A Bayesian sparse inference approach in near-field wideband aeroacoustic imaging - CentraleSupélec
Communication Dans Un Congrès Année : 2012

A Bayesian sparse inference approach in near-field wideband aeroacoustic imaging

Résumé

Recently improved deconvolution methods using sparse regularization achieve high spatial resolution in aeroacoustic imaging in the low Signal-to-Noise Ratio (SNR), but sparse prior and model parameters should be optimized to obtain super resolution and be robust to sparsity constraint. In this paper, we propose a Bayesian Sparse Inference Approach in Aeroacoustic Imaging (BSIAAI) to reconstruct both source powers and positions in poor SNR cases, and simultaneously estimate background noise and model parameters. Double Exponential prior model is selected for source spatial distribution and hyper-parameters are estimated by Joint Maximized A Posterior criterion and Bayesian Expectation and Minimization algorithm. On simulated and wind tunnel data, proposed approach is well applied for near-field wideband monopole and extended source imaging. Comparing to several classical methods, proposed approach is robust to noise, super resolution, wide dynamic range, and source number and SNR are not needed.
Fichier principal
Vignette du fichier
ICIP2012_CHU.pdf (3.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00770947 , version 1 (07-01-2013)

Identifiants

Citer

Ning Chu, Ali Mohammad-Djafari, José Picheral. A Bayesian sparse inference approach in near-field wideband aeroacoustic imaging. 2012 19th IEEE International Conference on Image Processing (ICIP 2012), Sep 2012, Orlando, United States. pp.2529-2532, ⟨10.1109/ICIP.2012.6467413⟩. ⟨hal-00770947⟩
121 Consultations
627 Téléchargements

Altmetric

Partager

More