
HAL Id: hal-00771177
https://centralesupelec.hal.science/hal-00771177v2

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relabeling and Summarizing Posterior Distributions in
Signal Decomposition Problems when the Number of

Components is Unknown
Alireza Roodaki, Julien Bect, Gilles Fleury

To cite this version:
Alireza Roodaki, Julien Bect, Gilles Fleury. Relabeling and Summarizing Posterior Distributions in
Signal Decomposition Problems when the Number of Components is Unknown. IEEE Transactions
on Signal Processing, 2014, 62 (16), pp.4091-4104. �10.1109/TSP.2014.2333569�. �hal-00771177v2�

https://centralesupelec.hal.science/hal-00771177v2
https://hal.archives-ouvertes.fr


This is an author-generated version. Published version available from http://dx.doi.org/10.1109/TSP.2014.2333569 1

Relabeling and Summarizing Posterior Distributions
in Signal Decomposition Problems when the

Number of Components is Unknown
Alireza Roodaki, Julien Bect and Gilles Fleury

Abstract—This paper addresses the problems of relabeling
and summarizing posterior distributions that typically arise, in
a Bayesian framework, when dealing with signal decomposi-
tion problems with an unknown number of components. Such
posterior distributions are defined over union of subspaces of
differing dimensionality and can be sampled from using modern
Monte Carlo techniques, for instance the increasingly popular
RJ-MCMC method. No generic approach is available, however,
to summarize the resulting variable-dimensional samples and
extract from them component-specific parameters.

We propose a novel approach, named Variable-dimensional
Approximate Posterior for Relabeling and Summarizing (VAPoRS),
to this problem, which consists in approximating the poste-
rior distribution of interest by a “simple”—but still variable-
dimensional—parametric distribution. The distance between the
two distributions is measured using the Kullback-Leibler di-
vergence, and a Stochastic EM-type algorithm, driven by the
RJ-MCMC sampler, is proposed to estimate the parameters.
Two signal decomposition problems are considered, to show the
capability of VAPoRS both for relabeling and for summarizing
variable dimensional posterior distributions: the classical prob-
lem of detecting and estimating sinusoids in white Gaussian noise
on the one hand, and a particle counting problem motivated by
the Pierre Auger project in astrophysics on the other hand.

Index Terms—Bayesian inference; Signal decomposition;
Trans-dimensional MCMC; Label-switching; Stochastic EM.

I. INTRODUCTION

Nowadays, owing to the advent of Markov Chain Monte
Carlo (MCMC) sampling methods [2–5], Bayesian data anal-
ysis is considered as a conventional approach in machine learn-
ing, signal and image processing, and data mining problems—
to name but a few. Nevertheless, in many applications, prac-
tical challenges remain in the process of extracting, from the
generated samples, quantities of interest to summarize the
posterior distribution.

Summarization consists, loosely speaking, in providing a
few simple yet interpretable parameters and/or graphics to
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the end-user of a statistical method. For instance, in the case
of a scalar parameter with a unimodal posterior distribution,
measures of location and dispersion (e.g., the empirical mean
and the standard deviation, or the median and the interquar-
tile range) are typically provided in addition to a graphical
summary of the distribution (e.g., a histogram or a kernel
density estimate). In the case of multimodal distributions,
summarization becomes more difficult but can be carried
out using, for instance, the approximation of the posterior
by a Gaussian Mixture Model (GMM) [6]. Summarizing or
approximating posterior distributions has also been used in
designing proposal distributions of Metropolis-Hastings (MH)
samplers in an adaptive MCMC framework; see, e.g., [7–9].

This paper addresses the problem of summarizing posterior
distributions in the case of some trans-dimensional problems
(i.e., “problems in which the number of things that we don’t
know is one of the things that we don’t know” [10, 11]). More
specifically, we concentrate on the problem of signal decom-
position when the number of components is unknown, which
is an important case of trans-dimensional problem. Examples
of such problems include the detection and estimation of
sinusoids in white Gaussian noise [12] and the related problem
of estimating directions of arrival in array processing [13], the
detection of objects in images [14, 15], and the detection of
physical particles (neutrons, muons, . . . ) using noisy data from
various types of sensors, for instance in spectroscopy [16] or
astrophysics [17, 18].

Let y = (y1, y2, . . . , yN)
t be a vector of N observations,

where the superscript t stands for vector transposition. As
a generic description of a signal decomposition problem, we
consider a countable family of models (Mk)k∈N, where it is
assumed that, under model Mk, the observed signal y is made
of k components. A “component” might be a sinusoid (see
Section I-B) or a decaying exponential (see Section III-B) in
a one-dimensional signal processing problem, for instance, or
an elementary geometric form in an image processing problem
[15]; we simply assume that each component is completely
described by a vector of parameters θθθ j ∈ Θ ⊆ R

d , 1 ≤ j ≤ k.
We denote by θθθ 1:k = (θθθ 1, . . . ,θθθ k) ∈ Θk the vector of all
component-specific parameters, where Θ0 = {∅}.

One feature that the problems we are considering have in
common is the invariance of the likelihood p(y |k, θθθ 1:k) with
respect to permutations (relabeling) of the components, which
is called the “label-switching” issue in the literature; see, e.g.,
[19–23]. We will discuss this issue further in Section I-A.

In a Bayesian framework, a joint posterior density
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f (k, θθθ 1:k), p(k, θθθ 1:k |y) is obtained through Bayes’ formula
for the number k of components and the vector of component-
specific parameters, after assigning prior distributions on them:

f (k, θθθ 1:k) ∝ p(y |k, θθθ 1:k) p(θθθ 1:k |k) p(k) , (1)

where ∝ indicates proportionality. This density is defined over
a variable-dimensional space ΘΘΘ, which is a union of subspaces
of differing dimensionality, i.e., ΘΘΘ = ∪k∈N{k}×Θk.

The posterior density (1) completely describes the in-
formation (and the associated uncertainty) provided by the
data y about the candidate models and the vector of unknown
parameters. Since it is only known up to a normalizing
constant in most cases, and potentially multimodal, Monte
Carlo simulation methods, such as Reversible Jump MCMC
(RJ-MCMC) [10], have been widely used to approximate it.

A. The label-switching issue

One of the most challenging issues when attempting at
summarizing posterior distributions, that even occurs in fixed-
dimensional situations, is the label-switching phenomenon
(see, e.g., [19–25]), which is caused by the invariance of
both the likelihood and the prior distribution under permu-
tations of the components. As a consequence, the component-
specific marginal posterior distributions are all equal, and
therefore useless for the purpose of summarizing the infor-
mation contained in the posterior distribution about individual
components. A symptom of this issue is the multimodality of
marginal posterior distributions.

The simplest way of dealing with the label-switching issue
is to introduce an Identifiability Constraint (IC), such as
sorting the components with respect to one of their parameters;
see [19] for more discussion concerning the use of ICs in
the Bayesian analysis of GMMs. However, in most practical
examples, choosing an appropriate IC manually is not feasible.
Many relabeling algorithms have therefore been developed to
“undo” the label-switching effect automatically—i.e., change
sample labels to make the marginals as unimodal as possible—
but all of them are restricted to the case of fixed-dimensional
posterior distributions; see [23, 25–27] for recent advances and
references.

In variable-dimensional posterior distributions, there is an
extra uncertainty about the “presence” of components, as
will be clarified in the following illustrative example. This
additional difficulty has hindered previous attempts to undo
label-switching in the variable-dimensional scenario, where,
according to [28] “the meaning of individual components is

vacuous”.

B. Illustrative example: joint Bayesian detection and estima-

tion of sinusoids in white Gaussian noise

In this example, it is assumed that under Mk, the observed
signal y is composed of k sinusoidal components observed in
white Gaussian noise. That is, under Mk,

y[i] =
k

∑
j=1

(ac, j cos(ω ji) + as, j sin(ω ji)) + n[i],
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Figure 1: Posterior distributions of k (left) and sorted radial frequen-
cies, ωωω1:k, given k (right) from 100 000 output RJ-MCMC samples.
The true number of components is three. The vertical dashed lines
in the right figure locate the true radial frequencies. Not shown on
the figure: p(k ≤ 1 | y)≈ 0% and p(k ≥ 5 | y)≈ 1.9%.

where ac, j and as, j are the cosine and sine amplitudes of the jth

sinusoidal component and ω j its radial frequency. Moreover,
n is a white Gaussian noise of variance σ2.

The unknown parameters are the number k of sinusoidal
components, the vectors θθθ j = (ac, j, as, j, ω j) of component-
specific parameters, 1 ≤ j ≤ k, and the noise variance σ2.
Thus, Θ =R

2×(0,π) and ΘΘΘ =
(
∪k∈N{k}×Θk

)
∪R

+. We use
the hierarchical model, prior distributions, and the RJ-MCMC
sampler proposed in [12] for this problem; the interested reader
is thus referred to [10, 12] for more details1.

Here, we consider an experiment in which the observed
signal y of length N = 64 consists of three sinusoids with
energies AAA1:k = (20,6.32,20)t , where A j = a2

c, j + a2
s, j, phases

φφφ 1:k = (0,π/4,π/3)t , where φ j =−arctan(as, j/ac, j), and true
radial frequencies ωωω1:k = (0.63,0.68,0.73)t . The signal-to-
noise ratio2 is set to the moderate value of 7dB. Figure 1 rep-
resents the posterior distributions of both the number k of com-
ponents and the sorted radial frequencies ωωω1:k = (ω1, . . . ,ωk)

t

given k obtained using 100 000 samples generated by the RJ-
MCMC sampler. Note that, here, we used sorting to mitigate
the effect of label-switching for visualization. Each row is
dedicated to one value of k, for 2 ≤ k ≤ 4. Observe that
other models have negligible posterior probabilities, since
p(2 ≤ k ≤ 4 | y) = 0.981.

Roughly speaking, two approaches co-exist in the literature
for summarizing variable-dimensional posterior distributions:
Bayesian Model Selection (BMS) and Bayesian Model Aver-
aging (BMA). The BMS approach ranks models according to
their posterior probabilities p(k | y), selects one model, denoted
by kMAP here, where MAP stands for Maximum A Poste-
riori, and then summarizes the posterior distribution of the
component-specific parameters under the (fixed-dimensional)

1In fact, the “Birth-or-Death” moves’ acceptance ratio provided in the
seminal paper [12] is erroneous. See [1, Chapter 1] or [29] for justification
and true expression of the acceptance ratio, which is used in this paper.

2defined here as ‖Da1:k‖
2 /

(
Nσ2

)
, where D is the N×2k “design matrix”

of sines and cosines associated to ωωω1:k and a1:k =
(
ac,1, as,1, . . . , ac,k, as,k

)t
.



3

selected model. This is at the price of losing valuable informa-
tion provided by the other (discarded) models. For instance,
in the example of Figure 1, all information about the small—
and therefore harder to detect—middle component is lost by
selecting the most a posteriori probable model M2. On the
other hand, the BMA approach consists in reporting results
that are averaged over all possible models. Although BMA
is suitable for signal reconstruction and prediction, it is not
appropriate for studying component-specific parameters, the
number of which changes in each model3. More information
concerning these two approaches can be found in [10, 30] and
references therein.

To the best of our knowledge, no generic method is currently
available that would allow to summarize the information that
is so easily read on Figure 1 for this very simple example4:
namely, that there seem to be three sinusoidal components in

the observed noisy signal, the middle one having a smaller

“probability of presence” than the others.

C. Outline of the paper

In this paper, we propose a novel approach, named Variable-

dimensional Approximate Posterior for Relabeling and Sum-

marizing (VAPoRS), for relabeling and summarizing posterior
distributions defined over variable-dimensional subspaces that
typically arise in signal decomposition problems when the
number of components is unknown. It consists in approxi-
mating the true posterior distribution with a parametric model
(of varying-dimensionality), by minimization of the Kullback-
Leibler (KL) divergence between the two distributions. A
Stochastic Expectation Maximization (SEM)-type algorithm
[31–33], driven by the output of an RJ-MCMC sampler, is
used to estimate the parameters of the approximate model.

VAPoRS shares some similarities with the relabeling algo-
rithms proposed in [20, 26, 27] to solve the label switching
problem, and also with the EM-type algorithm used in [8] in
the context of adaptive MCMC algorithms (both in a fixed-
dimensional setting). The main contribution of this paper is
the introduction of an original variable-dimensional parametric
model, which allows to tackle directly the difficult problem of
approximating a distribution defined over a union of subspaces
of differing dimensionality, and thus provides a first solution to
the “trans-dimensional label-switching” problem, so to speak.

Perhaps, the algorithm that we propose can be seen as a
realization of the idea that M. Stephens had in mind when he
wrote [34, page 94]:

“This raises the question of whether we might be able to

obtain an alternative view of the [variable-dimensional] poste-

rior by combining the results for all different k’s, and grouping

together components which are “similar”, in that they have

similar predictive density estimates. However, attempts to do

this have failed to produce any easily interpretable results.”
The paper is organized as follows. Section II introduces

the proposed model and stochastic algorithm for relabeling

3See, however, the intensity plot provided in Section III (Figure 10) as an
example of a BMA summary related to a component-specific parameter.

4Reporting additional models would improve the situation for BMS, in this
example, but would not directly provide a “probability of presence” for each
component, as our approach does.

and summarizing variable dimensional posterior distributions.
Section III illustrates the performance of VAPoRS using two
signal decomposition examples, namely, the problem of joint
Bayesian detection and estimation of sinusoids in white Gaus-
sian noise and the problem of joint Bayesian detection and
estimation of particles in the Auger project (in astrophysics).
Section IV confirms the performances of VAPoRS using a
Monte Carlo experiment. Finally, Section V concludes the
paper and gives directions for future work.

II. VAPORS

A. Introduction: observed components and t-components

We assume that the target posterior distribution, defined on
the variable-dimensional space ΘΘΘ =

⋃
k∈N {k}×Θk, admits a

probability density function (pdf) f with respect to the kd-
dimensional Lebesgue measure on each {k}×Θk, k ∈ N

∗.
Our objective is to approximate the true posterior density f

using a “simple” parametric model. This parametric model will
also be defined on the variable-dimensional space ΘΘΘ (i.e., it
is not a fixed-dimensional approximation as in BMS).

We assume that a Monte Carlo sampling method—e.g., an
RJ-MCMC sampler [10]—is available to generate M sam-
ples from f , which we denote by θθθ (i) =

(
k(i),θθθ

(i)

1:k(i)

)
, for

i = 1, . . . , M. These M variable-dimensional samples, which
will be used to fit the approximate model to the true posterior,
will play the role of input data for our method; therefore,
an element θθθ

(i)
j ∈ Θ (1 ≤ j ≤ k(i)) of the sample θθθ (i) will

be referred to as an “observed component” (remember that a
“component” is a point in the set Θ).

As our main device to handle the variable dimensionality
of ΘΘΘ, our parametric model (described more precisely in the
next section) introduces “transdimensional components”, that
we will refer to as t-components for the sake of brevity. Intu-
itively, in the example shown on Figure 1, these t-components
will serve the purpose of aggregating bumps in parameter pos-
terior probability across dimensions, thus identifying observed
components occurring in different models as manifestations of
the same true component in the signal.

B. Variable-dimensional parametric model

Instead of trying to describe the proposed parametric model
directly, let us now adopt a generative point of view, i.e., let
us describe how to sample an ΘΘΘ-valued random variable θθθ =
(k,θθθ 1:k) from the corresponding probability distribution. We
assume that a positive integer L is given, which represents
the number of t-components in the model. Each t-component
can be thought of as a “virtual component” that can generate
zero or one (or several, in the case of the Poisson point
process component that will be introduced later) observed
component(s), according to some prescribed distribution on Θ.

To generate a sample θθθ ∈ ΘΘΘ, we first generate, indepen-
dently for each of the L t-components, a binary indicator
variable ξl ∈ {0,1} drawn from the Bernoulli distribution
Ber(πl), where ξl = 1 indicates that an observed component
corresponding to the lth t-component is actually present in θθθ .
The actual number k of components in the generated samples
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To generate a sample from the VAPoRS model, do:

1) For l = 1, . . . , L,
generate ξl ∼ Ber(πl).

2) Set k = ∑L
l=1 ξl .

3) For each l such that ξl = 1,
generate θ̃θθ l ∼ N (µµµ l , ΣΣΣl).

4) Randomly arrange the samples θ̃θθ l generated at
step 3 in a vector θθθ 1:k = (θθθ 1, . . . ,θθθ k).

Figure 2: Steps to generate samples from the proposed parametric
model.

is thus k = ∑L
l=1 ξl . The parameter πl ∈ (0, 1] will be called

the probability of presence of the lth component.
Second, given the vector of indicator variables ξξξ =

(ξ1, . . . , ξL), a Θ-valued random vector is generated for each
t-component that is present (i.e., for each l such that ξl = 1).
This random vector is generated according to some prob-
ability distribution associated to the t-component, that will
be assumed, in this paper5, to be a d-dimensional Gaussian
distribution with mean µµµ l and covariance matrix ΣΣΣl . In order
to achieve the required invariance with respect to compo-
nent relabeling, the generated vectors are randomly arranged
in a vector θθθ 1:k = (θθθ 1, . . . ,θθθ k)—i.e., a permutation of the
k components that are present is drawn uniformly in the set
of all permutations. The above mentioned steps to generate
samples from the proposed parametric model are summarized
in Figure 2.

Example. Assume that there are L = 3 univariate Gaussian t-
components in the model, with means µµµ = (0.63,0.68,0.73),
variances sss2 = (0.01,0.02,0.01) and probabilities of pres-
ence πππ = (0.8,0.3,0.8). Figure 3 shows the pdf’s of the
three Gaussian t-components along with six random samples
generated from the parametric model. Moreover, the kernel
density estimates of 10 000 random samples generated from
the parametric model are depicted in Figure 4 (a). It can be
seen from both figures that the dimension of the generated
samples varies from k = 0 to k = L = 3.

Let us look at the marginal posterior distributions of the
sorted radial frequencies, depicted in the right panel of Fig-
ure 1. An important fraction of the posterior distribution is
concentrated in compact bumps6; as will be seen later (see
Section III-A), our Gaussian t-component will be effective at
describing this fraction of the posterior. However, it can be
observed on the plots related to the models with three and
four sinusoidal components that the posterior also contains
“diffuse” parts, meaning that a small fraction of the total
probability mass is spread across a wide region (resulting,
after sorting at fixed k, in heavy asymmetric tails for some

5Any parametric family of d-variate distributions could be used at this
point. As often in the literature [8, 20, 26, 27], the Gaussian distribution
is chosen as a convenient mean of describing a “compact” and unimodal
d-dimensional distribution, nothing more. Note that, because the Gaussian
distribution is supported by R

d , our parametric model is actually defined on
a variable-dimensional space bigger than ΘΘΘ if Θ is a strict subset of Rd .

6which are multimodal, because sorting the frequencies at fixed k does not
properly resolve the label switching problem

marginal distributions). Another small fraction of the posterior
distribution, not shown on Figure 1, is similarly scattered
over the frequency axis for k = 4 and k = 5. It is clear
that a model made of Gaussian t-components only will not
be able to provide a parsimonious representation of this
feature of the posterior f . Moreover, the observed components
from the “diffuse” part, which would behave as outliers with
respect to a model built with a small number of Gaussian t-
components, could adversely influence the process of fitting
the approximate posterior to the true posterior distribution of
interest.

To overcome this issue, we propose to include in the
model a “noise-like” Poisson Point Process (PPP; see, e.g.,
[35]) to account for the presence of outliers in the observed
samples. For simplicity7, we assume in this paper that Θ is
bounded and that the PPP is homogeneous on Θ, with intensity
λ/|Θ|. We denote by ξL+1 ∈ N the number of components
generated by the PPP, which follows a Poisson distribution
with mean λ , and keep using the notation ξξξ for the extended
vector (ξ1, . . . ,ξL,ξL+1). Finally, ξL+1 random samples are
generated uniformly on Θ and inserted randomly among the
samples drawn from the Gaussian components. The actual
number k of components in the generated sample is thus, now,
redefined as k =∑L+1

l=1 ξl . Figure 5 provides the directed acyclic
graph of the model.

Example (continued). Setting Θ to the interval (0,π) (as
is the case in the sinusoid detection problem) and λ = 0.5,
Figure 4 (b) shows the intensities of generated samples from
the toy example’s parametric model equipped with the Poisson
point process component. It can be observed that the model
equipped with PPP is capable of generating diffuse samples
and thus, provides a better approximation to the distribution of
the observed samples in practice (see, for example, Figure 1).
Another interesting point that can be seen in Figure 4 (b)
is that the model with PPP is able to generate samples with
dimensions greater than the given number L of Gaussian t-
components. This allows the model to deal with vector of
observed samples of dimension greater than L.

Notations. We denote by ηηη l = (µµµ l ,ΣΣΣl ,πl) the vector of
parameters for the lth Gaussian t-component, and by ηηη =
(ηηη1, . . . ,ηηηL,λ ) the full vector of parameters of the model.
We denote by qηηη the pdf of the random variable θθθ = (k,θθθ 1:k)
generated by the above construction. As a convenient abuse
of notation, we will also use qηηη in Sections II-C and II-D,
to denote all joint, marginal and conditional distributions
involving θθθ and the auxiliary variables used for its generation.

7Homogeneity of the PPP component has been assumed for the sake of
simplicity, but more elaborate (non-homogeneous) models are easily accom-
modated by our approach, if needed. A non homogeneous PPP is needed, in
particular, if |Θ|=+∞; indeed, an homogeneous PPP on a such a set would
generate an almost-surely infinite number of components. As an example: if
one of the component-specific parameters is positive—an amplitude parameter
in a positive mixture, say—then a lognormal distribution, a gamma distribution
or uniform distribution on a bounded segment can be used to build a (bounded)
non-homogeneous intensity.



5

0.55 0.65 0.75
0

20

40

(a)

0.55 0.65 0.75
0

20

40

(b)

0.55 0.65 0.75
0

20

40

(c)

0.55 0.65 0.75
0

20

40

(d)

0.55 0.65 0.75
0

20

40

(e)

0.55 0.65 0.75
0

20

40

(f)

Figure 3: Generated samples from an example of the proposed variable-dimensional parametric model. There are L= 3 Gaussian t-components
in the model with the means µµµ = (0.63,0.68,0.73)t , the variances sss2 = (0.01,0.02,0.01) and the probabilities of presence πππ = (0.8,0.3,0.8).
The ××× signs indicate the location of the generated random samples. (a) ξξξ = (1, 0, 1) and θθθ = (2,(0.63, 0.72)), (b) ξξξ = (1, 1, 0) and θθθ =
(2,(0.63, 0.66)), (c) ξξξ = (0, 0, 1) and θθθ = (1,(0.71)), (d) ξξξ = (1, 0, 0) and θθθ = (1,(0.62)), (e) ξξξ = (1, 1, 1) and θθθ = (3,(0.62, 0.70, 0.73)),
(f) ξξξ = (0, 0, 0) and θθθ = (0,()).
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Figure 4: Kernel density estimates for 10 000 sorted random samples
generated from the parametric model; (a) without PPP (b) with a
Poisson point process component and setting λ = 0.5 and Θ = (0,π).

θθθ

ξl µµµ l ΣΣΣl

πl

ξL+1

λ

l = 1,2, · · · ,L

Figure 5: Proposed variable-dimensional parametric model in a
generative viewpoint. Square nodes show fixed variables while circle
nodes denote random variables. Note that ηηη = (ηηη1, . . . ,ηηηL,λ ) and
ηηη l = (µµµ l ,ΣΣΣl ,πl).

C. Distribution of the labeled samples

A random variable θθθ = (k,(θθθ 1, . . . ,θθθ k)) drawn from the
density qηηη can be thought of as an “unlabeled sample”, since
the label l ∈ L , {1, . . . ,L + 1} of the component from
which each θθθ j (1 ≤ j ≤ k) originates cannot be recovered
from θθθ itself. Let us now introduce the (variable-dimensional)
allocation vector

z = (k,(z1, . . . ,zk)) ∈
⋃

k∈N

{k}×L k,

which provides the missing piece of information: z j = l indi-
cates that θθθ j originates from the lth (Gaussian) t-component
if l ≤ L, while z j = L+ 1 indicates that θθθ j originates from
the point process t-component. We will refer to the pair (θθθ ,z)
as a labeled sample. In the following, we will derive its joint
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distribution qηηη(θθθ ,z) = qηηη(θθθ | z)qηηη(z).
The distribution of the allocation vector z is

qηηη(z) = qηηη(z | ξξξ )qηηη(ξξξ ), (2)

where qηηη(ξξξ ) is given by

qηηη (ξξξ ) =
e−λ ·λ ξL+1

ξL+1!

L

∏
l=1

π
ξl

l (1−πl)
(1−ξl). (3)

Note that ξξξ is a deterministic function of z: ξξξ = n(z), with
nl(z) = ∑k

j=1 1z j=l , for 1 ≤ l ≤ L+1. To compute the first term
of (2), remember that the points generated by the components
of the parametric model are randomly arranged in θθθ 1:k. There-
fore, for all ξξξ ∈ {0,1}L ×N such that ∑L+1

l=1 ξl = k,

qηηη(z | ξξξ ) =
ξL+1!

k!
1ξξξ=n(z), (4)

since two arrangements that differ only by the position of
the points corresponding to the PPP give rise to the same
allocation vector.

The conditional distribution qηηη(θθθ | z) reads

qηηη(θθθ | z) =
k

∏
j=1

qηηη(θθθ j |z j), (5)

where

qηηη(θθθ j |z j) =





N
(

θθθ j |µµµz j
, ΣΣΣz j

)
if z j ≤ L,

1
|Θ| if z j = L+1.

(6)

Therefore, from Equations (3) to (6), we have

qηηη (θθθ , z) =
e−λ

k!

(
λ

|Θ|

)ξL+1

∏
1≤ j≤k
z j 6=L+1

N
(

θθθ j |µµµz j
,ΣΣΣz j

)

×
L

∏
l=1

π
ξl

l (1 − πl)
(1−ξl) 1Z (z) , (7)

where (ξ1, . . . , ξL+1) = n(z) and Z is the set of all allocation
vectors (i.e., the set of all z ∈ ∪k∈N{k}×L k such that ξl =
nl(z) ∈ {0,1}, for 1 ≤ l ≤ L).

D. Estimating the model parameters

We propose to fit the parametric distribution qηηη to the
posterior f of interest by minimizing a divergence measure8

from f to qηηη . We use the KL divergence as a divergence
measure in this paper, though other divergence measures can
be used as well (see, e.g., [1, Chapter 2]).

Denoting the KL divergence from f to qηηη by
DKL( f (θθθ)‖qηηη(θθθ)), we define the criterion to be minimized
as

J (ηηη) , DKL ( f (θθθ)‖qηηη(θθθ)) =

∫

ΘΘΘ
f (θθθ) log

f (θθθ)

qηηη(θθθ)
dθθθ .

8It would also be possible to assign prior distributions over the unknown
parameters ηηη and study their posterior distributions (for example, using an
MCMC sampler with the latent variable z added to the state of the chain, in
the spirit of the “data augmentation” algorithm [36]). This would, however,
leave the label-switching issue unsolved (because of the invariance of qηηη to
permutations of its components).

At the (r+1)th iteration, do:

(S-step) Draw allocation vectors z(i,r+1), 1 ≤ i ≤ M,
using an IMH step with target q

η̂ηη(r)(··· |θθθ
(i)).

(E-step) Construct the pseudo-completed log-likelihood

ĴM(ηηη) = −∑M
i=1 log

(
qηηη(θθθ

(i),z(i,r+1))
)
.

(M-step) Estimate η̂ηη(r+1) such that

η̂ηη(r+1) = argminηηη ĴM(ηηη).

Figure 6: Pseudo-code for the proposed SEM-type algorithm

Using samples θθθ (i), i = 1, . . . ,M, generated by the RJ-MCMC
sampler, this criterion can be approximated as

J (ηηη) ≃ −
1
M

M

∑
i=1

log
(

qηηη(θθθ
(i))

)
+ C, (8)

where C =
∫

f (θθθ) log f (θθθ)dθθθ is a constant that does not
depend on ηηη . One should note that minimizing the right-hand
side of (8) amounts to choosing

η̂ηη = argmaxηηη

M

∑
i=1

log
(

qηηη(θθθ
(i))

)
. (9)

To estimate the model parameters ηηη , one of the extensively
used algorithms for Maximum Likelihood (ML) parameter
estimation in latent variable models is the EM algorithm
proposed by [37]. However, it turns out that the EM algorithm,
which has been used in similar works [8, 20, 26], is not appro-
priate for solving this problem, as computing the expectation
in the E-step is intricate. More explicitly, in our problem the
computational burden of the summation in the E-step over the
set of all possible allocation vectors z increases very rapidly
with both L and k. In fact, even for moderate values of L and k,
say, L = 15 and k = 10, the summation is far too expensive to
compute as it involves ∑k

m=0
L!

(L−k+m)! ≈ 1.31010 terms.
In this paper, we propose to use the SEM algorithm [31–

33], a variation of the EM algorithm in which the E-step is
substituted with stochastic simulation of the latent variables
from their conditional posterior distributions given the pre-
vious estimates of the unknown parameters. In other words,
at the iteration r + 1 of the SEM algorithm, denoting the
estimated parameters at iteration r by η̂ηη(r), for i = 1, . . . , M,
the allocation vectors z(i) are drawn from q

η̂ηη(r)(··· |θθθ
(i)). This

step is called the Stochastic (S)-step. Then, these random
samples are used to construct the so-called pseudo-completed
log-likelihood.

Exact sampling from q
η̂ηη(r)(··· | θθθ (i)), as required by the S-step

of the SEM-type algorithm, is unfortunately not feasible—not
even using the accept-reject algorithm, due to the heavily com-
binatorial expression of the normalizing constant q

η̂ηη(r)(θθθ
(i)).

Instead, since

q
η̂ηη(r)(z

(i) | θθθ (i)) ∝ q
η̂ηη(r)(θθθ

(i), z(i))
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can be computed up to a normalizing constant, we choose
to use an Independent Metropolis-Hasting (IMH) step with
q

η̂ηη(r)(z(i) | θθθ (i)) as its stationary distribution; see [1, Algo-
rithm 2.2] for more details.

The proposed SEM-type algorithm is summarized in Fig-
ure 6. Explicit expressions for the M-step are easily obtained
from Equation (7) (see [1, page 76]). The computational cost
of one iteration is of the order O

(
ML2

)
for a given d, the most

expensive part being the IMH algorithm used in the S-step.

Remark 1. Convergence results of the SEM algorithm in
the general form are provided by [33] and, in the particular
example of mixture analysis problems, by [38]. Unfortunately,
the assumptions in [33, 38] do not hold in the problem we are
dealing with as, 1) the observed samples θθθ (i) are correlated,
owing to the fact that they are generated from the true posterior
distribution using some MCMC methods, e.g., the RJ-MCMC
sampler; 2) an IMH sampler is used to draw z(i) from
the conditional posterior distribution. Nevertheless, empirical
evidence of the “good” convergence properties of the SEM-
type algorithm we proposed will be provided in the next two
sections.

E. Robustified algorithm

Preliminary experiments with the SEM-type algorithm de-
scribed in Figure 6 were not satisfactory, because the sample
mean and (co)variance estimates in the M-step, obtained from
minimizing the KL divergence from the posterior distribu-
tion f to the parametric model qηηη , still suffer from sensitivity
to the outliers in the observed samples, even after including the
Poisson point process component. Similar robustness concerns
are widespread in the clustering literature; see, e.g., [39] and
references therein.

As a workaround, we propose to use robust estimates [40] of
the means and (co)variances of Gaussian distributions instead
of the empirical means and (co)variances in the M-step9.
For example, in the case of univariate Gaussian distributions,
we use the median and 1.349 times the interquartile range
as robust estimators of the mean and standard deviation,
respectively. See [1, Section 2.5] for more discussion of this
robustness issue, including an alternative solution using the
(robust) α-divergence of [41] instead of the KL divergence.

Remark 2. Note that the robustification introduced in this
section does not render the PPP component useless. Indeed,
removing it would result (experiments not shown) in the
introduction of one or several large-variance small-probability
Gaussian components in the model, to account for the diffuse
part of the posterior discussed in Section II-B, and would also
impose to choose L at least as large as the largest value of k(i)

in the MCMC samples.

9As an alternative to the simple plug-in method proposed here, robusti-
fication could be achieved by using heavy-tailed distributions (e.g., Student
distributions) instead of Gaussian distributions in the parametric model. Note
that this approach, more elegant perhaps, makes the M-step more complicated
since (at least a few steps of) an optimization algorithm must be used to find
the new value of the parameters.

III. ILLUSTRATIVE EXAMPLES

In this section, we will investigate the capability of VAPoRS
for summarizing variable-dimensional posterior distributions
using two signal decomposition examples; 1) joint Bayesian
detection and estimation of sinusoids in white Gaussian
noise [12] and 2) joint Bayesian detection and estimation of
astrophysical particles in the Auger project [17, 18]; see [1,
Chapters 3 and 4] for more results and discussion. We em-
phasize again that the output of the trans-dimensional Monte
Carlo sampler, e.g, the. RJ-MCMC sampler in this paper, is
considered as the observed data for VAPoRS.

A. Joint Bayesian detection and estimation of sinusoids in

white Gaussian noise

Let us consider the problem of detection and estimation
of sinusoidal components introduced in Section I-B where
the unknown parameters are the number k of components,
the component-specific parameters (ac, j,as, j,ω j), 1 ≤ j ≤ k,
and the noise variance σ2. Since the amplitudes and the
noise variance can be analytically integrated out, we focus on
summarizing the joint posterior distribution p(k, ωωω1:k | y) of
the form illustrated in Figure 1. Therefore, we assume that
the proposed parametric model introduced in Section II-B
consists of univariate Gaussian components, with means µl ,
variances s2

l , and probabilities of presence πl , 1 ≤ l ≤ L,
to be estimated. Moreover, the space of component-specific
parameters is Θ = (0,π)⊂ R.

Before launching VAPoRS, we need first to initialize the
parametric model. It is natural to deduce the number L of
Gaussian components from the posterior distribution of k.
Here, we set it to the 90th percentile of p(k | y) to keep all the
probable models in the play. To initialize the Gaussian compo-
nents’ parameters, i.e., µl and s2

l , 1≤ l ≤ L, we used the robust
estimates of the means and variances of the marginal posterior
distributions of the sorted radial frequencies given k = L.
Finally, we set πl = 0.9, for 1 ≤ l ≤ L, and λ = 0.1.

We ran the “robustified” stochastic algorithm introduced in
Section II on the specific example shown in Figure 1, for
100 iterations, with L = 3 Gaussian components (note that
the posterior probability of {k ≤ 3} is approximately 90.3%).
To assess the convergence of VAPoRS, Figure 7 illustrates
the evolution of the model parameters ηηη together with the
criterion J . Two substantial facts showing the convergence of
VAPoRS can be deduced from this figure: first, the decreasing
behavior of the criterion ĴM , which is almost constant after
the 10th iteration; second, the convergence of the parameters
of the parametric model, particularly the means µl and proba-
bilities of presence πl , 1 ≤ l ≤ L, even though we used a naive
initialization procedure. Indeed after the 40th iteration there is
no significant move in the parameter estimates.

As discussed in Section I, one of the main objectives of the
algorithm we proposed is to solve the label-switching issue in
a trans-dimensional setting. Figures 8 shows the histograms of
the labeled samples, i.e., (θθθ (i), z(i)), with i = 1, . . . ,M, along
with the pdf’s of the estimated Gaussian components (black
solid line). Moreover, the summaries provided by VAPoRS for
each component are presented in its corresponding panel. We
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Figure 7: Evolution of the model parameters along with the crite-
rion ĴM defined in (8) using 100 iterations of VAPoRS with L = 3
on the RJ-MCMC output samples shown in Figure 1.

Comp. µ s π µBMS sBMS

1 0.62 0.017 1 0.62 0.016
2 0.68 0.021 0.22 — —
3 0.73 0.011 0.97 0.73 0.012

Table I: Summaries of the variable-dimensional posterior distribution
shown in Figure 1; VAPoRS vs. the BMS approach.

used the average of the last 50 SEM iterations as parameter
estimates, as recommended in the SEM literature; see, for
example, [32, 33]. Comparing the unimodal distributions of
the labeled samples with the ones of the posterior distributions
of the sorted radial frequencies given k = 3 shown in Fig-
ure 1, which are highly multimodal, reveals the capability of
VAPoRS in solving label-switching in a variable-dimensional
setting.

Looking at the bottom right panel of Figure 8, the role
of the point process component in capturing the outliers in
the observed samples, which cannot be described by the
Gaussian components, becomes clearer10. Note that, without
the point process component, these outliers would be allocated
to the Gaussian components and would, consequently, induce
a significant deterioration of the parameter estimates.

Table I presents the summaries provided using VAPoRS
along with the ones obtained using the BMS approach. Con-
trary to the BMS approach, VAPoRS has enabled us to benefit
from the information of all probable models to give summaries
about the middle harder to detect component. Turning to the
results of VAPoRS, it can be seen that the estimated means
are compatible with the true radial frequencies. Furthermore,
the estimated probabilities of presence are consistent with un-
certainty of them in the variable-dimensional posterior shown
in Figure 1.

To observe better the “goodness-of-fit” of the estimated
Gaussian components, the bottom panel of Figure 9 depicts

10The presence of two peaks on the left indicates that additional Gaussian
t-components could be added here to get a more accurate approximation of
the posterior. See Section III-B for a discussion of the interpretation of the
estimated intensity as a residual.
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Figure 8: Normalized histogram of the labeled samples, that is,
the samples allocated to the Gaussian and Poisson point process
components, versus the pdf’s of estimated Gaussian components in
the model (black solid line) using VAPoRS on the sinusoid detection
example. The estimated parameters of each component are presented
in the corresponding panel.
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Figure 9: Posterior distribution of the sorted radial frequencies ωωω1:k
given k (top) and normalized pdf of the fitted Gaussian components
(bottom).

their normalized densities11, under the posterior distributions
of the sorted radial frequencies given k. This figure can be used
to validate the coherency of the estimated summaries with the
information in the variable-dimensional posterior distribution.
It can be seen from the figures that the shape of the pdf’s of
the estimated Gaussian components are coherent in both the
location and dispersion with the ones of the posterior of the
sorted radial frequencies.

It is also useful, for the validation of the estimated para-
metric model, to compare the intensity [see, e.g., 35]

h =
L

∑
l=1

π̂l · N (··· | µ̂µµ l , Σ̂ΣΣl), (10)

of the corresponding point process on Θ, where we ignore the
point process component, with an histogram estimator of the

11To obtain the normalized densities, first, we normalized the estimated
pdf’s to have their maximum equal to one. Then, we multiplied the estimated
probability of presence of each Gaussian component to its corresponding
normalized estimated pdf. Thus, the maximum of each normalized density
is equal to the corresponding estimated probability of presence.
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Figure 10: Comparison of the intensity of the fitted parametric model
obtained with VAPoRS (black line) with an histogram estimator of
the intensity (light gray).
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Figure 11: Posterior distribution of the number k of number of
components (black) and its approximated version (gray) obtained
from the fitted model.

intensity (which averages over MCMC samples from all model
sizes, and is therefore an example of using the BMA approach;
see [1, Chapter 2] for more information). Figure 10 shows such
a figure for the specific example of this section where the solid
black line indicates the intensity of the estimated parametric
model. These figures also indicate the “goodness-of-fit” of the
fitted approximate posterior and the true one.

Finally, to validate both the estimated probabilities of pres-
ence of the Gaussian components and the mean parameter λ of
the Poisson point process component, Figure 11 illustrates the
posterior distribution of the number k of components together
with its approximated versions using VAPoRS. It can be seen
from the figure that, in this example, VAPoRS successfully
captured the information provided in the true posterior of the
number k of components.

Similar results have been obtained for a wide range of
configurations (with varying number of sinusoids, radial fre-
quencies, signal-to-noise ratios, . . . ; not shown in the paper).
In particular, an example with k = 30 sinusoids is discussed in
[1, Section 3.3.4]; the computation time of our Matlab/C im-
plementation, on this example where L = 30 and M = 20000,
is approximately 15 seconds per SEM iteration (on a laptop
with an Intel Core i5 M540 running at 2.53 GHz and 4 GB
of RAM).

B. Joint Bayesian detection and estimation of astrophysical

particles in the Auger project

As the second illustrative example, we show results on a
signal decomposition problem encountered in the international

astrophysics collaboration called Auger [17, 18]. The Auger
project is aimed at studying ultra-high energy cosmic rays,
with energies in order of 1019eV, the most energetic particles
found so far in the universe. The long-term objective of
this project is to study the nature of those ultra-high energy
particles and determine their origin in the universe.

These particles are not observed directly. When they collide
the earth’s atmosphere, a host of secondary particles are
generated, some of which, mostly muons, finally reach the
ground. To detect these muons, the Pierre Auger Cosmic Ray
Observatory was built, which consists of two independent
detectors: an array of Surface Detectors (SD) and a number
of Fluorescence Detectors (FD). There are in total 1600 SD
tanks, each separated from its neighbors by 1.5 kilometers,
covering a surface of about 3000 km2.

The number of muons and their arrival times can be used
as indications of both the chemical composition and the origin
of the primary particles (see [17, 18] for more information).
Here, we concentrate on the signal decomposition problem,
where the goal is to count the number of muons and estimate
their individual parameters from the signals observed by SD
detectors; while noting that, to investigate the characteristics
of the primary particles, one needs to use information obtained
from a few tens of SD’s.

This problem has been addressed by [9, 42, 43] in a
Bayesian framework, in which they developed an RJ-MCMC
sampler to jointly count the muons and estimate their pa-
rameters. They run thousands of iterations of the RJ-MCMC
sampler on the signals captured by each individual SD tank
and, then, aggregate all the samples in a secondary analysis
step to make inference on the characteristics of the primary
particle [44, Chapter 7]. To make the whole process more effi-
cient and easier to interpret, it would be preferable to “digest”
the MCMC samples associated to each SD tank, and to convey
only the resulting summaries to the next inference level. This
would also make it much cheaper to store the data required for
the second stage of inference, e.g., for traceability or future
studies. Therefore, an algorithm that faithfully summarizes the
RJ-MCMC samples is needed. In this section, we first briefly
describe the problem and then use VAPoRS to relabel and
summarize variable-dimensional output samples of the RJ-
MCMC sampler developed by [9, 42, 43].

When a muon crosses a SD tank, it generates photoelectrons
(PE’s) along its track that are, then, captured by detectors and
create a discrete observed signal. We denote the vector of
observed signal by n=(n1, . . . ,nN)∈N

N , where the element ni

indicates the number of PE’s deposited by the muons in the
time interval

[ti−1, ti) , [t0 +(i−1)t∆, t0 + i t∆),

where t0 is the absolute starting time of the signal and t∆ =
25 ns is the signal resolution (length of one bin).

Each muon has two component-specific parameters, namely,
the arrival time tµ and the signal amplitude aµ . The absorption
process of the photons generated by a muon is modeled by a
non-homogeneous Poisson point process with intensity [43,
Section 2.2]

h(t |aµ , tµ) = aµ pτ ,td (t − tµ), (11)
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Figure 12: (top) Simulated observed signal n. (bottom) Intensity of
the model h(t |aaaµ , tttµ ) defined in (11). There are k = 5 muons in the
signal with the true arrival times, i.e., tttµ = (105, 169, 267, 268, 498),
indicated by vertical dashed lines.

where pτ ,td (t) is the time response distribution, td is the rise-
time and τ is the exponential decay (both measured in ns);
see Figure 12 (bottom) for such exponential shape intensities.
Then, the expected number of PE’s in the bin i is obtained by
integrating the intensity (11) in the corresponding bin:

n̄i(aµ , tµ) = aµ

∫ ti

ti−1

pτ ,td (t − tµ)dt. (12)

Conditioning on the number k of muons and the vector of
parameters tttµ = (tµ ,1, . . . , tµ ,k) and aaaµ = (aµ ,1, . . . ,aµ ,k), and
assuming that the number of PE’s in each bin are independent,
the likelihood is written as

p(n |k, tttµ , aaaµ) =
N

∏
i=1

p(ni | n̄i(k,aaaµ , tttµ)), (13)

where p(ni | n̄i(k,aaaµ , tttµ)) is a Poisson distribution with the
mean n̄i(k,aaaµ , tttµ). Then, assuming independence of the
muons, the expected number of PE’s in the ith bin, i.e.,
n̄i(k,aaaµ , tttµ), given k, tttµ , and aaaµ becomes

n̄i(k,aaaµ , tttµ) =
k

∑
j=1

n̄i(aµ , j, tµ , j). (14)

We will now illustrate the performance of VAPoRS on a
simulated PE counting signal (see [1, Chapter 4] for results
on two other simulated experiments). The observed signal of
the illustrative example considered here consists of five muons
located at tttµ = (105, 169, 267, 268, 498) (see Figure 12). The
posterior distributions of the number k of muons and sorted
arrival times are shown in Figure 13. Note that, in this
example, there are two muons with almost equal arrival times,
i.e., the third and fourth muons.

Using the BMS approach, the model with four muons would
be selected (p(k = 4 |n) = 0.4), although M5 has an almost
identical posterior probability of 0.38. Moreover, observe
that the marginal posterior of the arrival time of the third
component is bimodal under both M4 and, more significantly
so, M5. We ran VAPoRS with L = 6 Gaussian components

k

p(k |nnn) t[ns]
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Figure 13: Posterior distributions of the number k of muons (left) and
the sorted arrival times, tttµ , given k (right) constructed using 60 000
RJ-MCMC output samples after discarding the burn-in period. The
true number of components is five. The vertical dashed lines in the
right figure locate the arrival times.

on the RJ-MCMC output samples shown in Figure 13 (note
that p(k ≤ 6 |n) = 0.94).

Figure 14 shows the histogram of the labeled samples and
the estimated parameters of the components. From the figure,
it can be seen that the bimodality effects caused by label-
switching exhibited in Figure 13 is removed completely and
the estimated Gaussian components are unimodal and enjoy
reasonable variances. In the presented summary, there are four
muons with high probabilities of presence corresponding to the
ones shown in the bottom row of Figure 13. There are also two
other muons with comparatively low probabilities of presence.

In fact, the samples allocated to the point process component
shown the bottom row of Figure 14 can be regarded as the
residuals of the fitted model, that is, the observed samples
which the L Gaussian components in qηηη have not been able
to describe. These residuals can be used, as usual in statistics,
as a tool for goodness-of-fit diagnostics and model choice.

Figure 15 illustrates the histograms of the residuals of the
fitted model for different values of L ∈ {3, 4, 6, 8}. It can be
seen from the top left panel of Figure 15 that the distribution
of the residuals corresponding to the case where L= 3 contains
a few “significant” peaks. The peaks are gradually removed
by adding Gaussian components. When L = 4, a component
is added at tµ = 261 that captures samples distributed around
the most significant peak of the top left panel of Figure 15.
However, there still exist a few peaks, particularly around tµ =
173 which are captured when L ≥ 6. However, the distribution
of residuals for the case of L = 6 and L = 8 do not differ
significantly. Note the decrease of value of λ̂ by increasing L.

Figure 16 compares the normalized intensities of the es-
timated Gaussian components for 6 ≤ L ≤ 9. When moving
from L = 6 to L = 9, the six Gaussian components that are
estimated in the case with L = 6 always exist, but additional
Gaussian components with very low probabilities of presence
are added to the summary, which improve the fit but does not
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Figure 14: Normalized histogram of the labeled samples along with
the pdf’s of estimated Gaussian components in the model (black solid
line) using VAPoRS with L = 6 on the variable-dimensional posterior
shown in Figure 13. The estimated parameters of each component are
presented in the corresponding panel.
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Figure 15: Normalized histograms of the residuals of the fitted model
using VAPoRS with different values of L = {3,4,6,8}.

change much the final inference.

IV. MONTE CARLO EXPERIMENT

The examples of Section III have illustrated the capability
of VAPoRS to relabel and summarize variable-dimensional
posterior distributions encountered in two signal decompo-
sition problems. In order to confirm these findings, we will
now investigate more systematically, by means of a Monte
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Figure 16: Normalized pdf’s of the fitted Gaussian components using
VAPoRS with different values of 6 ≤ L ≤ 9.

Carlo simulation experiment, how faithfully the approximate
posterior distribution preserves certain features of the true
posterior distribution.

One hundred realizations of the sinusoid detection experi-
ment described in Section I-B (see Figure 1) were simulated
and analyzed using the same RJ-MCMC sampler as before.
The number of RJ-MCMC iterations was set to 100 000 and
the first 20 000 samples were discarded as the burn-in period.
Then, the samples were thinned to one every fifth. To initialize
the parametric model qηηη in a systematic fashion, we set L to
the largest k such that its posterior probability is not less than
0.05. Then, during the process of the SEM-type algorithms,
if sufficient number of samples, say, 10, is not allocated
to a Gaussian component (or, equivalently, its probability
of presence fades to zero), we will remove it from the
parametric model and decrease L by one. Using this approach
generally results in approximate posterior distributions which
are “richer” than those provided by the BMS approach12, in
the sense that L ≥ kMAP, where kMAP = argmaxk p(k|y). To
initialize the Gaussian components’ parameters, i.e., the means
µl and variances s2

l , we used as previously robust estimates of
the mean and variances of the posterior distributions of sorted
radial frequencies given k = L.

Figure 17 compares various features of the fitted approxi-
mate posterior distribution qη̂ηη , obtained using 100 iterations
of VAPoRS, with the corresponding features of the true
variable-dimensional posterior distribution. These features are
described in the rest of this section.

The scatter plots shown in panels (a), (b), and (c) compare
the posterior distribution of the number k of components, i.e.,
p(k|y), with its approximated version, denoted here by p̂(k|y),
in 100 runs. We only show the posterior probabilities of k = 2
and k = 3 in this comparison, as the other probabilities were

12Later, in a post-processing step, since each Gaussian component has been
endowed with a probability of presence πl , with 1 ≤ l ≤ L, one can decide to
discard the ones with πl smaller than a certain threshold; see [1, Section 3.4.3]
for more discussion about this idea.
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close to zero. The digits situated on the right of the points
in the panel (a) indicate the number of occurrence of the
corresponding event in 100 runs and k̂MAP = argmaxk p̂(k|y).
It can be seen from these three panels that the information
in p(k|y) was well preserved by the approximated posterior
distributions.

Next we compare the performance of VAPoRS with the one
of the “direct” BMA approach (i.e., using the RJ-MCMC sam-
ples directly, and not the VAPoRS posterior) in reconstructing
the noiseless signal y0 = D a1:k. To this end, the estimated
reconstructed noiseless signal is defined as

ŷ0 = E(y0 |y)

= ∑
k∈N

∫

Θk
E(y0 |k,θθθ 1:k,y) p(k,θθθ 1:k | y)dθθθ 1:k. (15)

In the direct BMA approach, using the samples generated with
the RJ-MCMC sampler, the above integral is approximated by

ŷBMA
0 =

1
M

M

∑
i=1

D(i) âaa
(i)

1:k(i)
,

where D(i) is the design matrix of the ith vector of the
sampled radial frequencies ωωω

(i)

1:k(i)
and âaa

(i)

1:k(i)
is the posterior

mean of the amplitudes given ωωω
(i)

1:k(i)
and its hyperparameters.

To reconstruct the noiseless signal from the approximate
posterior qη̂ηη using VAPoRS, one can generate R pairs of

samples (k(r),ωωω
(r)

1:k(r)
) as explained in Section II-B and set

ŷVAPoRS
0 =

1
R

R

∑
r=1

D(r) âaa
(r)

1:k(r)
.

Panel (d) compares the normalized reconstruction errors
when using VAPoRS with the ones of the direct BMA ap-
proach in dB, defined as

10 log10

(
‖ŷ0 −y0‖

2

‖y0‖2

)
, (16)

where ‖ · ‖ is the L2-norm and we set ŷ0 = ŷBMA
0 and ŷ0 =

ŷVAPoRS
0 , when using the BMA approach and VAPoRS, re-

spectively. It can be seen from the figure that the normalized
errors of the reconstructed noiseless signals using the compact
summary obtained by VAPoRS are quite comparable with the
ones obtained using the BMA approach.

Finally, the scatter plots in the last two panels compare
the expected number of components in the intervals (0,π/4)
and (π/4,π/2) using VAPoRS with, again, the ones obtained
using the direct BMA approach. For the BMA approach, the
expected number of components in an interval T ⊂ (0;π) is

E(N(T ) | y) = ∑
k∈N

E(N(T ) | k,y) p(k | y) ≈
1
M

M

∑
i=1

N(i)(T ) ,

where N(i)(T ) is the number of radial frequencies observed
in T on the ith sample. On the other hand, from the summary
provided by VAPoRS, the expected number of components in
interval T is

Eη̂ηη (N(T ) | y) =
L

∑
l=1

π̂l N (T ; η̂ηη l) + λ̂
|T |

|Θ|
,

where N (T ; η̂ηη l) denotes the probability of T under the Gaus-
sian distribution with parameters η̂ηη l . The figures confirm that
the expected number of components in the chosen intervals
computed using both approaches are very similar.

The results shown in this section confirmed that the ap-
proximate posterior distribution qη̂ηη obtained using VAPoRS
preserves faithfully several important features of the true
posterior distribution; see [1, Section 3.4] for more results in
this vein, including a numerical investigation comparison of
the properties of estimators derived from VAPoRS.

V. CONCLUSION

In this paper, we have proposed a novel algorithm to
relabel and summarize variable dimensional posterior distri-
butions encountered in signal decomposition problems when
the number of component is unknown. For this purpose, a
variable-dimensional parametric model has been designed to
approximate the posterior of interest. The parameters of the
approximate model have been estimated by means of an
SEM-type algorithm, using samples from the true posterior
distribution f generated by a trans-dimensional (e.g., RJ-
MCMC) Monte Carlo sampler. Modifications of our initial
SEM-type algorithm have been proposed, in order to cope with
the lack of robustness of maximum likelihood-type estimates.

The relevance of the proposed algorithm, both for sum-
marizing and for relabeling variable-dimensional posterior
distributions, has been illustrated on two signal decomposition
examples, namely, the problem of detection and estimation
of sinusoids in Gaussian white noise and a particle counting
problem motivated by the astrophysics project Auger. Most
notably, VAPoRS has been shown to be the first approach in
the literature capable of solving the label-switching issue in
trans-dimensional problems. We have shown that the proposed
parametric model provides a good approximation for the pos-
teriors encountered in both applications. Moreover, VAPoRS
can provide the user with more insight concerning not only
the component-specific parameters but also the uncertainties
about their presence.

We believe that this algorithm can be useful in the vast
domain of signal decomposition and mixture model analysis to
enhance inference in trans-dimensional problems. In particular,
it is useful in large-scale applications, such as the Auger
project, where storing all samples can be problematic. Theo-
retical investigations are required in order to extend available
existing convergence results to the SEM-type algorithm used in
this paper (with correlated input data and Metropolis-Hastings
updates). Future work will focus on using VAPoRS to design
more efficient adaptive trans-dimensional MCMC methods, as
a continuation of the ideas presented in [8, 9].
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