppose that each transmitter
has knowledge of every channel realization in the network.
However, it is reasonable that the queue state information is
exchanged with delays (e.g. due to limited backhaul for the
coordination among the transmitters). We address these issues
separately:

A. Local SINR Feedback

First we will examine the case where each receiver can send
SINR feedback to its corresponding transmitter but other than
that no information on the channels is available. Observing that
the equilibrium power allocation is such that the corresponding
rate is constant, that is a scenario where users request a fixed
target SINR, we can use the algorithm proposed in [9] to
find the equilibrium power allocation without the need for
global knowledge of the channel states. More specifically, for
a system adjusting the power in discrete time, in the beginning
of each time slot of duration 75, we can dedicate a training
time 7 where the transmitters find the equilibrium power as
in Fig. 2. In order to do that, each transmitter k requires only



the SINR feedback from its corresponding receiver and runs
the following iterative process

Tk .

() P (4) “)
where 7 denotes here the iteration of the algorithm, 7, the
target SINR of user k and 74 (¢) the SINR at this user after
the power update of iteration i. It is shown in [9], that this
algorithm indeed converges to the equilibrium values corre-
sponding to these channels and moreover this convergence is
very fast. Data transmission is performed for the rest duration
Ty — 7 of the timeslot, with the reserve power allocated as
discussed in the next Subsection.

Since the parameters of the asymptotic model in (2) and
the reserve power control policy (3) actually depend on the
bandwidth, a way to incorporate the effect of the training phase
in the model is to assume that the available bandwidth for
transmission is actually %W where W is the bandwidth
physically available, and cﬁange the rate expressions accord-

ingly.

pe(i+1) =

B. Delayed Queue State Information

A major issue for the practical implementation of our
control policy is the requirement that each transmitter is aware
of all the queue lengths instantaneously. A more realistic
assumption would be that each transmitter knows its own
instantaneous queue state and has access to delayed informa-
tion about the queues of the others. For example, this can
correspond to a Small Cell Network setting where the base
stations exchange information using a backhaul of limited
capacity. We will assume though that each transmitter still
knows the statistics of the arrivals to the other transmitters,
the parameters of the asymptotic model and the matrix C in
the reserve control policy (3).

We propose a simple heuristic approach where each trans-
mitter calculates the transmission power with the queue length
vector being replaced with the vector of the most recent
information about the queue states this transmitter has. That
means that transmitter k calculates (3) using the delayed
queue state information about the other transmitters in the
queue length vector. Then, it picks the k-th element of the
resulting vector to add to the equilibrium power as the reserve
power.When there are no information yet about the queue at
a transmitter, the standard deviation of the incoming traffic at
this transmitter is used as an estimation of the queue length.
Note that the algorithm supposes that the parameters of the
asymptotic model and the statistics of the traffic are available
(in order to calculate the reserve control policy).

IV. NUMERICAL RESULTS

In order to illustrate the results of the power control method
proposed in this paper, let us consider a simple scenario with 3
interfering transmitter - receiver pairs, using a the same spec-
trum with bandwidth 5M Hz. For simplicity, we considered
that each channel gain has only two possible values. Also,
the arrivals at each transmitter were set as Poisson processes

with mean rates 1, 1.5 and 2 Mbps. The overflow thresholds
were set to 500, 750, 1000 bits at each transmitter respectively
and the overflow probability to 0.01 for all transmitters. The
coherence time of the channels will be set to 20msec and the
timeslot duration to 2msec, thus the channel stays the same
for 10 consecutive power configurations. The noise variance
was set to 0.01 at each receiver.

The channel states were set such that each channel gain
has only two possible values. All the ’equilibrium’ powers
are in the order of magnitude of mWW. The expected values
of the equilibrium powers over the ergodic distribution of the
channel gains matrix was found to be W, W, W for transmitters
1, 2 and 3 respectively. Also, for our proposed algorithm
simulations showed that the reserve power allocated is in
the order of magnitude of 10~°W, thus the assumption of
the reserve power being much smaller than the equilibrium
power is confirmed by simulations. Besides , the average
reserve powers used where found (by simulations) to be around
0.7 x 107°W,0.7 x 107°W, 0,8 x 10~°W.

We run 200 simulations each having the duration of 100000
time slots and study effect of delayed queue state information
in our algorithm. For simplicity, all the delays in information
sharing between the transmitters delays are set to be the same.

As illustrated in Fig. 2, at each time slot we first run the
algorithm (4) for a few iterations to tune the equilibrium
power; an example is shown in Fig. 3, where we can see
that the iterations needed for convergence are very few, thus
a small training time is required. Then, we add the reserve
power according to the delayed queue length information as
discussed in Section III.B and use the remaining timeslot for
data ransmission.

The performance in terms of overflow ratios are given
in Fig. 4. Due to space limitations, results concerning the
overflow ratios are depicted for transmitter 1 only. The results
for the other transmitters are similar though. As we can see
in this figure, as the delay in information sharing increases
the overflow ratios tend to be higher. However, especially for
small delays, the differences are still relatively small. Thus
we can argue that if we know the incoming traffic statistics
at each base station, our proposed scheme seem to be quite
robust in cases of delayed information sharing.

Finally, Fig. 5 shows an example of the evolution of the
power allocation from our proposed policy versus the equilib-
rium power allocation. We can see that the reserve power is
indeed very small compared to the equilibrium power.

V. CONCLUSIONS

In this work we extended our previous work based on
heavy traffic asymptotic models and proposed a power control
algorithm requiring just local SINR feedback and knowledge
of the statistics of the channels and traffic in all transmitters
of the network. Simulation results imply that this algorithm is
robust and can have good performance the case where each
transmitter has imperfect state information.



Fig. 1: Illustration of the system model.
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Fig. 2: Illustration of the phases of a time slot when only local
SINR feedback is available.
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Fig. 3: Example of iterations needed in the training phase
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Fig. 4: Overflow ratios for the proposed algorithm imple-

mented with delayed information for Link 1.
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Fig. 5: Example of the evolution of the equilibrium and
allocated power for Link 1 using our method for the first 100

timeslots of a simulation.



