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Abstract

This paper deals with the design methodology of an Inverse Neural Network (INN)

model. The basic idea is to carry out a semi-physical model gathering two types of in-

formation: thea priori knowledge of the deterministic rules which govern the studied

system and the observation of the actual conduct of this system obtained from exper-

imental data. This hybrid model is elaborated by being inspired by the mechanisms

of a neuromimetic network whose structure is constrained bythe discrete reverse-time

state-space equations. In order to validate the approach, some tests are performed on

two dynamic models. The first suggested model is a dynamic system characterized

by an unspecifiedr-order Ordinary Differential Equation (ODE). The second one con-

cerns in particular the mass balance equation for a dispersion phenomenon governed by

a Partial Differential Equation (PDE) discretized on a basic mesh. The performances

are numerically analyzed in terms of generalization, regularization and training effort.

Keywords: Semi-physical modeling, inverse problem, neural network,model fusion

1. Introduction

Many applications require data inversion. Inverse problems or signal restoration are

solved by the inversion of a forward representation which models the actual conduct

of the studied system. There are several techniques that canbe used to realize this in-

version such as variational method, criterion optimization, inverse filtering, analytical

solution from forward model,etc.. All these different methods depend upon a mathe-
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matical description of the real behavior of the system. According to how mucha priori

information is available, it is possible to carry out eithera knowledge-based (white-

box) model based on the physical, chemical, biological or sociological principles, or

an empirical (black-box) model based on thea priori choice of a well-suited analyti-

cal function followed by a data identification procedure. Ofcourse, the quality of the

restoration by data inversion depends on the observation noise, on the model accuracy,

and on the inversion method. However, it is usually difficultto find an analytical so-

lution when the system is quite complex, often non-linear and time-dependent. Such

complex or imprecise system can be modeled by combining knowledge on the physical

laws and data measured during system operation. This model is named semi-physical

or gray-box concept. Although this approach is usually reserved for forward modeling,

the idea consists in carrying out a semi-physical inverse neural network model gather-

ing physical knowledge of an inverse relaxed mechanistic model and data accumulated

during a statistical learning phase. Thus, a robust INN model is ensured usinga priori

knowledge on the physical laws which govern the system. Withthe help of this INN

model, we propose a technique having not only a faculty of learning and adaptabil-

ity, but also a good efficiency relative to inverse problem difficulties. In order to test

the method, we have studied the deconvolution problem by examining a linear model

defined by an ODE and a linear spatio-temporal model governedby a PDE.

Establishing a robust white-box model within the meaning ofexhaustiveness com-

pared to the variations of context is often tricky to expressfor several reasons. One

needs a perfect expertise to enumerate all the physical lawsand influential variables

brought into play. Besides, an exhaustive spatial and temporal system description is

also required. However, even if the previous stage is completed, some parameters may

not be measured or precisely known. It is then advisable to estimate these parameters

starting from observable data. Once the physical model has been fixed, it is endowed

with a good robustness.

A black-box model is a behavior model particularly well-suited for complex system

representation (Sjöberg et al., 1995), but which does not take into account anya priori

information. Many standard process forms which present system’s input-output rela-

tion starting from experimental data can be considered as black-box models: ARMA,
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ARMAX (Ljung, 1999), NARMAX, Box-Jenkins (Box et al., 1994), NOE (Nonlin-

ear Output Error),etc.. Another approach based on classical neural networks does not

specify a mathematical form but rather a neural design whichis more suited to the sys-

tem dynamics. One of the main advantages of neural networks is their great adaptabil-

ity to static, dynamic, linear or nonlinear functions, thanks to the universal approxima-

tion property (Sontag, 1997). Moreover, neural networks have been successfully used

to nonlinear dynamic systems modeling. The form of usual nonlinear activation func-

tions (e.g. sigmoid activation functions) results in parsimonious estimation, i.e. weak

residual error with a minimum number of parameters (Barron,1993). Nevertheless,

black-box models are often less parsimonious than knowledge-based ones. Indeed,

the mathematical functions used to describe white-box models are more accurate and

minimize output errors in absence of noise.

Between the two models previously exposed, the gray-box model has emerged as an

important tool during the past two decades. This approach has been termed gray-box

modeling (Duarte et al., 2004; Beghi et al., 2007), hybrid modeling (Zorzetto et al.,

2000) or semi-physical modeling (Lindskog & Ljung, 1995) inthe literature. A pa-

per by Leifsson et al. (2008) distinguishes two types of approach: serial and parallel

gray-box modeling. These two patterns differ in the manner in which they combine

black-box and white-box models. Serial gray-box modeling makes a numerical sepa-

ration between the known and the unknown physical part of thesystem (Nelles, 2001),

whereas parallel gray-box modeling introduces a kind of competition between black-

box and white-box models. Generally, black-box model corrects the predicted outputs

of the white-box model. Between these two methods, there is another approach which

is much more closer to the notion of model fusion. This approach consists in modifying

the design of a recurrent neural network (Oussar & Dreyfus, 2001; Ploix & Dreyfus,

1997). The idea is to design a recurrent neural network usingengineer’s knowledge

on the fundamental laws which govern the system. In this case, a priori information

is based on the network design. One or more degrees of freedom(e.g. additional

neurons) may also be added to help the network successfully adapt to the ignored

parts of the system (Oussar & Dreyfus, 2001). Process measurements are then used

to learn the network. The recall phase then supplies predicted output values in real-
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time (Krasnopolsky & Fox-Rabinovitz, 2006). Other approaches have been proposed

by Cherkassky et al. (2006). They consist in carrying out theemulation of physically-

based process models using neural network training starting from white-box model

simulations. Semi-physical or gray-box modeling has oftenbeen used in the case of

forward models. This type of model fulfills at the same time precision requirements,

robustness and parsimony of the knowledge-based models, and also possesses the fac-

ulty of training and adaptability. Our idea consist in beinginspired by such a concept

in order to apply it in the case of inverse problems.

2. Inverse neural modeling

2.1. Principle

The objective of many applications such as inverse problemsin meteorology, to-

mography, software sensor, deconvolution or open-loop control system is to realize the

inversion of a physical model. It generally consists in estimating non-measurable pa-

rameters or inputs starting from the measurable observations anda priori information

about the system. There are several numerical ways to deal with this problem such as

state-space transformations (e.g.Laplace, Fourier,etc.), forward state-space model dis-

cretization followed by a matrix inversion, or the definition of a performance function

to minimize (Groetsch, 1993; Tarantola, 1987).

Our proposed additional objective is to realize the inversemodel training. Some

ideas for forward and inverse model training in physical measurement applications

have been proposed by Krasnopolsky & Schillerb (2003). Learning phase consists in

weight estimation by backpropagation. The coefficients arethen adjusted to move the

network outputs closer to the desired inputs (figure 1).

In recall phase, the network estimates the input sequences by supposing that the

real model does not evolve any more after the last training (figure 2). Implicitly, this

method looks like the error propagation through the adjointnetwork.

2.2. Regularization

Inverse problems are often ill-posed in the Hadamard sense (Groetsch, 1993). They

can present an absence of solution, multiple solutions, or an unstable solution. To
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Figure 1: Training phase of the INN model. A (noisy) syntheticoutput signal is simulated starting from

the input signal, and introduced in the neural network input. The coefficients are then adjusted to move the

network outputs closer to the desired inputs.

Figure 2: Recall phase of the INN model. The network estimates the input sequences by supposing that the

real model does not evolve any more after the last training.

transform ill-posed problems into well-conditioned ones,it is necessary to adda priori

knowledge on the system before inversion. There are two approaches which differ ac-

cording to the type ofa priori knowledge introduced. The first procedure employs reg-

ularization methods based on deterministic information (Thikhonov & Arsenin, 1977).

The second strategy considers techniques based on probabilistic information such as

Bayesian methods (Marroquin et al., 1987; Demoment, 1989) or maximum entropy

methods (Mohammad-Djafari et al., 2002).

But, can we discuss the regularization problem in the case ofthe INN model ? Let

us underline that a neural network always provides an output, regardless of the ap-

propriateness of the input, due to its autoassociative memory property. That answers

the two main difficulties of ill-posed inverse problems, even if the suggested solution

can prove to be false. In addition, regularization during training phase improves gen-

eralization with respect to the set of examples. It avoids the problem of overfitting

which results in an instability. It is also remarkable that early stopping procedure,i.e.

stopping the gradient descent before learning process reaches the optimal solution on

the training set, supplies solutions with smaller generalization error. Besides, some
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Bayesian techniques have been developed to adjust the regularization coefficients of

the performance function (MacKay, 1992). This confirms our opinion to use the neural

network like an inverse model.

3. Design of a semi-physical inverse neural network model

The construction of a gray-box forward neural network modelis generally per-

formed in three steps:

Step 1: Discrete-time neural network design from the knowledge-based model;

Step 2: Training of the semi-physical forward neural network modelfrom knowledge-

based simulations in order to obtain appropriate initial values;

Step 3: Training of the semi-physical neural model from experimental data.

The knowledge-based model is usually represented in the form of a set of cou-

pled, differential, partial differential, algebraic and sometimes nonlinear equations.

The starting model can be described by the standard state-space form:





dx
dt

= f [x(t),u(t)]

y(t) = g[x(t)]+b(t)
(1)

Wherex is the state variable vector,y is the output vector,u is the control input

vector andb corresponds to the noise vector. The vector functionsf andg are known,

but they may also be partially known or inaccurate. In black-box neural modeling,

functions f andg are approximated during the training step from experimental data. In

gray-box neural modeling, those functions are described bytheir analytical form and

implemented as neural models with some fixed parameters. Other unknown parameters

are computed during the training step from experimental data.

The discretized equations of the neural model can be writtenunder the canonical

form (2), whereϕNN corresponds to the transition vector function,ΨNN represents the

output vector function andb(n) is the output noise at time instantn. Since the output

noise only appears in the observation equation, it does not have any influence on system
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dynamics.




x(n+1) = ϕNN [x(n),u(n)]

y(n) = ψNN [x(n)]+b(n)
(2)

Figure 3 represents the graphical form of the forward neuralstate-space model.

Figure 3: Forward neural state-space model. Theq−1 operator stands for oneT sample time delay.

Similarly, we have carried out the semi-physical INN model by adding an inversion

step before the training. The reverse-time equation designhas consisted in the expres-

sion ofu(n) according to the noisy observation vectoryobs(n). Then, the state variables

at time instantn have been extracted to obtain a new system, according to the state

variables at time instantn+1.

Consequently, the INN model can be described by the canonical form (3), where

ϕNN
I corresponds to the reverse-time transition vector function andΨNN

I represents the

restoring vector function of the input.




x(n) = ϕNN
I [x(n+1),yobs(n)]

u(n) = ψNN
I [x(n+1),yobs(n)]

(3)

Figure 4 represents the graphical form of the inverse neuralstate-space model.

4. Inversion of a semi-physical ODE model

In the first part of this section, we obtain the canonical formof the inverse model

which refers to (3) in the case of a dynamic system characterized by ar-order ODE.

In the second part, we present a study concerning an illustrative second order example.
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Figure 4: Inverse neural state-space model. The output vector u(n) of this inverse model corresponds to the

system input. Theq operator stands for oneT sample time forward. Practically, theq operator is replaced

by theq−1 operator which stands for oneT sample time delay, and the noisy observation vectoryobs(n) is

presented in reverse-time at the input of the network to preserve causality.

Some promising results about semi-physical ODE models havealready been developed

by Bourgois et al. (2007b).

4.1. General case study: an r-order ODE without input derivative

Let us consider a continuous, mono input and mono output system governed by an

ordinary differential equation:

ar
dry
dtr

+ar−1
dr−1y
dtr−1 + · · · +a1

dy
dt

+a0y = c1u(t) (4)

The corresponding continuous state-space form is given by:




dx(t)
dt

= Ax(t)+Bu(t)

y(t) = Cx(t)+b(t)
(5)

And the state-space matricesA, B andC are worth:

A = Comp(P), BT =

[
0 · · · 0

c1

ar

]
, C =

[
1 0 · · · 0

]

Here,Comp(P) is the companion matrix of the monic polynomial obtained starting

from (4) and defined byP(q) =
a0

ar
+

a1

ar
q+ · · ·+

ar−1

ar
qr−1 + qr . By choosing the

explicit Euler method and supposing the sampling periodT such ast = nT, the equation

(5) leads to the discrete-time state-space form (6):




x(n+1)−x(n)
T

= Ax(n)+Bu(n)

y(n) = Cx(n)+b(n)
⇐⇒





x(n+1) = Fx(n)+Gu(n)

y(n) = Hx(n)+b(n)

(6)
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The new state-space matrices are expressed byF = TA+ Ir , G= TB andH = C.

Here, Ir is the identity matrix withdim(Ir) = dim(F) = r × r, dim(G) = r × 1 and

dim(H) = 1× r.

By gathering the equations (A.10) and (A.12) of the demonstration of the Appendix

A, we have carried out the reverse-time state-space equation system (7) which fits to

the canonical form (3):




x(n) = FI x(n+1)+GI [y(n)−b(n)]

u(n) = HI x(n+1)+ II [y(n)−b(n)]
(7)

Where the reverse-time state-space matrices are worth:

FI =




0 0 · · · 0
1
T

0

...
...

−

(
−

1
T

)r−1 1
T

0




,GI =




1

−
1
T
...

(
−

1
T

)r−1




HI =

[
0 · · · 0

ar

Tc1

]
+

[
a0

c1
· · ·

ar−2

c1

1
Tc1

(ar−1T −ar)

]
FI

II =

[
a0

c1
· · ·

ar−2

c1

1
Tc1

(ar−1T −ar)

]
GI

4.2. Study of a second order ODE model

We have studied the deconvolution problem for a linear modelgoverned by an

ordinary differential equation in order to test the method.Let us suppose a system

represented by the differential equation:

d2y
dt2

+2ξωn
dy
dt

+ω2
ny = c1u(t) (8)

This second order ordinary differential equation may be either the representation of

a mechanical system (e.g. mass, spring, shock absorber,etc.) or the representation of

an electrical one (e.g.RLC filter) excited by a time-dependent inputu(t). The damping

parameterξ, the natural pulsationωn, and the static gainc1 are nota priori known in

this physical model. By referring to the relation (5), the model can be represented by
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the following state-space system:




dx(t)
dt

=


 0 1

−ω2
n −2ξωn


x(t)+


 0

c1


u(t)

y(t) =
[

1 0
]

x(t)+b(t)

(9)

The discrete-time state-space matrices F, G and H of the relation (6) are expressed

by:

F =


 1 T

−ω2
nT 1−2ξωnT


 , G =


 0

Tc1


 , H =

[
1 0

]

By referring to the system (7), we have finally obtained the inverse state-space

model:




x(n) =


 0 0

1
T

0


x(n+1)+


 1

−
1
T


 [y(n)−b(n)]

u(n) =
[

α β
]

x(n+1)+γ[y(n)−b(n)]

(10)

Where the parametersα, β andγ are worth:

α =
2ξωnT −1

T2c1
, β =

1
Tc1

, γ =
(ωnT)2+(1−2ξωnT)

c1T2

Of course, this non-causal system can be implemented only ifthe state variables

at time instantn+1 are known before the calculation of state variables at timeinstant

n. Inverse problems are more familiar with this concept. It isthe case during the

input sequence restoration at the initial time instant. In the reconstructed input, the

observation noiseb(n) now appears as a correlated noise and is also amplified by the

realγ. Let us underline that the reverse-time system remains stable for anyT since the

eigenvalues of the state-space matrix are all null for this example. The INN model of

the figure 5 is carried out starting from the relation (10). Here, the activation functions

f are all linear. Besides, even if the sampling periodT is generally known, the physical

parametersc1, ξ andωn may be imprecise, or completely unknown. The degrees of

freedom may relate to these coefficients.
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Figure 5: Second order INN model representation. The output vectoru(n) of this inverse model corresponds

to the system input. The design fits into the reverse-time state-space equation system. The neural network

is not fully connected and the activation functionsf are linear. Theq operator stands for oneT sample time

forward. Practically, theq operator is replaced by theq−1 operator which stands for oneT sample time delay,

and the noisy observation vectoryobs(n) is presented in reverse-time at the input of the network to preserve

causality.

5. Study of a Dispersion Model

In this section we test the previous method on an atmosphericpollutant dispersion

model governed by a partial differential equation in order to fulfill the pollution source

deconvolution and the receptor concentration estimation.

5.1. Atmospheric Pollutant Dispersion Modeling

We develop and increase the results we have obtained in Bourgois et al. (2007a).

Let us suppose a system represented by the following PDE (Turner, 1994):

∂x(−→p , t)
∂t

= D(−→p , t)

(
∂2x(−→p , t)

∂−→p 2

)
−
−→
V (−→p , t)

(
∂x(−→p , t)

∂−→p

)

− Kx(−→p , t)+Γ(x(−→p , t))+
ns

∑
i=1

u(si , t)δ(−→p −−→si )

(11)

• x(−→p , t) is the concentration (ing.m−3) at a receptor location−→p = (p1, p2, p3)

at time t in the referential(O,
−→
i ,

−→
j ,
−→
k ). It comes from the air dispersion of
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ns pollutant sources of intensityu(si , t) at the position−→si = (s(i,1),s(i,2),s(i,3)),

inside a bounded open domainΩ of dimensionl ×L×H;

• D is the diffusion tensor (inm2.s−1) defined by its diagonal elementsdi(
−→p , t);

•
−→
V (−→p , t) = (v1(

−→p , t),v2(
−→p , t),v3(

−→p , t))T is the wind speed field (inm.s−1), re-

sponsible for the 3D transport;

• K is the reaction coefficient of a first order chemical transformation;

• Γ(x) appears when the chemical species presents nonlinear reactions;

• δ represents the Dirac function.

The observatory is configured by a network ofnc sensors at the positions−→ci =

(c(i,1),c(i,2),c(i,3)). To simplify the presentation, we have chosen to present themethod

in the one-dimensional case. By projecting onO
−→
i , choosing the explicit Euler method

and supposing the sampling periodT such ast = nT and the spatial sampling step∆p1

such asp1 = k∆p1, we have obtained the recurrent equation (12):

x(k,n+1) = m1(k,n)x(k+1,n)+m2(k,n)x(k,n)+m3(k,n)x(k−1,n)

+ TΓ(x(k,n))+T
ns

∑
i=1

u(si ,n)δ(k−s(i,1))
(12)

Where the parametersm1(k,n), m2(k,n) andm3(k,n) are worth:




m1(k,n) =
Td1(k,n)
(∆p1)2 −

(
1−sgn(v1(k,n))

2

)(
Tv1(k,n)

∆p1

)

m2(k,n) = 1−KT −sgn(v1(k,n))

(
Tv1(k,n)

∆p1

)
−

2Td1(k,n)
(∆p1)2

m3(k,n) =
Td1(k,n)
(∆p1)2 +

(
1+sgn(v1(k,n))

2

)
Tv1(k,n)

∆p1

Here,sgncorresponds to the sign function. The equation (12) characterizes the

deconvolution mask and presents a linear part according to the coefficientsm1(k,n),

m2(k,n) andm3(k,n). By supposingM =

⌊
l

∆p1

⌋
+1 meshes on one dimension,x(n) =

12



[
x(1,n) · · · x(M,n)

]T
and u(n) =

[
u(s1,n) · · · u(sns,n)

]T
, we have ob-

tained the forward state-space equation (13):

x(n+1) = Fx(n)+Gu(n)+TΓ(x(n)) (13)

The tridiagonal matrixF of sizedim(F) = M×M takes the form:

F =




m2(1,n) m1(1,n) 0 · · · 0

m3(2,n) m2(2,n) m1(2,n)
...

0
... 0

... m1(M−1,n)

0 · · · 0 m3(M,n) m2(M,n)




The matrixG of sizedim(G) = M×ns is worth:

G = T




δ(1−s(1,1)) δ(1−s(2,1)) · · · δ(1−s(ns,1))

δ(2−s(1,1)) δ(2−s(2,1))
...

.. .

δ(M−s(1,1)) δ(M−s(ns,1))




Let y(n) =
[

y(1,n) · · · y(nc,n)
]T

and b(n) =
[

b(1,n) · · · b(nc,n)
]T

.

In equation (6) characterizing the observations, the placing matrixH of thenc sensors

of sizedim(H) = nc×M is expressed by:

H =




δ(1−c(1,1)) δ(2−c(1,1)) · · · δ(M−c(1,1))

δ(1−c(2,1)) δ(2−c(2,1))
...

. ..

δ(1−c(nc,1)) δ(M−c(nc,1))




The termb(i,n) = bmod(i,n) + bmes(i,n) is a random vector, Gaussian centered

b(i,n) ∼ N (0,σ2), of unknown varianceσ2, modeling the general uncertainty of the

observations. It groups together model errorsbmod(i,n) (phenomenon and wind fields

uncertainty) and measurement uncertaintybmes(i,n) resulting from sensors or measure-

ment environment.

13



5.2. Study Assumptions

We have considered a basic mesh to reproduce, constituted bythree nodes or neu-

rons. We have supposed there is only one source of flowu(n) in this mesh, at the level

of the central node. A sensor is positioned at the level of a lateral node. Wind speed is

supposed to be constant in time, and the term of nonlinearityΓ(y) is considered to be

insignificant. This choice has been done in order to confirm the method in a linear case.

Only linear case will be considered in this study. For this basic mesh, the matricesF ,

G andH are worth:

F =




m2(1,n) m1(1,n) 0

m3(2,n) m2(2,n) m1(2,n)

0 m3(3,n) m2(3,n)


 , G =




0

T

0


 , H =




0

0

1




T

The reverse-time equation design has consisted in the expression of the flowu(n)

according to the sensor observation. Then, the state variables at timen have been

extracted to obtain a new system, according to the state variables at timen+ 1. We

have thus carried out the reverse-time state-space equation system (7) where the inverse

state-space matrices are expressed by:

FI =




1
m2(1,n)

0 −
m1(1,n)

m2(1,n)m3(3,n)

0 0
1

m3(3,n)

0 0 0



, HI =




−
m3(2,n)

Tm2(1,n)
1
T
ζ




T

GI =

[
m1(1,n)m2(3,n)
m2(1,n)m3(3,n)

−
m2(3,n)
m3(3,n)

1

]T

, II =
η−κ−ν

Tm2(1,n)m3(3,n)

The parametersζ, η, κ andν are worth:

ζ =
m1(1,n)m3(2,n)−m2(2,n)m2(1,n)

Tm2(1,n)m3(3,n)
, κ = m1(2,n)m2(1,n)m3(3,n)

η = m2(1,n)m2(2,n)m2(3,n), ν = m1(1,n)m2(3,n)m3(2,n)

The INN model is then carried out starting from the previous reverse-time state-

space equation system (figure 6). But, even if previous results provide accurate coef-

ficients, we do not need them to design the shape of the INN model. One only needs
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to know the structure,i.e. the location of non-zero values. Indeed, the non-zero coef-

ficients define the remaining connections symbolized by arrows in figure 6. The cor-

responding weights (degrees of freedom) are then estimatedduring the training. Here,

the activation functionsf are linear. However, neural networks have been successfully

used to nonlinear dynamic systems modeling. Indeed, the form of the usual nonlinear

activation functions (e.g. sigmoid activation functions) results in more parsimonious

approximation,i.e. the same residual error with less number of parameters (Barron,

1993).

Figure 6: INN model representation of a basic mesh of the discrete-time dispersion model where wind

and dispersion parameters remain constant. The output vectoru(n) of this inverse model corresponds to

the system input. The design fits into the reverse-time state-space equation system. The neural network is

not fully connected and the activation functionsf are linear. Theq operator stands for oneT sample time

forward. Practically, theq operator is replaced by theq−1 operator which stands for oneT sample time delay,

and the noisy observation vectoryobs(n) is presented in reverse-time at the input of the network to preserve

causality.

5.3. Study of Causality and Stability

The problem of causality have been raised at two levels:

• During the error calculation associated with each trainingexample and during

the recall phase, we have truncated all the sequences by deleting ther −1 first
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samples because of the unknown initial conditions (r being the system order);

• During numerical simulations, the simulated data have beenrearranged before

the training to obtain reverse-time sequences (the first element has become the

last one,etc). Theq operator has assumed the role ofq−1 operator which stands

for oneT sample time delay to ensure causality is not violated.

This study have led us to treat stability conditions in two times:

• During the training phase, data are simulated starting fromthe forward state-

space model. It has been necessary to check the stability of the simulation model.

The stability is ensured if and only if the spectral radiusρ(F)< 1;

• On the other hand, it has been advisable to know the behavior of the inverse

state-space model in term of stability. The stability is ensured if and only if

ρ(FI )< 1.

However, the matricesF andFI being essentially composed of fixed physical co-

efficients, the only adjustable parameter is the sampling period T. Thus, for invariant

simulation parameters, we have studied the spectral radiusevolution of the matricesF

andFI according toT (figure 7).

The inverse state-space model stability zone is totally antagonist with the forward

state-space model one. For non-minimum phase system, it is then not possible to find

a sampling period which ensures forward and inverse model stability. Consequently,

we have chosen a sampling periodT such asρ(F)< 1 to ensure the simulation model

stability and to remain faithful to the reality. Of course, this choice is unfavorable to

the inverse state-space model stability but does not have any influence on the inverse

state-space neural model which remains stable.

6. Results

The goal of this section is to check the assumptions of awaited quality concerning

the gray-box INN model in term of robustness with respect to an unknown input from

the training base, in term of robustness with respect to the noise on the output (i.e.
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Figure 7: Spectral radius evolution according toT : a) Forward state-space model stability zones, b) &

c) Reverse-time state-space model stability zones. The inverse state-space model stability zone is totally

antagonist with the forward state-space model one.

the regularizing effect), and in term of gain about the training effort. For that, the

semi-physical INN model has been compared to a traditional black-box INN model.

6.1. Networks design

The black-box INN model is a fully connected Elman network. In the case of the

ODE model, the network is constituted by two linear neurons on its recurrent layer

and one linear neuron on its output layer. For the PDE dispersion model, the recurrent

layer possesses three linear neurons. After being randomlyinitialized, all the synap-

tic weights and biases are left free during the whole training. Figure 8 represents a

classical design of a two layer Elman network. We have calledIWi, j , the weight ma-

tricies connected to inputs andLWi, j weight matrices coming from layer outputs . The

subscript indicesi and j have been used to identify the source (second index) and the

destination (first index) for the various weights. Here,b1 and b2 correspond to the
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biases.

Figure 8: Classical design of a two layer Elman network. We adopt the MATLAB convention for weight

matrices and biases. The activation functionsf are linear. Theq operator stands for oneT sample time

forward. Practically, theq operator is replaced by theq−1 operator which stands for oneT sample time

delay, and the noisy observation vectoryobs(n) is presented in reverse-time at the input of the network to

preserve causality.

The gray-box INN model is designed starting from the previous black-box model

and modified to obtain the inverse neural structure of figure 5(ODE case) or figure 6

(PDE case). For that, we have connected the input layer to theoutput layer, added a

delay between the two layers, and some values in the weight matrix LW1,1 have been

forced to be null to delete corresponding connections. No neuron has been added. The

remaining coefficients are left free during the whole training. Figure 9 represents the

gray-box network.

Figure 9: Semi-physical INN model design. We adopt the MATLAB convention for weight matrices and

biases. The activation functionsf are linear. Theq operator stands for oneT sample time forward. Practi-

cally, theq operator is replaced by theq−1 operator which stands for oneT sample time delay, and the noisy

observation vectoryobs(n) is presented in reverse-time at the input of the network to preserve causality.
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6.2. Numerical simulations

In the case of the ODE model, we have chosen a damping parameter ξ = 0.9, a

natural pulsationωn = 5 rad.s−1, a static gainc1 = 30 and a sampling periodT = 0.05

s. Let us underline that this choice of parameters ensures forthe matrixF of the

system (6) a spectral radius lower than 1. The forward state-space model stability is

then guaranteed. For the PDE dispersion model, we have fixed aspatial sampling step

∆p1 = 5 m, a wind speed field such asv1(1,n) = 5 m.s−1, v1(2,n) = 5 m.s−1 and

v1(3,n) = 4 m.s−1, a diffusion tensor such asd1(1,n) = 1 m2.s−1, d1(2,n) = 2 m2.s−1

andd1(3,n) = 2 m2.s−1, and a chemical reaction coefficientK = 0. For the reasons

previously exposed, we have set a sampling periodT = 0.2 s, ensuring the simulation

model stability. The two INN models have been subjected to a learning with pseudo-

experimental noisy data.

To construct the set of training, we have generated four short random input se-

quences of lengthN = 50 samples. These signals are step functions resulting fromthe

product of an amplitude levelAe by a Gaussian law of averageµe and varianceσ2
e. The

periodTe is adjustable and characterizes the changes of states. By simulating the direct

knowledge-based model starting from these input signals, we have obtained four noisy

synthetic output signals. The averageµb, the varianceσ2
b, and the periodTb character-

ize the noise dynamic. We have fixedAe = 1, µe = 0, σ2
e = 1, µb = 0 andTb = 3T.

Of course,Te influences the dynamic of the input signals and thus, the dynamic of

the noisy synthetic output signals. We have then generated for each input sequence a

random value forTe such as a significant variation of the output signals is visible.

The learning stops if the number of iterations reaches 400 orif the mean squared

error (MSE) is lower than 0.001 (ODE case) or 0.005 (PDE case). The error is calcu-

lated as the difference between the target outputt (the desired input) and the network

outputt̂ (the estimated input):

MSE =
1
N

N

∑
k=1

[t(k)− t̂(k)]2 (14)

In order to prevent overfitting on the training data, we have memorized all the

weight matrices obtained after each epoch with a training signal. We have then kept the

weights which give the best performance function. Moreover, early stopping improves
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regularization and tends to reduce noise influence, but in this case input restoration

errors are more visible at the level of the changes of states (discontinuities). In the

worst case,i.e. when the minimum MSE value is never reached, the total numberof

epochs at the end of the training is 1600.

During the test step (recall phase), we have studied the semi-physical contribution

in terms of generalization and regularization according toa new test signal. For that,

we have generated another long random input sequence of length N = 400 samples.

The noise variance of the corresponding noisy synthetic output signal is also worthσ2
b.

To measure the noise influence, we have reproduced the previous protocol for sev-

eral values ofσ2
b. The signal-to-noise ratio (SNR) of the corresponding synthetic output

signals lies between plus infinity (absence of noise) and 10 dB. Sometimes, the back-

propagation algorithm may converge to unsatisfactory local minima, and may not be

able to find weights that minimize the error during the training phase. This may cause

unstable network outputs and high MSE. Consequently, we have chosen to repeat each

test one thousand times and to calculate the average performances of the two INN mod-

els. Since each test is realized with new random signals, we have used the normalized

mean squared error (NMSE):

NMSE =
MSE

1
N−1

N

∑
k=1

[
t(k)−

1
N

N

∑
k=1

t(k)

]2
(15)

Here, the denominator corresponds to the unbiased varianceof the desired input.

Moreover, we have also computed for each experiment the percentage of the output

variation that is explained by each model:

f it = 100

(
1−

‖t̂ − t‖
‖t̄ − t‖

)
(16)

Where‖.‖ represents the Euclidean norm andt̄ corresponds to the empirical mean

of the desired input.

In the case of the second order ODE model, we have also compared the two INN

models with two traditional models: the ARMAX model and the Box-Jenkins model.

Of course, these second order models have been designed in reserve-time. In order

to estimate parameters, we have applied the MATLAB functions armaxandbj which
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minimize a robustified quadratic prediction error criterion with the help of an iterative

search algorithm. We have followed the same protocol as previously except the fact

that the set of training is constructed by generating one long random input sequence of

lengthN = 400 samples. Obviously, the parameter estimation is fasterthan the neural

network training and these models are not compared in term oflearning effort. The test

step is realized with the same long random input sequence of lengthN = 400 samples

which has been used to test the INN models. The NMSE and the fit to the data are

evaluated by using the previous equations.

6.3. Modeling Errors and Regularizing Effect

Let us remember that all the considered signals evolve in reverse-time. The esti-

mated input signals obtained without noise in the ODE case are shown in figure 10.

Obviously, it deals with a particular example which has beenrandomly chosen among

the thousands available. Similarly, figure 11 gathers results with a SNR of 10 dB.
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Figure 10: Estimated input signals obtained without noise inthe ODE case : a) Inverse state-space model, b)

Black-box and gray-box INN models, c) Inverse ARMAX and Box-Jenkins models.
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Inverse ARMAX model; fit: 52.39%
Inverse Box−Jenkins model; fit: 68.01%
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Black−box INN model; fit: 44.26%
Gray−box INN model; fit: 70.19%

Input signal
Inverse state−space model; fit: −351.47%

Figure 11: Estimated input signals obtained with a SNR of 10 dBin the ODE case : a) Inverse state-space

model, b) Black-box and gray-box INN models, c) Inverse ARMAX and Box-Jenkins models.

Without noise in the training and test sequences, the inverse state-space model pro-

vides an excellent fit to the data of 100%. By the same token, the inverse ARMAX

and Box-Jenkins models also supply an accurate input restoration (fit: 100%). The

semi-physical INN model presents a nearly perfect input signal restoration, except for

discontinuous zones (fit: 85.61%). The model does not exactly reproduce the changes

of states. The estimated input signal obtained with the black-box INN model is a bit

less precise than the gray-box one (fit: 75.21%). With a SNR of 10 dB, the inverse

state-space model is largely penalized. Indeed, the noise is amplified and the restora-

tion is incorrect. The black-box INN model also suffers fromnoisy perturbation and

presents a bad fit to the data of 44.26% characterized by a relatively approximative

input restoration. Similarly, the inverse ARMAX model provides a naughty fit to the

data of 52.39%. For the inverse Box-Jenkins model, restoration errorsremain weak

and suitable (fit: 68.01%), but there is a slightly noise influence on the estimatedinput

dynamic. It finishes in second position just behind the gray-box INN model which sup-
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plies the best fit to the data (fit: 70.19%). For the gray-box model, the noise influence is

less visible than for the other models. Table 1 presents results of the average evaluation

of the model fit for a signal-to-noise ratio which lies between plus infinity and 10 dB

in the ODE case.

10 dB 20 dB 30 dB 40 dB ∞ dB

Inverse state-space model fit < 0% < 0% 61% 88% 100%

Black-box INN model fit 45% 64% 76% 78% 81%

Gray-box INN model fit 71% 79% 81% 82% 86%

Inverse ARMAX model fit 51% 66% 78% 88% 100%

Inverse Box-Jenkins model fit 69% 78% 84% 90% 100%

Table 1: Results of the average evaluation of the model fit according to the SNR in the ODE case.

Figure 12 presents the estimated input signals obtained without noise in the PDE

case. Estimated input signals with a SNR of 10 dB are shown in figure 13.
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Figure 12: Estimated input signals obtained without noise inthe PDE case : a) Inverse state-space model, b)

Black-box and gray-box INN models.

Let us bear in mind that in this case, only the forward scheme stability is ensured.

Thus without surprise, the inverse state-space model quickly diverges with and without
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Figure 13: Estimated input signals obtained with a SNR of 10 dBin the PDE case : a) Inverse state-space

model, b) Black-box and gray-box INN models.

noise. On the other hand, gray-box and black-box INN models still provide a close

fit to the data and supply results which are approximately similar or slightly less good

than those obtained in the ODE case. Table 2 presents resultsof the average evaluation

of the model fit for a signal-to-noise ratio which lies between plus infinity and 10 dB

in the PDE case.

10 dB 20 dB 30 dB 40 dB ∞ dB

Black-box INN model fit 51% 59% 61% 66% 73%

Gray-box INN model fit 69% 71% 76% 78% 84%

Table 2: Results of the average evaluation of the model fit according to the SNR in the PDE case.

Figure 14 gathers the average NMSE of the inverse models according to the SNR

in the case of the second order ODE model.

Without noise in training and test sequences, the gray-box INN model provides

better average performances (NMSE≃ 0.02) than the black-box INN model which

is slightly less effective (NMSE≃ 0.04). Of course, the inverse state-space model
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Figure 14: Regularizing effect of the gray-box INN model: average NMSE according to the SNR in the ODE

case.

provides accurate results. For the inverse ARMAX and Box-Jenkins models, the aver-

age NMSE value tends to be null which means that parameters have been perfectly

estimated. When the noise grows, the inverse state-space model is largely penal-

ized, whereas the two INN models are moderately sensitive. The regularizing effect

is real. The inverse ARMAX and Box-Jenkins models supply thebest performances

until about 30 dB. In high noise situation, the black-box INNmodel and the inverse

ARMAX model present approximately the same performances, whereas the gray-box

INN model outmatches the inverse Box-Jenkins model and supply the best results in

term of robustness with respect to the noise.

As we have previously exposed, the gray-box INN model is achieved by training the

weights of a neural network whose structure is constrained by the discrete reverse-time

state-space equations. These synaptic weights are adjusted using the backpropagation

(gradient descent) iterative procedure whose stopping criterion is defined by a speci-

fied error threshold and a predetermined maximum number of iterations. Moreover,

regularization by early stopping is also used to avoid the risk of overfitting. Conse-

quently, the weights are determined before they have fully converged and differ from
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the coefficients of the reverse-time state-space equations, but ensure the regularization

objective. Whenσ2
b = 0, it is obvious to not accurately retrieve the input signal since

the coefficients are slightly different. The average NMSE isthen nonzero. On the other

hand, in high noise situation, the gray-box INN model is moreregularizing than other

models. Indeed, the gray-box INN model is more stable after training than the inverse

state-space model, which is conform to our expectations. This consists in increasing

the sampling period (see figure 7) or decreasing the cutoff frequencies of the inverse

model. These cutoff frequencies are then lower than those obtained by identifying the

ARMAX or Box-Jenkins models, which look for a perfect fit. These two conventional

models are then more sensitive to the measurement noise thanthe gray-box INN model.

For the PDE dispersion model, the evolution of the NMSE according to the SNR is

represented by figure 15.
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Figure 15: Regularizing effect of the gray-box INN model: average NMSE according to the SNR in the PDE

case.

The semi-physical INN model again provides best average performances without

noise (NMSE≃ 0.03). Indeed, the black-box neural model is slightly less effective

(NMSE≃ 0.07). Since the inverse state-space model fastly diverges, we do not com-

pare its average performance. When the noise grows, the two INN models are mod-
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erately sensitive due to the regularizing effect. In addition, having chosen a sampling

periodT such asρ(FI )< 1 does not interfere with the INN model. In high noise situa-

tion, the two inverse neural models keep the same tendencies.

6.4. Learning Effort

We have compared the product of the NMSE by the number of epochs, i.e. the final

error amplified by the number of iterations of the training phase. The results obtained

with the ODE model are illustrated figure 16, whereas figure 17gathers those obtained

in the case of the PDE dispersion model.
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Figure 16: Average learning effort according to the SNR in the ODE case. The learning effort is defined as

the product of the NMSE by the number of epochs,i.e. the final error amplified by the number of iterations

of the training phase.

We note that the gray-box INN model is more effective in term of gain about the

training effort in both slight and high noise situation thanthe black-box INN model.

Physical knowledge favors the convergence of the weights sothat the behavior ap-

proaches the data. The black-box INN model is largely penalized because of its lesser

capacity of regularization.
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Figure 17: Average learning effort according to the SNR in the PDE case. The learning effort is defined as

the product of the NMSE by the number of epochs,i.e. the final error amplified by the number of iterations

of the training phase.

7. Conclusion

We have proposed an approach to realize an inverse dynamic model resulting from

the fusion of statistical training and deterministic modeling. We have chosen to carry

out this inverse semi-physical model starting from a recurrent neural network to ex-

ploit typical properties of neural algorithms. Indeed, experimental results have shown

that neural learning plays the part of statistical regressor and regularization operator.

Moreover, input restoration errors are weak. In order to evaluate the semi-physical

contribution, the gray-box INN model has been compared witha traditional black-box

INN model, with an inverse ARMAX model and with an inverse Box-Jenkins model.

The tests realized on a dynamic system characterized by an ODE and on a basic mesh

of an atmospheric pollutant dispersion model governed by a PDE have reveal that the

semi-physical INN model is more parsimonious than the black-box INN model and

presents better performances in term of robustness with respect to the noise than the in-

verse ARMAX and Box-Jenkins models. Besides, gray-box modeling provides better

performances in term of training effort than black-box modeling due to the knowledge
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introduced by the deterministic model.

Appendix A. Reverse-time state-space equations system

By considering the relation (6), we have obtained:




x(n+1)−x(n)
T

= Ax(n)+Bu(n)

y(n) = Cx(n)+b(n)
(A.1)

Let us split the matrixA of (A.1) in two parts and let us write:




x(n+1)−x(n)
T

=


 Ar−1

A1


x(n)+


 Br−1

B1


u(n)

y(n)−b(n) = Cx(n)

(A.2)

WhereAk (respectivelyBk) is constituted by thek first lines ofA (respectivelyB),

andAk (respectivelyBk) is constituted by thek last lines ofA (respectivelyB).

By settingx(n) =
[

x1(n) x2(n) · · · xr(n)
]T

=


 xr−1(n)

x1(n)


 in (A.2), we

have obtained:

 Ar−1

A1


x(n) =

1
T


 xr−1(n+1)

x1(n+1)


− 1

T


 xr−1(n)

x1(n)


−


 Br−1

B1


u(n)

(A.3)

x1(n) = [y(n)−b(n)] (A.4)

By remarking thatAr−1x(n) = xr−1(n) and separating (A.3), we have obtained:

xr−1(n) =
1
T

xr−1(n+1)−
1
T

xr−1(n) (A.5)

A1x(n) =
1
T

x1(n+1)−
1
T

x1(n)−
c1

ar
u(n) (A.6)

By concatening (A.4) and (A.5), we have expressed:

 x1(n)

xr−1(n)


 =

1
T


 T [y(n)−b(n)]

xr−1(n+1)


− 1

T


 0

xr−1(n)


 (A.7)
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By setting⊟r−1 =


 T [y(n)−b(n)]

xr−1(n+1)


 in (A.7), we have written more concisely:

x(n) =
1
T
⊟r−1−

1
T


 0

xr−1(n)


 (A.8)

By using a recursive decomposition of (A.8), we have obtained:

x(n) =
1
T
⊟r−1−

1
T




0

1
T
⊟r−2−

1
T


 0

xr−2(n)







And we have finally expressed:

x(n) =
1
T
⊟r−1−

1
T




0

1
T
⊟r−2−

1
T




.. .

0

1
T
⊟1−

1
T


 0

x1(n)










(A.9)

By expanding the expression (A.9), we have obtained:

x(n) = −
r−1

∑
i=1

(
−

1
T

)i

 0

xr−i(n+1)


+




1

−
1
T
...

(
−

1
T

)r−1




[y(n)−b(n)]

We have thus carried out the reverse-time state-space equation (A.10), where the

state-space matricesFI andGI depend on the sampling periodT:

x(n) = FI x(n+1)+GI [y(n)−b(n)] (A.10)

The lower triangular matrixFI of sizedim(FI ) = r × r and the matrixGI of size
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dim(GI ) = r ×1 are worth:

FI =




0 0 · · · 0
1
T

0

...
...

−

(
−

1
T

)r−1 1
T

0




,GI =




1

−
1
T
...

(
−

1
T

)r−1




In addition, the relation (A.6) allows us to write:

u(n) =
ar

Tc1
x1(n+1)−

ar

c1
A1x(n)−

ar

Tc1
x1(n)

By simplifying, we have obtained (A.11):

u(n) =

[
0 · · · 0

ar

Tc1

]
x(n+1)−

ar

c1

[
A1+

[
0 · · · 0

1
T

]]
x(n)

(A.11)

By incorporating relation (A.10) in (A.11), we have designed the reverse-time state-

space equation (A.12), where the state-space matricesHI and II also depend on the

sampling periodT:

u(n) = HI x(n+1)+ II [y(n)−b(n)] (A.12)

The matrixHI of sizedim(HI ) = 1× r is expressed by (A.13):

HI =

[
0 · · · 0

ar

Tc1

]
+

[
a0

c1
· · ·

ar−2

c1

1
Tc1

(ar−1T −ar)

]
FI

(A.13)

The matrixII of sizedim(II ) = 1×1, is given by (A.14):

II =

[
a0

c1
· · ·

ar−2

c1

1
Tc1

(ar−1T −ar)

]
GI (A.14)

With the help of the equations (A.10) and (A.12), we have thuscarried out the

reverse-time state-space equation system which corresponds to the canonical form (3).

References

Barron, A. (1993). Universal approximation bounds for superposition of a sigmoidal

function. IEEE Transactions on Information Theory, 39, 930-945.

31



Beghi, A., Liberati, M., Mezzalira, S., & Peron, S. (2007). Grey-box modeling of a mo-

torcycle shock absorber for virtual prototyping applications. Simulation Modelling

Practice and Theory, 15, 894-907.

Bourgois, L., Roussel, G., & Benjelloun, M. (2007a). Inversion of a semi-physical

dispersion model. InProceedings of the 3rd IFAC Workshop on Advanced Fuzzy

and Neural Control. Valenciennes, France.

Bourgois, L., Roussel, G., & Benjelloun, M. (2007b). Inversion of a semi-physical

ODE model. InProceedings of the 4th International Conference on Informatics in

Control, Automaton and Robotics. Angers, France.

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994).Time series analysis, forecasting

and control (3rd edition). Prentice Hall.

Cherkassky, V., Krasnopolsky, V. M., Solomatine, D. P., & Valdes, J. (2006). Com-

putational intelligence in earth sciences and environmental applications: issues and

challenges.Neural Networks, 19, 113-121.

Demoment, G. (1989). Image reconstruction and restoration: overview of common

estimation structures and problems.IEEE Transactions on Acoustics, Speech, and

Signal Processing, 37, 2024-2036.

Duarte, B., Saraiva, P. M., & Pantelides, C. C. (2004). Combined mechanistic and

empirical modelling.International Journal of Chemical Reactor Engineering, 2.

Groetsch, C. W. (1993).Inverse problems in the mathematical sciences. Vieweg.

Krasnopolsky, V. M., & Fox-Rabinovitz, M. S. (2006). Complex hybrid models com-

bining deterministic and machine learning components for numerical climate mod-

eling and weather prediction.Neural Networks, 19, 122-134.

Krasnopolsky, V. M., & Schillerb, H. (2003). Some neural network applications in

environmental sciences. Part I. Forward and inverse problems in geophysical remote

measurements.Neural Networks, 16, 321-334.

32
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