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Semi-physical neural modeling for linear signal restoration

Laurent Bourgoi¥*, Gilles Roussé, Mohammed Benjellouh

ASUPELEC ESS, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette QeBmnce
PLISIC, 50 rue Ferdinand Buisson, 62228 Calais Cedex, France

Abstract

This paper deals with the design methodology of an Inverseal&letwork (INN)
model. The basic idea is to carry out a semi-physical modklegeng two types of in-
formation: thea priori knowledge of the deterministic rules which govern the stddi
system and the observation of the actual conduct of thiesysibtained from exper-
imental data. This hybrid model is elaborated by being ispby the mechanisms
of a neuromimetic network whose structure is constrainethbydiscrete reverse-time
state-space equations. In order to validate the approaate sests are performed on
two dynamic models. The first suggested model is a dynamiesysharacterized
by an unspecified-order Ordinary Differential Equation (ODE). The secona @on-
cerns in particular the mass balance equation for a dispepsienomenon governed by
a Partial Differential Equation (PDE) discretized on a bamesh. The performances
are numerically analyzed in terms of generalization, rageation and training effort.

Keywords: Semi-physical modeling, inverse problem, neural netwardel fusion

1. Introduction

Many applications require data inversion. Inverse proklensignal restoration are
solved by the inversion of a forward representation whicldet® the actual conduct
of the studied system. There are several techniques thdtecased to realize this in-
version such as variational method, criterion optimizatioverse filtering, analytical

solution from forward modelktc. All these different methods depend upon a mathe-
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matical description of the real behavior of the system. Aditay to how mucta priori
information is available, it is possible to carry out eitlreknowledge-based (white-
box) model based on the physical, chemical, biological @idogical principles, or
an empirical (black-box) model based on theriori choice of a well-suited analyti-
cal function followed by a data identification procedure. d@firse, the quality of the
restoration by data inversion depends on the observatiise nan the model accuracy,
and on the inversion method. However, it is usually diffi¢alfind an analytical so-
lution when the system is quite complex, often non-lineat time-dependent. Such
complex or imprecise system can be modeled by combining latye on the physical
laws and data measured during system operation. This medelned semi-physical
or gray-box concept. Although this approach is usuallymesifor forward modeling,
the idea consists in carrying out a semi-physical inversgai@etwork model gather-
ing physical knowledge of an inverse relaxed mechanistidehand data accumulated
during a statistical learning phase. Thus, a robust INN rhigdensured using priori
knowledge on the physical laws which govern the system. Wi¢hhelp of this INN
model, we propose a technique having not only a faculty afieg and adaptabil-
ity, but also a good efficiency relative to inverse probleffficlilties. In order to test
the method, we have studied the deconvolution problem bgna¥ag a linear model
defined by an ODE and a linear spatio-temporal model govempedPDE.

Establishing a robust white-box model within the meaningxfaustiveness com-
pared to the variations of context is often tricky to expriEgsseveral reasons. One
needs a perfect expertise to enumerate all the physicaldadsnfluential variables
brought into play. Besides, an exhaustive spatial and temhjggstem description is
also required. However, even if the previous stage is comglsome parameters may
not be measured or precisely known. It is then advisablettmate these parameters
starting from observable data. Once the physical model bas bixed, it is endowed
with a good robustness.

A black-box model is a behavior model particularly well{sdifor complex system
representation (8perg et al., 1995), but which does not take into accounegmyori
information. Many standard process forms which preserteays input-output rela-

tion starting from experimental data can be consideredaskihox models: ARMA,



ARMAX (Ljung, 1999), NARMAX, Box-Jenkins (Box et al., 1994NOE (Nonlin-
ear Output Error)etc. Another approach based on classical neural networks diies n
specify a mathematical form but rather a neural design wisiahore suited to the sys-
tem dynamics. One of the main advantages of neural netwsitkeir great adaptabil-
ity to static, dynamic, linear or nonlinear functions, tkamo the universal approxima-
tion property (Sontag, 1997). Moreover, neural networksehHzeen successfully used
to nonlinear dynamic systems modeling. The form of usualinear activation func-
tions (e.g. sigmoid activation functions) results in parsimoniousnaation,i.e. weak
residual error with a minimum number of parameters (Bard@®@93). Nevertheless,
black-box models are often less parsimonious than knowlddged ones. Indeed,
the mathematical functions used to describe white-box hsa@le more accurate and
minimize output errors in absence of noise.

Between the two models previously exposed, the gray-boeiiwas emerged as an
important tool during the past two decades. This approastbbean termed gray-box
modeling (Duarte et al., 2004; Beghi et al., 2007), hybriddelmng (Zorzetto et al.,
2000) or semi-physical modeling (Lindskog & Ljung, 1995)the literature. A pa-
per by Leifsson et al. (2008) distinguishes two types of apph: serial and parallel
gray-box modeling. These two patterns differ in the mannewhich they combine
black-box and white-box models. Serial gray-box modelirakes a numerical sepa-
ration between the known and the unknown physical part ofyiseem (Nelles, 2001),
whereas parallel gray-box modeling introduces a kind of petition between black-
box and white-box models. Generally, black-box model arisréhe predicted outputs
of the white-box model. Between these two methods, thereathar approach which
is much more closer to the notion of model fusion. This apgiha@nsists in modifying
the design of a recurrent neural network (Oussar & Dreyf0912 Ploix & Dreyfus,
1997). The idea is to design a recurrent neural network usimggneer’s knowledge
on the fundamental laws which govern the system. In this,@apeiori information
is based on the network design. One or more degrees of freéelgmadditional
neurons) may also be added to help the network successfildlgtdo the ignored
parts of the system (Oussar & Dreyfus, 2001). Process memasumts are then used

to learn the network. The recall phase then supplies pesdlictitput values in real-



time (Krasnopolsky & Fox-Rabinovitz, 2006). Other appituex have been proposed
by Cherkassky et al. (2006). They consist in carrying outtmellation of physically-
based process models using neural network training ggaftom white-box model
simulations. Semi-physical or gray-box modeling has ofiean used in the case of
forward models. This type of model fulfills at the same timeqision requirements,
robustness and parsimony of the knowledge-based models|smpossesses the fac-
ulty of training and adaptability. Our idea consist in beingpired by such a concept

in order to apply it in the case of inverse problems.

2. Inverse neural modeling

2.1. Principle

The objective of many applications such as inverse problennseteorology, to-
mography, software sensor, deconvolution or open-loograbsystem is to realize the
inversion of a physical model. It generally consists inrasting hon-measurable pa-
rameters or inputs starting from the measurable obsenstiada priori information
about the system. There are several numerical ways to ddathis problem such as
state-space transformatioresd. Laplace, Fourieretc), forward state-space model dis-
cretization followed by a matrix inversion, or the definitiof a performance function
to minimize (Groetsch, 1993; Tarantola, 1987).

Our proposed additional objective is to realize the invemgglel training. Some
ideas for forward and inverse model training in physical sueament applications
have been proposed by Krasnopolsky & Schillerb (2003). hiegrphase consists in
weight estimation by backpropagation. The coefficientslaea adjusted to move the
network outputs closer to the desired inputs (figure 1).

In recall phase, the network estimates the input sequencesgpposing that the
real model does not evolve any more after the last trainimmi@ 2). Implicitly, this

method looks like the error propagation through the adjoattvork.

2.2. Regularization
Inverse problems are often ill-posed in the Hadamard séBs(sch, 1993). They

can present an absence of solution, multiple solutions,nourestable solution. To
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Figure 1: Training phase of the INN model. A (noisy) synthetigput signal is simulated starting from
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the input signal, and introduced in the neural network infitte coefficients are then adjusted to move the

network outputs closer to the desired inputs.
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Figure 2: Recall phase of the INN model. The network estimé&esnput sequences by supposing that the

real model does not evolve any more after the last training.

transform ill-posed problems into well-conditioned oneis necessary to adalpriori
knowledge on the system before inversion. There are twooagpes which differ ac-
cording to the type o& priori knowledge introduced. The first procedure employs reg-
ularization methods based on deterministic informatidniKfionov & Arsenin, 1977).
The second strategy considers techniques based on pistaliiiformation such as
Bayesian methods (Marroquin et al., 1987; Demoment, 1989aximum entropy
methods (Mohammad-Djafari et al., 2002).

But, can we discuss the regularization problem in the casieedfNN model ? Let
us underline that a neural network always provides an outegardless of the ap-
propriateness of the input, due to its autoassociative mgmmperty. That answers
the two main difficulties of ill-posed inverse problems, evkthe suggested solution
can prove to be false. In addition, regularization duriragning phase improves gen-
eralization with respect to the set of examples. It avoigsptoblem of overfitting
which results in an instability. It is also remarkable thatly stopping proceduré.e.
stopping the gradient descent before learning procestiesdhe optimal solution on

the training set, supplies solutions with smaller gengasilbn error. Besides, some



Bayesian techniques have been developed to adjust thearegtion coefficients of
the performance function (MacKay, 1992). This confirms quinmn to use the neural

network like an inverse model.

3. Design of a semi-physical inverse neural network model

The construction of a gray-box forward neural network madeajenerally per-

formed in three steps:

Step 1: Discrete-time neural network design from the knowledgsebamodel;

Step 2: Training of the semi-physical forward neural network mddein knowledge-

based simulations in order to obtain appropriate initiflies;

Step 3: Training of the semi-physical neural model from experinaédata.

The knowledge-based model is usually represented in the &fra set of cou-
pled, differential, partial differential, algebraic andnsetimes nonlinear equations.

The starting model can be described by the standard state $prm:

dx
o = o)

yt) = glx®)]+b(t)

)

Wherex is the state variable vectoy,is the output vecton is the control input
vector andb corresponds to the noise vector. The vector functibasdg are known,
but they may also be partially known or inaccurate. In blhok-neural modeling,
functionsf andg are approximated during the training step from experinmefat. In
gray-box neural modeling, those functions are describethby analytical form and
implemented as neural models with some fixed parameterer Otilknown parameters
are computed during the training step from experimental.dat

The discretized equations of the neural model can be writteter the canonical
form (2), wherepNN corresponds to the transition vector functigf\N represents the
output vector function ant(n) is the output noise at time instamt Since the output

noise only appears in the observation equation, it doesava &iny influence on system



dynamics.

x(n+1) = N [x(n),u(n)]
y(n) = W [x(n)] +b(n)

Figure 3 represents the graphical form of the forward nestede-space model.

(2)

y(n+1)

+

+4b(n+1) tz(n+1)

14 q

u(n)T t2(n)

Figure 3: Forward neural state-space model. hkoperator stands for orle sample time delay.

Similarly, we have carried out the semi-physical INN mode&ldding an inversion
step before the training. The reverse-time equation ddsgrconsisted in the expres-
sion ofu(n) according to the noisy observation vecygss(n). Then, the state variables
at time instanin have been extracted to obtain a new system, according tadte s
variables at time instamt+ 1.

Consequently, the INN model can be described by the caridioica (3), where

NN corresponds to the reverse-time transition vector funaiedWNN represents the

restoring vector function of the input.

x(n) = OMN[X(N+1),Yobs(n)]

®3)
un) = YNx(n+1),Yons(n)]

Figure 4 represents the graphical form of the inverse natagt-space model.

4. Inversion of a semi-physical ODE model

In the first part of this section, we obtain the canonical fafthe inverse model
which refers to (3) in the case of a dynamic system charaew@itby ar-order ODE.

In the second part, we present a study concerning an iltiusrsecond order example.
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Figure 4: Inverse neural state-space model. The outputive@ip of this inverse model corresponds to the
system input. The operator stands for orie sample time forward. Practically, tiegoperator is replaced
by theq~! operator which stands for orfe sample time delay, and the noisy observation vegggy(n) is

presented in reverse-time at the input of the network to pvessusality.

Some promising results about semi-physical ODE models &lagady been developed
by Bourgois et al. (2007b).

4.1. General case study: an r-order ODE without input detiive

Let us consider a continuous, mono input and mono outpuésygbverned by an

ordinary differential equation:

dry drfly dy
&g ta gt Targ tay = au() (4)

The corresponding continuous state-space form is given by:

dxt)
i AX(t) + Bu(t) 5)
y(t) = Cx{)+b(t)

And the state-space matricAsB andC are worth:

C1

A = ComgP), BT =|0 - 0 a

Here,ComgP) is the companion matrix of the monic polynomial obtainedtstg
from (4) and defined by(q) = %—F %q+~--+ %qr‘“rqr. By choosing the
explicit Euler method and supposing the sampling pefiedich ag = nT, the equation

(5) leads to the discrete-time state-space form (6):

x(n+1) —x(n)
R

Fx(n) +Gu(n)
Hx(n) + b(n)

Ax(n) 4+ Bu(n) — x(n+1)
Cx(n) 4 b(n) y(n)

y(n)
(6)



The new state-space matrices are expressdd byTA+|l,, G=TBandH =C.
Here, I; is the identity matrix withdim(l;) = dim(F) =r xr, dim(G) =r x 1 and
dimH) =1xr.

By gathering the equations (A.10) and (A.12) of the demautisin of the Appendix
A, we have carried out the reverse-time state-space equsygtem (7) which fits to

the canonical form (3):

x(n) = FAx(n+1)+Gi[y(n)—b(n)] @)
un) = Hix(n+1)+1iy(n)—b(n)]
Where the reverse-time state-space matrices are worth:
2 0 0 i 1 ]
1 0 1
T T
R = : . G = :
1\"? 1 <_1>H
(%) T 0 T
[ a o a2 1
- o --- 0 X~ i £~ WP
Hi I Tc :| + |: C1 C1 Tg (ar 17 ar) :| R
_ [ a2 1 _
I = o o To (ar—1T —a) ]GI

4.2. Study of a second order ODE model

We have studied the deconvolution problem for a linear mgaeerned by an
ordinary differential equation in order to test the methdakt us suppose a system

represented by the differential equation:

% + ZEwn%+ Wy = cu(t) (8)
This second order ordinary differential equation may bleegithe representation of
a mechanical systene.g. mass, spring, shock absorbetg) or the representation of
an electrical oneq.g. RLC filter) excited by a time-dependent inpuft). The damping
parameteg, the natural pulsatiomy,, and the static gain; are nota priori known in

this physical model. By referring to the relation (5), thedabcan be represented by



the following state-space system:

dx(t) 0 1 0
= = {—wﬁ _szn]x(t)JrLl]u(t)

y) = [1 0]x+b)
The discrete-time state-space matrices F, G and H of thiael) are expressed

by:

1 T
F = , G=
[ T 1-28wnT ]

By referring to the system (7), we have finally obtained theeige state-space

(9)

T

A ECRIN

model;

—l~ o

c
—~
=)
=
I

[ a B |x(n+D+vlyn)—b(n)
Where the parametecs 3 andy are worth:

_ FeTo1 1 ~(@nT)? 4 (1 28wnT)

T2C1

T To) c1T2

Of course, this non-causal system can be implemented otihe iEtate variables
at time instanh+ 1 are known before the calculation of state variables at imsg&nt
n. Inverse problems are more familiar with this concept. Iths case during the
input sequence restoration at the initial time instant. hie teconstructed input, the
observation noisé(n) now appears as a correlated noise and is also amplified by the
realy. Let us underline that the reverse-time system remaingestabanyT since the
eigenvalues of the state-space matrix are all null for tkgsvple. The INN model of
the figure 5 is carried out starting from the relation (10)réj¢he activation functions
f are all linear. Besides, even if the sampling pefiod generally known, the physical
parameterg;, & andw, may be imprecise, or completely unknown. The degrees of

freedom may relate to these coefficients.

10
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Reverse-time
state-space equation

Yovs (M)
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Figure 5: Second order INN model representation. The outgetovu(n) of this inverse model corresponds
to the system input. The design fits into the reverse-time-sahce equation system. The neural network
is not fully connected and the activation functiohare linear. The) operator stands for orie sample time
forward. Practically, the operator is replaced by thg 1 operator which stands for offesample time delay,
and the noisy observation vectpyps(n) is presented in reverse-time at the input of the network tegre

causality.

5. Study of a Dispersion M odel

In this section we test the previous method on an atmospheliigtant dispersion
model governed by a partial differential equation in oraefutfill the pollution source

deconvolution and the receptor concentration estimation.

5.1. Atmospheric Pollutant Dispersion Modeling
We develop and increase the results we have obtained in Bisugtjal. (2007a).

Let us suppose a system represented by the following PDEBETFUt994):

X(P,1) *X(P.1) X(P,1)
o~ PO (m> Ve (%55

N (11)
= KXBOHTCF0)+ 3 s 03(F - F)

. x(ﬁ7t) is the concentration (ig.m~3) at a receptor locatiom = (p1, P2, P3)

at timet in the referentlal(o,_l>,_j>, k). It comes from the air dispersion of

11



ns pollutant sources of intensity(s,,t) at the positions’ = (S6i,2),8,2)> i,3))»

inside a bounded open domdhof dimension x L x H;

D is the diffusion tensor (im?.s 1) defined by its diagonal elemendg P, t);

V(P.t) = (B, 1),v2(B,1),vs(B,1))T is the wind speed field (im.s™1), re-
sponsible for the B transport;

K is the reaction coefficient of a first order chemical transfation;

e [(x) appears when the chemical species presents nonlineaoresact

o represents the Dirac function.

The observatory is configured by a networkmgfsensors at the positior€ =
(C,1)5Ci,2),Ci,3))- To simplify the presentation, we have chosen to presennttaod
in the one-dimensional case. By projecting@?, choosing the explicit Euler method
and supposing the sampling peribduch ag = nT and the spatial sampling stép,

such agy, = kAp,, we have obtained the recurrent equation (12):

x(k,n+1) = m(kn)x(k+1,n)+mp(k n)x(k,n) +mg(k,n)x(k— 1,n)

& (12)
+ Trx(k,n)+T Zu(sm)é(k— Si1)

Where the parametens; (k,n), mp(k,n) andmg(k,n) are worth:

~ Tdi(k,n) 1—sgn(vi(k,n))\ [/ Twi(kn)
mien) = apy? < 2 >< Apy )

me(k,n) = 1-KT —sgrtva(km)) (TVl(k’m)_Zle(k,n)

Apy (Apy)?

_ Tdi(k,n) 1+sgn(vi(k,n))\ Tvi(k,n)
) = T+ (R TR

Here, sgn corresponds to the sign function. The equation (12) charizess the
deconvolution mask and presents a linear part accordinget@aefficientam (k, n),

mp(k, n) andmg(k, n). By supposingVl = {AI

J + 1 meshes on one dimensiotin) =
P1

12



T T
x(1,n) .-~ x(M,n) andu(n) = u(s,n) -+ U(Sng,N) ] , we have ob-

tained the forward state-space equation (13):
x(n+1) = Fx(n)+Gu(n)+Tr(x(n)) (13)

The tridiagonal matri¥ of sizedim(F) = M x M takes the form:

mp(1,n)  my(1,n) 0 0
mg(2,n)  mp(2,n) m(2,n)
F = 0 0

m (M —1,n)
0 0 mz(M,n)  mp(M,n)

The matrixG of sizedim(G) = M x ng is worth:

O(1—-s11)) 3(1-s21) -+ O(1—Sng1))
G — T 6(2—.5(1,1)) d(2—5s021))
O(M —s1.1)) (M =S 1))
T T
Lety(m) = [ y(Ln) -~ y(nen) | andb(m) = bLn) - bren) | -

In equation (6) characterizing the observations, the ptaoiatrixH of then; sensors

of sizedim(H) = nc x M is expressed by:

6(1—C(1,1)) 6(2—0(1,1)) 6(M _C(l,l))

6(1 - C(nc,l)) 6(M - C(nc,l))

The termb(i,n) = bmoed(i,N) + bmedi,N) is a random vector, Gaussian centered
b(i,n) ~ ¢ (0,062), of unknown variance?, modeling the general uncertainty of the
observations. It groups together model ertargq(i, n) (phenomenon and wind fields
uncertainty) and measurement uncertaliptydi, n) resulting from sensors or measure-

ment environment.

13



5.2. Study Assumptions

We have considered a basic mesh to reproduce, constitutdotid®/nodes or neu-
rons. We have supposed there is only one source ofufl@win this mesh, at the level
of the central node. A sensor is positioned at the level ofeadanode. Wind speed is
supposed to be constant in time, and the term of nonlineBfityis considered to be
insignificant. This choice has been done in order to confiemtkthod in a linear case.
Only linear case will be considered in this study. For thisibanesh, the matricds,

G andH are worth:

T
mp(1,n)  my(1,n) 0 0 0
F = mg(2,n) my(2n) m2n) |, G= | T |, H= 1|0
0 mgz(3,n) mp(3,n) 0 1

The reverse-time equation design has consisted in the ssipreof the flomu(n)
according to the sensor observation. Then, the state Vesiath timen have been
extracted to obtain a new system, according to the statablas at timen+ 1. We
have thus carried out the reverse-time state-space equsastem (7) where the inverse

state-space matrices are expressed by:

-1 o __ m(Ln me(2,n) 17
mp(1,n) me(1,n)mg(3,n) S Tmp(Ln)
F o= 1 H = 1
1 0 0 , M -
ms(3,n) T
L 0 0 4
G - [ M (1,n)my(3,n) ~ mp(3,n) 1 T I - n—K—v
b | mp(1,n)mg(3,n) mg(3,n) T Tme(L,n)mg(3,n)

The parameterg, n, kK andv are worth:

M (1,n)mg(2,n) —mp(2,n)mp(1,n)
Tmp(1,n)mg(3,n)

n = m(Lnm(2,nm(3,n), v = m(ln)m(3,nm(2n)

( , K = mu(2,n)my(1,n)mg(3,n)

The INN model is then carried out starting from the previoegerse-time state-
space equation system (figure 6). But, even if previous tepubvide accurate coef-

ficients, we do not need them to design the shape of the INN m@ie only needs

14



to know the structure,e. the location of non-zero values. Indeed, the non-zero coef-
ficients define the remaining connections symbolized bywestio figure 6. The cor-
responding weights (degrees of freedom) are then estindatiéoly the training. Here,
the activation functiong are linear. However, neural networks have been succegsfull
used to nonlinear dynamic systems modeling. Indeed, the &the usual nonlinear
activation functions€.g. sigmoid activation functions) results in more parsimosiou
approximationj.e. the same residual error with less number of parametersdBarr
1993).

Input equation

Reverse-time
state-space equation

Lo
Reverse-time Yobs (1)

output samples

Figure 6: INN model representation of a basic mesh of the dist¢ime dispersion model where wind
and dispersion parameters remain constant. The output veetpof this inverse model corresponds to
the system input. The design fits into the reverse-time sfad&ee equation system. The neural network is
not fully connected and the activation functiohsre linear. They operator stands for one sample time
forward. Practically, the operator is replaced by thg 1 operator which stands for offesample time delay,
and the noisy observation vectpyps(n) is presented in reverse-time at the input of the network tegre

causality.

5.3. Study of Causality and Stability

The problem of causality have been raised at two levels:

e During the error calculation associated with each trairemgmple and during

the recall phase, we have truncated all the sequences byndetleer — 1 first

15



samples because of the unknown initial conditianisding the system order);

e During numerical simulations, the simulated data have earranged before
the training to obtain reverse-time sequences (the firshet has become the
last onegtc). Theq operator has assumed the rolegof operator which stands

for oneT sample time delay to ensure causality is not violated.
This study have led us to treat stability conditions in twods:

e During the training phase, data are simulated starting frioenforward state-
space model. It has been necessary to check the stabillig sfrhulation model.

The stability is ensured if and only if the spectral radis ) < 1;

e On the other hand, it has been advisable to know the behafitbhrednverse
state-space model in term of stability. The stability isurad if and only if
p(R) < 1.

However, the matrice andF being essentially composed of fixed physical co-
efficients, the only adjustable parameter is the samplimgpg@d . Thus, for invariant
simulation parameters, we have studied the spectral raginlation of the matriceb
andF, according tor (figure 7).

The inverse state-space model stability zone is totallgguortist with the forward
state-space model one. For non-minimum phase systemhisriot possible to find
a sampling period which ensures forward and inverse modbilgy. Consequently,
we have chosen a sampling peribguch ap(F) < 1 to ensure the simulation model
stability and to remain faithful to the reality. Of courshistchoice is unfavorable to
the inverse state-space model stability but does not hayénélnence on the inverse

state-space neural model which remains stable.

6. Results

The goal of this section is to check the assumptions of adiajtmlity concerning
the gray-box INN model in term of robustness with respecintaigknown input from

the training base, in term of robustness with respect to tigenon the outputi.g.
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Figure 7: Spectral radius evolution accordingTta a) Forward state-space model stability zones, b) &
c) Reverse-time state-space model stability zones. Thesew&ate-space model stability zone is totally

antagonist with the forward state-space model one.

the regularizing effect), and in term of gain about the frajneffort. For that, the

semi-physical INN model has been compared to a traditiolaakibbox INN model.

6.1. Networks design

The black-box INN model is a fully connected Elman networkthe case of the
ODE model, the network is constituted by two linear neurondte recurrent layer
and one linear neuron on its output layer. For the PDE digperaodel, the recurrent
layer possesses three linear neurons. After being randimitiglized, all the synap-
tic weights and biases are left free during the whole trgnifigure 8 represents a
classical design of a two layer EIman network. We have cdlidd, the weight ma-
tricies connected to inputs amilM ; weight matrices coming from layer outputs . The
subscript indice$ and j have been used to identify the source (second index) and the

destination (first index) for the various weights. Hebpg,and b, correspond to the
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biases.

Input Recurrent layer (layer 1) Output layer (layer 2)

Figure 8: Classical design of a two layer EIman network. Wepatloe MATLAB convention for weight
matrices and biases. The activation functidnare linear. Theg operator stands for oné sample time
forward. Practically, they operator is replaced by thgr 1 operator which stands for orle sample time
delay, and the noisy observation vecigps(n) is presented in reverse-time at the input of the network to

preserve causality.

The gray-box INN model is designed starting from the presiblack-box model
and modified to obtain the inverse neural structure of figuf@BE case) or figure 6
(PDE case). For that, we have connected the input layer toutput layer, added a
delay between the two layers, and some values in the weigtibaaV, ; have been
forced to be null to delete corresponding connections. Nmarehas been added. The
remaining coefficients are left free during the whole tnadni Figure 9 represents the

gray-box network.

Input Recurrent layer (layer 1) Output layer (layer 2)

Figure 9: Semi-physical INN model design. We adopt the MATLAdhwention for weight matrices and
biases. The activation functiorfsare linear. The operator stands for orie sample time forward. Practi-
cally, theq operator is replaced by thig ! operator which stands for offesample time delay, and the noisy

observation vectoyyps(n) is presented in reverse-time at the input of the network tegrre causality.

18



6.2. Numerical simulations

In the case of the ODE model, we have chosen a damping pamraiet€.9, a
natural pulsationo, = 5rad.s1, a static gairc; = 30 and a sampling periobl = 0.05
s. Let us underline that this choice of parameters ensureshfomatrixF of the
system (6) a spectral radius lower than 1. The forward spéee model stability is
then guaranteed. For the PDE dispersion model, we have figpdtal sampling step
Ap; =5 m, a wind speed field such ag(1,n) =5 ms™?, vi(2,n) = 5 ms! and
vi(3,n) = 4m.s~1, a diffusion tensor such @ (1,n) = 1 m?.s %, dy(2,n) = 2nP.st
anddy(3,n) = 2 m?.s™%, and a chemical reaction coefficieiit= 0. For the reasons
previously exposed, we have set a sampling pefied 0.2 s, ensuring the simulation
model stability. The two INN models have been subjected ®aaning with pseudo-
experimental noisy data.

To construct the set of training, we have generated fourtsiaodom input se-
quences of lengthl = 50 samples. These signals are step functions resultingtfrem
product of an amplitude levél, by a Gaussian law of averaggand variance?. The
periodT, is adjustable and characterizes the changes of statesmBiasing the direct
knowledge-based model starting from these input signadave obtained four noisy
synthetic output signals. The averagg the varianccﬁg, and the periody, character-
ize the noise dynamic. We have fixéd = 1, je =0, 02 = 1, i = 0 and T, = 3T.
Of course,Te influences the dynamic of the input signals and thus, the minaf
the noisy synthetic output signals. We have then generategiaich input sequence a
random value foflg such as a significant variation of the output signals is lasib

The learning stops if the number of iterations reaches 40Dtbe mean squared
error (MSE) is lower than .001 (ODE case) or.005 (PDE case). The error is calcu-
lated as the difference between the target outftite desired input) and the network

outputt (the estimated input):

MSE = t(k) —T(K)]? (14)

Zl -
Mz

k=1

In order to prevent overfitting on the training data, we havamuorized all the
weight matrices obtained after each epoch with a trainiggadi We have then kept the

weights which give the best performance function. Morepsarly stopping improves
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regularization and tends to reduce noise influence, butigndéise input restoration
errors are more visible at the level of the changes of stalissdqntinuities). In the
worst casej.e. when the minimum MSE value is never reached, the total nurober
epochs at the end of the training is 1600.

During the test step (recall phase), we have studied the-gbysical contribution
in terms of generalization and regularization according tew test signal. For that,
we have generated another long random input sequence dhlsing 400 samples.
The noise variance of the corresponding noisy synthetiguiigignal is also wortbg.

To measure the noise influence, we have reproduced the psapiotocol for sev-
eral values 06%. The signal-to-noise ratio (SNR) of the correspondinglsgtit output
signals lies between plus infinity (absence of noise) andB.GBdmetimes, the back-
propagation algorithm may converge to unsatisfactoryllogaima, and may not be
able to find weights that minimize the error during the tnagnphase. This may cause
unstable network outputs and high MSE. Consequently, we blassen to repeat each
test one thousand times and to calculate the average parfioss of the two INN mod-
els. Since each test is realized with new random signals,awve hsed the normalized
mean squared error (NMSE):

MSE ,
ikl g

Here, the denominator corresponds to the unbiased varddribe desired input.

NMSE =
(15)

Moreover, we have also computed for each experiment theptge of the output

variation that is explained by each model:
fit = 100(1-”§ft|) (16)
[t—t|

Where|.|| represents the Euclidean norm dnzbrresponds to the empirical mean
of the desired input.

In the case of the second order ODE model, we have also cothffagéwo INN
models with two traditional models: the ARMAX model and thexBJenkins model.
Of course, these second order models have been designeskivadime. In order

to estimate parameters, we have applied the MATLAB funetemrmaxandbj which
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minimize a robustified quadratic prediction error critarigith the help of an iterative

search algorithm. We have followed the same protocol asiqusly except the fact

that the set of training is constructed by generating ong tandom input sequence of

lengthN = 400 samples. Obviously, the parameter estimation is fséerthe neural

network training and these models are not compared in tefteaafing effort. The test

step is realized with the same long random input sequenangfiN = 400 samples
which has been used to test the INN models. The NMSE and the tiitet data are

evaluated by using the previous equations.

6.3. Modeling Errors and Regularizing Effect

Let us remember that all the considered signals evolve iersevtime. The esti-

mated input signals obtained without noise in the ODE caseshown in figure 10.

Obviously, it deals with a particular example which has beemomly chosen among

the thousands available. Similarly, figure 11 gathers tesvith a SNR of 10 dB.

Signals

Signals

Signals

Estimated input signal with a SNR of Inf dB

— — = Inputsignal
Inverse state-space model; fit: 100%

I—\_

0 2 4 6 8 10 12 14

Time
Estimated input signal with a SNR of Inf dB

— — — Input signal
H Black-box INN model; fit: 75.21%
Gray-box INN model; fit: 85.61%

W

16 18 20

0 2 4 6 8 10 12 14

Time
Estimated input signal with a SNR of Inf dB

— — — Input signal
H Inverse ARMAX model; fit: 100%
Inverse Box-Jenkins model; fit: 100%

16 18 20

Time

16 18 20

Figure 10: Estimated input signals obtained without noigeénODE case : a) Inverse state-space model, b)

Black-box and gray-box INN models, c) Inverse ARMAX and B@alins models.
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Estimated input signal with a SNR of 10 dB
ar L1 Th|
- - —Inpul signal
Inverse state-space model; fit: -351.47%
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Signals
)

Time
Estimated input signal with a SNR of 10 dB

— — — Input signal

2k Black—box INN model; fit: 44.26%
Gray-box INN model; fit: 70.19%

Signals

Time
Estimated input signal with a SNR of 10 dB

— — — Inputsignal

2k Inverse ARMAX model; fit: 52.39%
Inverse Box-Jenkins model; fit: 68.01%

Signals

Figure 11: Estimated input signals obtained with a SNR of 10rdi®e ODE case : a) Inverse state-space
model, b) Black-box and gray-box INN models, c) Inverse ARMAXI&8ox-Jenkins models.

Without noise in the training and test sequences, the inv&ete-space model pro-
vides an excellent fit to the data of 100%. By the same tokenjrverse ARMAX
and Box-Jenkins models also supply an accurate input eg&or(fit: 100%). The
semi-physical INN model presents a nearly perfect inputaigestoration, except for
discontinuous zones (fit: 851%). The model does not exactly reproduce the changes
of states. The estimated input signal obtained with thelkiakaxx INN model is a bit
less precise than the gray-box one (fit:. ZB%). With a SNR of 10 dB, the inverse
state-space model is largely penalized. Indeed, the neiamplified and the restora-
tion is incorrect. The black-box INN model also suffers frowisy perturbation and
presents a bad fit to the data of.28% characterized by a relatively approximative
input restoration. Similarly, the inverse ARMAX model prdes a naughty fit to the
data of 5239%. For the inverse Box-Jenkins model, restoration ememsain weak
and suitable (fit: 681%), but there is a slightly noise influence on the estimatpdt

dynamic. It finishes in second position just behind the drayd{NN model which sup-
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plies the best fit to the data (fit: 7M%). For the gray-box model, the noise influence is
less visible than for the other models. Table 1 presentdtsasiithe average evaluation
of the model fit for a signal-to-noise ratio which lies betwegsus infinity and 10 dB

in the ODE case.

10dB | 20dB | 30dB | 40dB | ~ dB

Inverse state-space model fit <0% | <0% | 61% | 88% | 100%
Black-box INN model fit 45% | 64% | 76% | 78% | 81%
Gray-box INN model fit 71% | 79% | 81% | 82% | 86%
Inverse ARMAX model fit 51% | 66% | 78% | 88% | 100%
Inverse Box-Jenkins model fit 69% | 78% | 84% | 90% | 100%

Table 1: Results of the average evaluation of the model fit doogto the SNR in the ODE case.

Figure 12 presents the estimated input signals obtaindtbutitnoise in the PDE
case. Estimated input signals with a SNR of 10 dB are showgumeil3.

Estimated input signal with a SNR of Inf dB

— — = Input signal
Inverse state-space model

Estimated input signals with a SNR of Inf dB

= = = Input signal
Black-box INN model; fit: 69.68%
Gray-box INN model; fit: 84.49%

Signals

Figure 12: Estimated input signals obtained without noighénPDE case : a) Inverse state-space model, b)

Black-box and gray-box INN models.

Let us bear in mind that in this case, only the forward schetalgilgy is ensured.

Thus without surprise, the inverse state-space model lyuddkerges with and without
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Estimated input signal with a SNR of 10 dB

— — — Input signal
Inverse state-space model

Signals
o

0 10 20 30 40 50 60 70 80
Time

Estimated input signals with a SNR of 10 dB

= = = Input signal
Black-box INN model; fit: 52.78%
Gray-box INN model; fit: 68.20%

Signals

Figure 13: Estimated input signals obtained with a SNR of 10rdBie PDE case : a) Inverse state-space

model, b) Black-box and gray-box INN models.

noise. On the other hand, gray-box and black-box INN mod#élpsovide a close
fit to the data and supply results which are approximatelylairor slightly less good
than those obtained in the ODE case. Table 2 presents reftlits average evaluation
of the model fit for a signal-to-noise ratio which lies betwegrus infinity and 10 dB

in the PDE case.

10dB | 20dB | 30dB | 40dB | «» dB
Black-box INN model fit| 51% | 59% | 61% | 66% | 73%
Gray-box INN model fit | 69% | 71% | 76% | 78% | 84%

Table 2: Results of the average evaluation of the model fit daogito the SNR in the PDE case.

Figure 14 gathers the average NMSE of the inverse modelsdingao the SNR

in the case of the second order ODE model.

Without noise in training and test sequences, the gray-bix inodel provides

better average performances (NMSEO0.02) than the black-box INN model which

is slightly less effective (NMSE- 0.04). Of course, the inverse state-space model
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Average NMSE according to the SNR
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Figure 14: Regularizing effect of the gray-box INN model: mage NMSE according to the SNR in the ODE

case.

provides accurate results. For the inverse ARMAX and Baxiies models, the aver-
age NMSE value tends to be null which means that parameteestieen perfectly
estimated. When the noise grows, the inverse state-spacel risothrgely penal-
ized, whereas the two INN models are moderately sensitive régularizing effect
is real. The inverse ARMAX and Box-Jenkins models supplylibst performances
until about 30 dB. In high noise situation, the black-box Ixibdel and the inverse
ARMAX model present approximately the same performancégreas the gray-box
INN model outmatches the inverse Box-Jenkins model andlgupp best results in
term of robustness with respect to the noise.

As we have previously exposed, the gray-box INN model isaaad by training the
weights of a neural network whose structure is constraiygtiddiscrete reverse-time
state-space equations. These synaptic weights are atljustey the backpropagation
(gradient descent) iterative procedure whose stoppingrion is defined by a speci-
fied error threshold and a predetermined maximum numbeeddtibns. Moreover,
regularization by early stopping is also used to avoid thk of overfitting. Conse-

quently, the weights are determined before they have fudiywerged and differ from
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the coefficients of the reverse-time state-space equatiomgnsure the regularization
objective. Whemg =0, it is obvious to not accurately retrieve the input sigriats
the coefficients are slightly different. The average NMS#&n nonzero. On the other
hand, in high noise situation, the gray-box INN model is nmagularizing than other
models. Indeed, the gray-box INN model is more stable afténihg than the inverse
state-space model, which is conform to our expectationss ddnsists in increasing
the sampling period (see figure 7) or decreasing the cutedfuencies of the inverse
model. These cutoff frequencies are then lower than thotgraa by identifying the
ARMAX or Box-Jenkins models, which look for a perfect fit. ™eetwo conventional
models are then more sensitive to the measurement noisthingray-box INN model.

For the PDE dispersion model, the evolution of the NMSE atiogrto the SNR is
represented by figure 15.

Average NMSE according to the SNR

—#— Black-box INN model
—=#— Gray-box INN model

0.251
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Average NMSE
o
=
@

T

o
[

0 I I I i
Inf 40 30 20 10
SNRin dB

Figure 15: Regularizing effect of the gray-box INN model: rgee NMSE according to the SNR in the PDE

case.

The semi-physical INN model again provides best averag®meances without
noise (NMSE~ 0.03). Indeed, the black-box neural model is slightly lesgaffe
(NMSE ~ 0.07). Since the inverse state-space model fastly divergesionnot com-

pare its average performance. When the noise grows, the thoniNdels are mod-
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erately sensitive due to the regularizing effect. In additihaving chosen a sampling
periodT such ap(F) < 1 does not interfere with the INN model. In high noise situa-

tion, the two inverse neural models keep the same tendencies

6.4. Learning Effort

We have compared the product of the NMSE by the number of epbehthe final
error amplified by the number of iterations of the trainingipd. The results obtained
with the ODE model are illustrated figure 16, whereas figurgdtfers those obtained

in the case of the PDE dispersion model.

Average learning effort according to the SNR
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Figure 16: Average learning effort according to the SNR Bmm@DE case. The learning effort is defined as
the product of the NMSE by the number of epodtes, the final error amplified by the number of iterations

of the training phase.

We note that the gray-box INN model is more effective in teffing@in about the
training effort in both slight and high noise situation thée black-box INN model.
Physical knowledge favors the convergence of the weightthabthe behavior ap-
proaches the data. The black-box INN model is largely peedlbecause of its lesser

capacity of regularization.
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Average learning effort according to the SNR
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Figure 17: Average learning effort according to the SNR e BDE case. The learning effort is defined as
the product of the NMSE by the number of epodtes, the final error amplified by the number of iterations

of the training phase.

7. Conclusion

We have proposed an approach to realize an inverse dynandiel mesulting from
the fusion of statistical training and deterministic maagl! We have chosen to carry
out this inverse semi-physical model starting from a reznirneural network to ex-
ploit typical properties of neural algorithms. Indeed, etmental results have shown
that neural learning plays the part of statistical regreasal regularization operator.
Moreover, input restoration errors are weak. In order tduata the semi-physical
contribution, the gray-box INN model has been compared wittaditional black-box
INN model, with an inverse ARMAX model and with an inverse Béenkins model.
The tests realized on a dynamic system characterized by &hadD on a basic mesh
of an atmospheric pollutant dispersion model governed bip& Rave reveal that the
semi-physical INN model is more parsimonious than the blaa@k INN model and
presents better performances in term of robustness witlecéo the noise than the in-
verse ARMAX and Box-Jenkins models. Besides, gray-box ringl@rovides better

performances in term of training effort than black-box modgdue to the knowledge
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introduced by the deterministic model.

Appendix A. Reverse-time state-space equations system

By considering the relation (6), we have obtained:

X(n+1)—x(n)
{T = Ax(n)+Bu(n) A1)

y(n) = Cx(n)+b(n)

Let us split the matriXA of (A.1) in two parts and let us write:

x(n+1)—x(n) | A Br_1
-1 = A +[ B, ]u(n) (A2)
y(n) —b(n) = Cx(n)

WhereA, (respectivelyBy) is constituted by thé first lines of A (respectivelyB),
andAy (respectivelyBy) is constituted by th& last lines ofA (respectivelyB).

By settingx(n) = { x1(n)  xe(n) - x(n) }T _ [ X;_:(L:;) ] in (A.2), we
X1

have obtained:

A | - i[m(nﬂ)]_i[m(n)]_[a_l]u(m
A x(n+1) () B
(A.3)
X = Iy b (A4)

By remarking tha#\, _1x(n) = x;_1(n) and separating (A.3), we have obtained:

X-1(n) = %Xr—l(n“rl)—%xr—l(n) (A.5)
Ax() = Pra(n1) - o) - Zuln) (A.6)

By concatening (A.4) and (A.5), we have expressed:
am | 1| Tm-bm] | 1| o0 ~
X1 (n) T x=i(n+1) T %=(n)
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: Tly(nm —b(m] | , .
By setting=;—1 = in (A.7), we have written more concisely:
X_1(n+1)
1 1 0
x(n) = T Br1 T (A.8)
x—1(n)

By using a recursive decomposition of (A.8), we have obtiine

0
1 1
S S TSI
T T x=2(n)
And we have finally expressed:
_ o -
1 1
xn) = —Ba-=1] 1 1 0 (A.9)
T T fgr_z T
1 1 0
B -=
I T T xz(n) |

1
r—1 1 i 0 *?
X = —;(—T) [)(r_i(n+1)]+ T v -bo

We have thus carried out the reverse-time state-spaceieqat10), where the

state-space matric& andG, depend on the sampling peridd

X() = Fx(n+1)+G [yn) —b(n)] (A.10)

The lower triangular matrik of sizedim(FR) =r x r and the matrixG, of size
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dim(G) =r x 1 are worth:

2 0 0 [ 1 |
1 0 1
T T
F| = : ., 7G| - :
1\"? 1 (1) i
- (-7) LA I S VA
In addition, the relation (A.6) allows us to write:
- & _& _a
U = goxan 1) - A - o)
By simplifying, we have obtained (A.11):
ar 3 1
— o .- 0 X = =
u(n) To ]x(n+ 1 o [A1+ { 0 0 = ” x(n)

(A.11)

By incorporating relation (A.10) in (A.11), we have desidrie reverse-time state-

space equation (A.12), where the state-space matrgesd|l; also depend on the

sampling period :

u(n) = Hix(n+1)+ 1 [y(n) - b(n) (A12)
The matrixH, of sizedim(H,) = 1 x r is expressed by (A.13):
ar ao ar_2 1
H = |0 ... 0 =X D0 F2 - aT-a) |E
| { Tcl}—&-[cl o Tcl(ar 1T ar):| |
(A.13)
The matrixl| of sizedim(l;) = 1 x 1, is given by (A.14):
. = _
W= [q 2 et m}a (A1)

With the help of the equations (A.10) and (A.12), we have tbasied out the

reverse-time state-space equation system which corrdsgonthe canonical form (3).
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