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Convergence Analysis of an Online Approach to Parameter Estimation
Problems Based on Binary Noisy Observations

Laurent Bourgois and Jérôme Juillard

Abstract— The convergence analysis of an online system
identification method based on binary-quantized observations
is presented in this paper. This recursive algorithm can be
applied in the case of finite impulse response (FIR) systems and
exhibits low computational complexity as well as low storage
requirement. This method, whose practical requirement is a
simple 1-bit quantizer, implies low power consumption and
minimal silicon area, and is consequently well-adapted to the
test of microfabricated devices. The convergence in the mean of
the method is studied in the presence of measurement noise at
the input of the quantizer. In particular, a lower bound of the
correlation coefficient between the nominal and the estimated
system parameters is found. Some simulation results are then
given in order to illustrate this result and the assumptions
necessary for its derivation are discussed.

I. INTRODUCTION

Over the past decades, microfabrication of electronic de-
vices such as micro-electro-mechanical systems (MEMS) has
considerably developed. As their characteristic dimensions
become smaller, these devices become increasingly afflicted
with dispersion and become increasingly sensitive to changes
in their operating conditions. Typical sources of dispersions
and uncertainty are variations in the fabrication process or
environmental disturbances such as temperature, pressure
and humidity fluctuations [1]. It is then usually not possible
to guaranteea priori that a given device will work properly
under all operating conditions, and expensive tests must be
run before the commercialization decision is made. To cut
these costs, it is desirable to implement self-test (and self-
tuning) features such as parameter estimation routines, so
that devices can compensate the variations in the fabrication
process and adapt to changing conditions.

Unfortunately, standard identification methods based on
parameter estimation [2], [3] do not lend themselves easily
to implementation at a microscopic scale. Their integration
requires the implementation of high-resolution analog-to-
digital converters (ADCs), which may require long design
times and result in large silicon areas and increased power
consumption. On the other hand, parameter estimation rou-
tines based on binary observations are very attractive since
they only involve the integration of a 1-bit ADC [4], which
requires minimal design and results in minimal silicon area
and power consumption and, consequently, in minimal added
costs.

Several identification methods based on binary or roughly
quantized observations can be found in the literature [5], [6],
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[7], [8], [1], [9], [10], [11], [12], [13], [14]. For example,
Wigren [5], [6] has developed a least-mean-square (LMS)
approach to the problem of online parameter estimation
from quantized observations, based on an approximation of
the quantizer. The proof of convergence, which uses the
ordinary differential equation (ODE) approach [15], relies on
the assumption that at least one threshold of the quantizer
is known and different from zero. Under these hypotheses,
it is possible to guarantee the asymptotic convergence of
this method to the nominal parameters. Wang and his co-
authors [7], [8] have considered that the unknown system
is excited by a periodic signal and the threshold of the
quantizer is randomly specified by a dithering signal. They
have proved that the cumulative distribution function of the
threshold does not have to be knowna priori and can be
estimated simultaneously with the system parameters. More
recently, Jafari and his co-authors [9] have studied a recursive
identification method which does not rely on a pseudo-
gradient of a least-squares criterion and requires neithera
known non-zero threshold value, nor a varying threshold.
This online LMS-like identification method based on binary
observations (LIMBO) has little storage requirements and
low computational complexity. Although LIMBO has already
been put in practice for testing MEMS sensors [16], the
convergence of this method has so far only been established
in the case when no noise exists at the input of the quantizer.
It is interesting to note that, in this noise-free context,
LIMBO is similar to the relaxation method proposed and
studied in [17], [18] for solving consistent sets of linear
inequalities.

In this paper, we analyze the convergence of LIMBO in a
more general context: we suppose an unknown measurement
noise is present at the input of the quantizer and study the
influence of this noise on the convergence of the method.
More specifically, the convergence rate of the method is
investigated and a lower bound of the expected value of the
correlation coefficient between the nominal and the estimated
system parameters is found and expressed as a function of
the variance of the measurement noise. It is shown that
the derived lower bound can be safely used as an accurate
prediction of the expected value of the correlation coefficient.
The structure of the article is the following. In section II,
the system and its model are introduced. In section III, the
LIMBO algorithm is derived under its general form. Then,
the convergence of the proposed algorithm is studied in
section IV and graphically illustrated in section V. Finally,
concluding remarks and perspectives are given in section VI.



II. FRAMEWORK AND NOTATIONS

Let us consider the system illustrated in Fig. 1.

Fig. 1. Block diagram of the studied system.

The input signaluk is filtered by a linear time-invariant
discrete-time systemH to produce the system outputyk,
where subscriptk denotes the discrete time. We assume
that the transfer function has a finite impulse response of
length L, i.e. the impulse response can be represented by a
column vectorθ = (θl)

L
l=1. Consequently, the scalar value of

the system output at timek is given byyk = θ
T
ϕk,L where

ϕk,L = (ul)
k−L+1
l=k is the regression column vector of dimension

L. The system output is then measured via a 1-bit ADC so
that only its signsk = S (yk + bk) is available at timek. Here,
bk corresponds to the additive measurement noise at timek,
and the functionS of a real numberx is characterized by:

S(x) =

{

1 if x ≥ 0
−1 otherwise

(1)

Our purpose is to develop a recursive estimation method to
find a good estimate of the parameter vectorθ, starting from
N observations of the binary output knowing the input. Let
θ̂k be the estimated parameter vector at timek. Let us also
introduceŷk = θ̂

T
kϕk,L the estimated system output at timek

and ŝk = S (ŷk). Without loss of generality, we suppose that
‖θ‖2 = 1.

III. PROPOSED LMS APPROACH

The non-relaxed LIMBO method [9] consists in the fol-
lowing iteration:

if sk , ŝk

θ̂k+1 = θ̂k − 2ŷk
ϕk,L

∥
∥
∥ϕk,L

∥
∥
∥

2

else

θ̂k+1 = θ̂k

(2)

Or, more compactly:

θ̂k+1 = θ̂k − 2ŷk
ϕk,L

∥
∥
∥ϕk,L

∥
∥
∥

2
[sk , ŝk] (3)

In this compacted expression, the notation[sk , ŝk] stands
for a variable that is equal to unity ifsk , ŝk, i.e. if yk + bk

andŷk have opposite signs, and equal to zero otherwise. This
non-relaxed iteration ensures that the norm ofθ̂k remains
constant. One may then assume that

∥
∥
∥θ̂k

∥
∥
∥ = 1.

Next, by projecting (3) onto the nominal parameter vector
θ and considering the sequenceνk = θ̂

T
k θ, we obtain:

νk+1 = νk −
2ŷk yk
∥
∥
∥ϕk,L

∥
∥
∥

2
[sk , ŝk] (4)

Note thatνk is the cosine of the angle made byθ̂k andθ
since both vectors are normalized, and we have−1 ≤ νk ≤ 1,
so that lim

k→∞
θ̂k = θ is equivalent to lim

k→∞
νk = 1.

IV. CONVERGENCE ANALYSIS IN THE PRESENCE OF
NOISE

In [9], the almost sure convergence of the algorithm
presented in the previous section is demonstrated under
some specific assumptions. In particular, the proof is estab-
lished for a relaxed version of the algorithm by supposing
bk = 0 (although a proof in the noise-free non-relaxed case
could also be obtained by following the approach in [18]).
Our purpose here is to study the convergence of LIMBO,
without additional relaxation step, and taking into account
measurement noise. To this end, we aim to evaluate the
conditional expectation E(νk+1|νk) under the three following
assumptions:
• yk and ŷk are two centered Gaussian random variables.
• uk is white and centered, with a Bernoulli distribution

and takes two values: 1 or−1.
• bk is white and centered, with a uniform distribution

in the interval
[

−β, β
]

whereβ > 0. Furthermore,bk is
independent ofyk and ŷk.

The last two assumptions are made to keep the calculations
which follow as simple and straightforward as possible and
should not be seen as strict limitations to the validity of our
results. First of all, note that the first assumption is verified
in practice regardless of the distribution of the input signal,
provided the impulse responseθ does not vanish too quickly,
as is the case in many applications (for a more detailed
discussion on the validity of this assumption, please referto
[19], [20]). By construction,νk corresponds to the correlation
coefficient between the variablesyk and ŷk whose means are
equal to zero and whose variances are equal to one. In this
case, their joint probability density function is defined for
any−1 < νk < 1 by:

f1 (yk, ŷk) =
1

2π
√

1− ν2k
exp




−

y2
k + ŷ2

k − 2νk yk ŷk

2
(

1− ν2k
)





(5)

The reason for assuming a binary input,i.e. uk ∈ {−1,1},
is that this simplifies (3) and (4), because in that case, by
construction,

∥
∥
∥ϕk,L

∥
∥
∥

2
= L. As already mentioned, this has

little influence on the Gaussian nature ofyk andŷk in practical
cases [19].

Now (4) can be rewritten as:

νk+1 = νk −
2
L

[sk , ŝk] yk ŷk (6)



The probability density function ofbk is defined by:

f2 (bk) =






1
2β

if − β ≤ bk ≤ β

0 otherwise

(7)

Although the calculations which follow can be conducted
with other measurement noise distributions, bounded or not,
they are made much simpler by assuming a distribution with
a compact support.

Taking the conditional expectation of (6) yields:

E(νk+1|νk) = νk −
2
L

∫
+∞

yk=−∞

∫
+∞

ŷk=−∞

∫ β

bk=−β

1
2β

[

S (yk + bk) , S (ŷk)
]

yk ŷk f1(yk, ŷk) dbk dŷk dyk

︸                                                                                           ︷︷                                                                                           ︸

=I

(8)

Let us focus on the integral overbk. To this end, we define
the following function:

F (yk, ŷk) =

∫ β

bk=−β

[

S (yk + bk) , S (ŷk)
] dbk

2β
(9)

The functionF (yk, ŷk) is graphically represented in Fig. 2
in the two cases ˆyk > 0 andŷk < 0.

Fig. 2. F (yk, ŷk) when ŷk > 0 (left) andŷk < 0 (right).

We may synthetically sum this up as:

F (yk, ŷk) = G (yk, ŷk) + S (ŷk) T (yk) (10)

whereG (yk, ŷk) =
[

S (yk) , S (ŷk)
]

and

T (yk) =






− (yk + β)
1
2β

if yk ∈
[

−β,0
]

− (yk − β)
1
2β

if yk ∈
[

0, β
]

0 otherwise

(11)

are represented in Fig. 3.

Fig. 3. G (yk, ŷk) when ŷk > 0 (left) andŷk < 0 (center) andT (yk) (right).

Thus, the triple integralI defined in (8) can be expressed
as the sumI = I1 + I2 where:

I1 =

∫
+∞

yk=−∞

∫
+∞

ŷk=−∞
yk ŷk G (yk, ŷk) f1(yk, ŷk) dŷk dyk

(12)

And:

I2 =

∫
+∞

yk=−∞

∫
+∞

ŷk=−∞
yk ŷk S (ŷk) T (yk) f1(yk, ŷk) dŷk dyk

(13)

Let us consider first the double integralI1. By breaking
both integrals into positive and negative parts, the following
expression is obtained:

I1 = 2
∫
+∞

yk=0

∫ 0

ŷk=−∞
yk ŷk f1(yk, ŷk) dŷk dyk (14)

for which an analytical expression is found by a cartesian
to polar coordinate transformation:

I1 =

νk arccos(νk) −
√

1− ν2k
π

(15)

Now consider the double integralI2. By breaking the
integral over ˆyk into positive and negative parts and noting
that T is odd, the following relation can be established:

I2 = 2
∫ β

yk=−β

∫
+∞

ŷk=0
yk ŷk T (yk) f1(yk, ŷk) dŷk dyk (16)

An analytical expression of the integral over ˆyk can also
be obtained, which yields:

I2 =

∫ β

yk=0

yk (β − yk)
√

1− ν2k
βπ

exp




−

y2
k

2
(

1− ν2k
)




dyk

+

∫ β

yk=0

y2
k (β − yk) νk

β
√

2π
exp



−
y2

k

2



 erf





νk yk
√

2
(

1− ν2k
)





dyk

(17)



Finally, (15) and (17) are introduced into (8) to derive the
conditional expectation:

E(νk+1|νk) = νk −
2
L

(I1 + I2) (18)

or equivalently, writing the right-hand side of (18) as
f (νk), we have,∀k:

E(νk+1|νk) = f (νk) (19)

Taking the expected value of (19) then yields:

E(νk+1) = E( f (νk)) (20)

Now, provided f is convex, Jensen’s inequality can be
applied to get:

E( f (νk)) ≥ f (E(νk)) (21)

Since f is (infinitely) continuously differentiable, the best
way to prove that the function is convex is to show that
f (2) (νk) ≥ 0 for all νk in ]−1,1[. An analytical expression of
this second derivative can be established as follows:

f (2) (νk) =
2
√

2π
Lβπ

erf





β
√

2
(

1− ν2k
)





− 2

Lπ
√

1− ν2k
exp




− β2

2
(

1− ν2k
)





(22)

To study the monotony off (2) (νk), we check the sign of
its derivative, for which an analytical expression can alsobe
calculated:

f (3) (νk) =

2νk
(

1− ν2k + β
2
)

Lπ
(

1− ν2k
)5/2

exp




− β2

2
(

1− ν2k
)



 (23)

In the interval ]−1,1[, the unique zero off (3) (νk) is
obtained whenνk = 0 and the third derivative is negative
wheneverνk < 0 and positive wheneverνk > 0. Thus, the
minimum of f (2) (νk) is obtained forνk = 0 and we have:

min
−1<νk<1

(

f (2) (νk)
)

=
2

Lπ





√
2π
β

erf

(

β
√

2

)

− exp

(

−β
2

2

)



(24)

Now, sinceβ > 0 by hypothesis, it is straightforward to
show that the minimum in (24) is positive by studying the
monotony of its product byβ. Consequently,f (2) (νk) ≥ 0
and f is convex.

Finally, (20) and (21) are gathered to yield:

E(νk+1) ≥ f (E(νk)) (25)

At this point, we aim to find an upper bound forI2. We
proceed in two steps. First, providedyk ≥ 0, we have:

νk erf





νk yk
√

2
(

1− ν2k
)





≤ 2
√
π





ν2k yk
√

2
(

1− ν2k
)





(26)

Then, we notice that the exponentials in (17) are less or
equal to unity on

[

0, β
]

. Hence,I2 is bounded from above by
a sum of two integrals of polynomials which can easily be
calculated, to yield the following inequality:

I2 ≤
β2

√

1− ν2k
6π

+
β4ν2k

20π
√

1− ν2k
(27)

And the following relation can be established:

f (E(νk)) ≥ E(νk)

− 2
L





E(νk) arccos(E(νk)) −
√

1− E(νk)
2

π





− 2
L





β2
√

1− E(νk)
2

6π
+

β4 E(νk)
2

20π
√

1− E(νk)
2





(28)

or equivalently, writing the right-hand side of (28) as
f̃ (E(νk)), we have,∀k:

f (E(νk)) ≥ f̃ (E(νk)) (29)

Now, this more convenient lower bound of E(νk+1) can be
used to get:

E(νk+1) ≥ f̃ (E(νk)) (30)

so that∀k, E(νk) ≥ µk, where the sequenceµk is defined
by:






µ1 = E(ν1)

µk+1 = f̃ (µk)
(31)

Assumingµ1 = 0 (which corresponds to the case of a
randomly chosen initial vector̂θ1) and β2 > 0, it can be
shown that the sequenceµk increases monotonously. Since it
is also bounded from above (by 1), it converges toµ∞ such
that µ∞ = f̃ (µ∞). This shows that E(νk) is at least equal to
µk. This result is illustrated in the next section. Note that the
limiting caseβ2

= 0 corresponds toµ∞ = 1, which implies
the convergence in the mean of the non-relaxed LIMBO
method to the nominal system parameters.



V. RESULTS AND DISCUSSION

In this section, the convergence of the algorithm is graph-
ically illustrated. The objective of this work is to show
that the boundµk derived in section IV under some rather
stringent hypotheses is in fact a good approximation of
E(νk). Furthermore, we aim to show that our hypotheses can
be relaxed and our results extended to more general cases.

For that, we consider a set of 50 realizations of the binary
input signal. Based on these 50 realizations, the empirical
mean ofνk is calculated and compared to the sequenceµk, for
different values of noise variance.θ is a randomly generated
impulse response of lengthL = 50. The identification
procedure detailed in section III is applied starting from
N = 105 observations of the binary output. The additive noise
is uniformly distributed in the interval

[

−β, β
]

. The value of
β changes between 10−3 and 100. Thus, the signal-to-noise
ratio (SNR) lies in average between 64.77 dB, i.e. an almost
absence of noise, and 4.77 dB.

The results corresponding to these conditions are repre-
sented in Fig. 4, which displays the empirical estimate of
the quantity 1− E(νk) for eachβ. Let us bear in mind that
this specific quantity corresponds to the quality of the online
estimation.
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Fig. 4. Empirical estimate of 1−E(νk) and 1− µk for various values ofβ
by considering an uniform distribution of the noise.

The numerical simulations comfort our theoretical analysis
and show that the upper bound given by 1− µk accurately
predicts the value of E(νk). Furthermore, this result seems to
hold for many other distributions of the measurement noise,
provided they are centered. For a given distribution with
varianceσ2, it suffices to replaceβ2 in (28) by 3σ2 to derive
the corresponding analytical bound. This point is illustrated
in Fig. 5.

VI. CONCLUSION

In this paper, we extended the analysis of the LIMBO
method [9] to a more general context involving measure-
ment noise and no relaxation step. We demonstrated the
convergence in the mean of the non-relaxed version of the
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Fig. 5. Empirical estimate of 1−E(νk) and 1− µk for various values ofβ
by considering a Gaussian distribution of the noise of varianceσ2

= β2/3.

method, in the absence of noise. In the presence of noise,
a lower bound of the correlation coefficient between the
estimated and nominal parameters was analytically derived
and verified by simulations. This lower bound is useful
for predicting the convergence rate of the method. We
also showed that the simplifying assumptions made in our
demonstration could probably be relaxed. The variance of the
correlation coefficient could probably be studied following
the same lines, as well as the convergence rate of the relaxed
version of LIMBO. This would be useful to determine some
optimal relaxation strategies in the presence of measurement
noise. Finally, it is interesting to note that an experimental
application of LIMBO, in which the tested MEMS device
was a micro-wire used as a heating resistor inserted in a
Wheatstone bridge, had already been successfully developed
in [16].
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