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Convergence Analysis of an Online Approach to Parameter Estinmt#on
Problems Based on Binary Noisy Observations

Laurent Bourgois andeiome Juillard

Abstract— The convergence analysis of an online system [7], [8], [1], [9], [10], [11], [12], [13], [14]. For example
identification method based on binary-quantized observations Wigren [5], [6] has developed a least-mean-square (LMS)
is presented in this paper. This recursive algorithm can be approach to the problem of online parameter estimation

applied in the case of finite impulse response (FIR) systems and f tized ob fi b d imati f
exhibits low computational complexity as well as low storage rom quantized observatons, based on an approximation o

requirement. This method, whose practical requirement is a the quantizer. The proof of convergence, which uses the
simple 1-bit quantizer, implies low power consumption and ordinary diferential equation (ODE) approach [15], relies on
minimal silicon area, and is consequently well-adapted to the the assumption that at least one threshold of the quantizer
test of mlcrofabrlca_ted _dewces. The convergence in the mean of is known and dferent from zero. Under these hypotheses,
the method is studied in the presence of measurement noise at ., . . .

the input of the quantizer. In particular, a lower bound of the It _'S possible to guaranFee the asymptotic convergenpe of
correlation coefficient between the nominal and the estimated this method to the nominal parameters. Wang and his co-
system parameters is found. Some simulation results are then authors [7], [8] have considered that the unknown system
given in order to illustrate this result and the assumptions s excited by a periodic signal and the threshold of the
necessary for its derivation are discussed. quantizer is randomly specified by a dithering signal. They

I. INTRODUCTION have proved that the cumulative distribution function of th

Over the past decades, microfabrication of electronic d&ireshold does not have to be knownpriori and can be
vices such as micro-electro-mechanical systems (MEMS) h§Stimated simultaneously with the system parameters. More
considerably developed. As their characteristic dimersio "€cently, Jafari and his co-authors [9] have studied a sagir
become smaller, these devices become increasirfigted  'dentification method which does not rely on a pseudo-
with dispersion and become increasingly sensitive to ceangdradient of a least-squares criterion and requires nether
in their operating conditions. Typical sources of dispemsi KnNown non-zero threshold value, nor a varying threshold.
and uncertainty are variations in the fabrication procass d Nis online LMS-like identification method based on binary
environmental disturbances such as temperature, pressRservations (LIMBO) has little storage requirements and
and humidity fluctuations [1]. It is then usually not possibl 10W computational complexity. Although LIMBO has already
to guarantee priori that a given device will work properly PE€n put in practice for testing MEMS sensors [16], the
under all operating conditions, and expensive tests must fanvergence of this method has so far only been established
run before the commercialization decision is made. To cdff the case when no noise exists at the input of the quantizer.
these costs, it is desirable to implement self-test (anfl seft IS interesting to note that, in this noise-free context,
tuning) features such as parameter estimation routines, SEVIBO is similar to the relaxation method proposed and
that devices can compensate the variations in the fatwicatiStudied in [17], [18] for solving consistent sets of linear
process and adapt to changing conditions. inequalities.

Unfortunately, standard identification methods based on . )
parameter estimation [2], [3] do not lend themselves easily N this paper, we analyze the convergence of LIMBO in a
to implementation at a microscopic scale. Their integratio™ore general context: we suppose an unknown measurement
requires the implementation of high-resolution analog-tg1CiS€ is present at the input of the quantizer and study the
digital converters (ADCs), which may require long desigdnfluence O_f.thIS noise on the convergence of the methoq.
times and result in large silicon areas and increased powore specifically, the convergence rate of the method is
consumption. On the other hand, parameter estimation rotjvestigated and a lower bound of the expected value of the
tines based on binary observations are very attractivee singorrelation coﬁiment.between the nominal and the estlmgted
they only involve the integration of a 1-bit ADC [4], which system_parameters is found and expre_ssed as a function of
requires minimal design and results in minimal silicon aref{1® variance of the measurement noise. It is shown that
and power consumption and, consequently, in minimal addd@e derived lower bound can be safely used as an accurate
costs. prediction of the expected value of the correlationfiorent.

Several identification methods based on binary or roughi he structure of the article is the following. In section I,

quantized observations can be found in the literature ], [ the System and its model are introduced. In section lI, the
LIMBO algorithm is derived under its general form. Then,
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. FRAMEWORK AND NOTATIONS Next, by projecting (3) onto the nominal parameter vector

Let us consider the system illustrated in Fig. 1. 6 and considering the sequenge= 6,8, we obtain:
29k Yk -
U, | Yk Wi Sk Vk+l = Vk— 5 [sc # & 4)
—1" F— el
by, Note thatyy is the cosine of the angle made ﬁy and @

since both vectors are normalized, and we hate v, < 1,

Fig. 1. Block diagram of the studied system. SO thatkﬂﬂ]ﬂk = 8 is equivalent tok_l)ll;nl/k =1

. ) o ) o ) IV. CONVERGENCE ANALYSIS IN THE PRESENCE OF
The input signalug is filtered by a linear time-invariant NOISE

discrete-time systenH to produce the system outpuyf, :
y P y PYk In [9], the almost sure convergence of the algorithm

where subscripk denotes the discrete time. We assume esented in the orevio oction is demonstrated under
that the transfer function has a finite impulse response bfes ! previous section 1S S u

length L, i.e. the impulse response can be represented byls.grr:]?j sfpecmc IaSSL:jmptmns. Inf [t)r?rtmlljlar,_t:]he ErOOf IS es.tab
column vectord = (9.),L=1. Consequently, the scalar value of IShed for a relaxed version of the algornthm by supposing

the system output at timke is given byyk = 8" g, where by = 0 (although a proof in the noise-free non-relaxed case

oL = (u|)|k=_kL+1 is the regression column vector Ofdimensioncould also be obtained by following the approach in [18]).

L. The system output is then measured via a 1-bit ADC Sgur purpose here is to study the convergence of LIMBO,
that only its signs, = S (yi + by) is available at time. Here without additional relaxation step, and taking into acdoun

by corresponds to the additive measurement noise at kimemizsi’grimlen; noltsfi' r-:—o this encri{d V\;ethalrtr;]rto ?Vﬁlll\jﬁ;e the
and the functiorS of a real numbex is characterized by; ondtional expectatio &x+1hv) under the three following

assumptions:
) « Yk andyj are two centered Gaussian random variables.
S = { 1 ifx=0 (1)  * U is white and centered, with a Bernoulli distribution
-1 otherwise and takes two values: 1 erl.

Our purpose is to develop a recursive estimation method to* P« iS white and centered, with a uniform distribution
find a good estimate of the parameter ved@pstarting from in the interval[-3, 5] where > 0. Furthermorepy is
N observations of the binary output knowing the input. Let  independent ofi and yi.
0, be the estimated parameter vector at tikndet us also ~ The last two assumptions are made to keep the calculations
introduceyi = (’LPk,L the estimated system output at tirke which follow as simple and straightforward as possible and

and s, = S (§i). Without loss of generality, we suppose thasShould not be seen as strict limitations to the validity of ou
10|72 = 1. results. First of all, note that the first assumption is vedifi

in practice regardless of the distribution of the input sign
lll. PROPOSED LMS APPROACH provided the impulse respon@ealoes not vanish too quickly,
as is the case in many applications (for a more detailed
discussion on the validity of this assumption, please refer
[19], [20]). By constructiony, corresponds to the correlation
codficient between the variablgg andyix whose means are

The non-relaxed LIMBO method [9] consists in the fol-
lowing iteration:

if sc# & equal to zero and whose variances are equal to one. In this
case, their joint probability density function is defined fo
Br = Oy — 2 —2xL . any-1< v <1 by:
[lercL| (2)
else L 49 _Y§ +Vi - 2V: Yk )A/k}
01 = Oy 21 1= 2(1 a Vk)

(5)
The reason for assuming a binary inpug. Y € {-1, 1},
is that this simplifies (3) and (4), because in that case, by

Or, more compactly:

PkL

Or = Ok D5 [s# &l (3) construction,||k|* = L. As already mentioned, this has
”“’KL” little influence on the Gaussian natureypfandyj in practical
In this compacted expression, the notatign# §] stands cases [19].
for a variable that is equal to unity & # &, i.e. if yi + by Now (4) can be rewritten as:

andyk have opposite signs, and equal to zero otherwise. This
non-relaxed iteration ensures that the normégfremains

2
= - = § v 6
constant. One may then assume | = 1. Vel L (S # S Wi ©



The probability density function dfy is defined by: Although the calculations which follow can be conducted
with other measurement noise distributions, bounded ar not

1 . they are made much simpler by assuming a distribution with
f(b) = 2 if —-B<bc<p 7 2 compact support.
2\ = ) Taking the conditional expectation of (6) yields:
0 otherwise
2 1 - N - N
E(eah) = w2 f e f [S (e + D) # S 5101 YT Favko 54 o iy
L Yk=—c0 Jby=—p 2ﬁ (8)

Let us focus on the integral oveg. To this end, we define  Thus, the triple integral defined in (8) can be expressed

the following function: as the sum =11 + |, where:
. A dby h 9 G (Vi 9i0) F1(Vic, 9i) A d
FleS) = [S(k+bx) #S )] 5 2 ) Yemoo Je YieHie W Yio) T2k Yoo) Qi Ok
be=-p e

(12)
The functionF (yk, ¥«) is graphically represented in Fig. 2 And:
in the two casesi™> 0 andyj < 0. '

+00 +00
l, = f f Y9k S (%) T (i) f1(Yk, Vi) Ay dyi

Fe, Pre) Fe, 9r) Yi=—00 JGj=—oo
1 1 (13)
& z Let us consider first the double integrial By breaking
B o g Y 3 |0 p Y& poth integrals into positive and negative parts, the foltayi
expression is obtained:
+00 0
Fig. 2. F (Y §i) whenyi > O (left) andyi < O (right). i = 2 f f Y Yk f1(Vk» Vi) 0¥ dyi (14)
Y= =—c0

for which an analytical expression is found by a cartesian

We may synthetically sum this up as: ' -
to polar coordinate transformation:

FOWe%) = G +S )T (V) (10) vearccog) — AJ1— 2 (15)

whereG (yi, 1) = [S () # S (§)] and = x
Now consider the double integrdph. By breaking the

1 integral overyy into positive and negative parts and noting
=~ +A) ﬁ if yi € [-5.0] that T is odd, the following relation can be established:
- 1 .
TO =\ —-p o ifwclop @D o -
2 2= 2 [ ST o0 A d (26)
0 otherwise SISO . .
An analytical expression of the integral owar ¢an also
are represented in Fig. 3. be obtained, which yields:
G(Vr, Fx) G, Fie) T (i) B Yk (B—Yk) +/1-— Vﬁ y&
11 1, I = f eXp| - dyk
" %<0 pr 2(1-%)
0 Vi 0 Yk 'ﬁ\x-% F; Yk , , ,
N f Y (B = Yi) vk exp(—&) erf| kY i
weo B2 2 2(1-12)

Fig. 3. G (yk, %) whenyi > 0 (left) andyi < O (center) andr (yk) (right). (17)



Finally, (15) and (17) are introduced into (8) to derive the At this point, we aim to find an upper bound fby. We

conditional expectation: proceed in two steps. First, providgd> 0, we have:
E = 2 1+ 1 (18)
(ead = ve= (1 +12) | 1 _ 2 V2 Vi 06
or equivalently, writing the right-hand side of (18) as 2(1-42) Y/ 2(1-12)

f (v), we haveYk:
Then, we notice that the exponentials in (17) are less or
equal to unity or[0,8]. Hence,l; is bounded from above by

ECal) = 0 (19) a sum of two integrals of polynomials which can easily be
Taking the expected value of (19) then yields: calculated, to yield the following inequality:
E(ie) = E(f(w) (20) B2\1-2 B2
I, < + (27)

Now, provided f is convex, Jensen’s inequality can be 6

applied to get:
And the following relation can be established:
E(f(n)) = f(EM) (21)

Since f is (infinitely) continuously dierentiable, the best  f (E(%))
way to prove that the function is convex is to show that

@ () > 0 for all v in ]-1, 1[. An analytical expression of 2 [E(vk) arccosE (w)) — V1- E(vk)z}
L

\%

E(w)

this second derivative can be established as follows: p

(@ 2V2r . B _ E{ﬁZ\/l—E(vk)z N B*E (w)? }

) = Lo er 2(1_ VZ) L 61 20 V1— E(m)?
k (22) (28)

2
2 exp[— B ] _or equivalently, writing the right-hand side of (28) as
Lr J1- 12 2(1-) f(E(w)), we have,vk:
To study the monotony of @ (), we check the sign of 3
its derivative, for which an analytical expression can dlso f(E) = fEMW)) (29)
calculated:

Now, this more convenient lower bound of ik, 1) can be
used to get:
2vx (1 - vi +,82) ’32 ¢

) = —S/Zexp[——] (23)
Lr(1- %) 2(1-%) Etr) 2 TEM) (30)

In the interval ]-1,1[, the unique zero off® (y) is _ _
so thatVvk, E(v) > ux, where the sequenqg is defined

obtained whenvy = 0 and the third derivative is negative
whenevery, < 0 and positive whenever, > 0. Thus, the by:
minimum of @ (v) is obtained fory = 0 and we have:

m = E(n)
o 2V (P i ) (31)
,]Tlﬂl(f( )(yk)) = U‘[ TGFf 72 —exp ) 1 = F(uw)
(24) Assumingu; = 0 (which corresponds to the case of a

Now, sinceB > 0 by hypothesis, it is straightforward to randomly chosen initial vectob;) and 5 > 0, it can be
show that the minimum in (24) is positive by studying theshown that the sequengg increases monotonously. Since it
monotony of its product bys. Consequently,f® (») > 0 is also bounded from above (by 1), it convergeg«tosuch
and f is convex. that u., = f (u). This shows that E) is at least equal to

Finally, (20) and (21) are gathered to yield: k- This result is illustrated in the next section. Note that th

limiting caseB? = 0 corresponds t@,, = 1, which implies
the convergence in the mean of the non-relaxed LIMBO
E(ivd) = T(EM) (25 method to the nominal system parameters.



V. RESULTS AND DISCUSSION

In this section, the convergence of the algorithm is grapt
ically illustrated. The objective of this work is to show
that the boundu derived in section IV under some rather
stringent hypotheses is in fact a good approximation ¢
E (v). Furthermore, we aim to show that our hypotheses ce
be relaxed and our results extended to more general case

For that, we consider a set of 50 realizations of the binar
input signal. Based on these 50 realizations, the empiric
mean ofyy is calculated and compared to the sequencéor
different values of noise variandgis a randomly generated
impulse response of length = 50. The identification
procedure detailed in section lll is applied starting frorr
N = 10° observations of the binary output. The additive nois
is uniformly distributed in the intervgl-3,8]. The value of
B qhanges b.etwgen band 10. Thus, the ;lgnal-to—nmse Fig. 5. Empirical estimate of 4 E (v) and 1- ux for various values off
ratio (SNR) lies in average between.B4 dB,i.e. an almost by considering a Gaussian distribution of the noise of vaar? = 52/3.
absence of noise, and7# dB.

The results corresponding to these conditions are repre-
sented in Fig. 4, which displays the empirical estimate ahethod, in the absence of noise. In the presence of noise,
the quantity 1- E () for eachg. Let us bear in mind that a lower bound of the correlation ciieient between the
this specific quantity corresponds to the quality of theramli estimated and nominal parameters was analytically derived
estimation. and verified by simulations. This lower bound is useful
for predicting the convergence rate of the method. We
also showed that the simplifying assumptions made in our
demonstration could probably be relaxed. The varianceef th
correlation cofficient could probably be studied following
the same lines, as well as the convergence rate of the relaxed
version of LIMBO. This would be useful to determine some
optimal relaxation strategies in the presence of measureme
noise. Finally, it is interesting to note that an experinaént
application of LIMBO, in which the tested MEMS device
was a micro-wire used as a heating resistor inserted in a
Wheatstone bridge, had already been successfully developed

Gaussian distribution of the noise

10°

Uniform distribution of the noise

in [16].
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