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Abstract—Interference alignment (IA) has been well recog-
nized as an efficient approach to reduce interference at high
signal to noise ratio (SNR). However, it demands global channel
state information (CSI) at both transmitters and receivers for
precoder design in order to maximize the multiplexing gain. In
this paper, we discuss IA with delayed differential CSI feedback
for time-correlated multiple input multiple output (MIMO) block
fading channels. We consider the impact of distortion caused by
channel estimation errors and quantized CSI feedback delay,
and thus, find an optimal feedback interval to minimize this
distortion, as well as the sum rate performance. Specifically,
we derive the minimum differential feedback rate. And with
the feedback-channel capacity constraint, we further study the
relationship between the average sum rate and the feedback
interval. Analytical results are verified by simulations.

I. INTRODUCTION
Interference alignment (IA) has been developed as an effi-
cient technique to handle the interferences and then maximize
the multiplexing gain or degree of freedom (Dof) in K-user
interference channels [1]. It has been proved in [1] that with
K users single input single output (SISO) system, the capacity
per user is given by

C(SNR) = %log (SNR)+o(log (SNR)). (1)

At high SNR, the o (log (SNR)) term becomes negligible
compared to log (SN R) and then every user is able to achieve
a half Dof leading to a total of % Dof. It indicates in
[1] that, for the K-user MIMO case, the achievable Dof is
min{ N, NT}g, with V; and NN, antennas at each transmitter
and receiver, respectively.

Various approaches to design the precoder for IA schemes
have been proposed in [1], [2] with closed-form solutions,
and [3]-[5] with iterative solutions. All these aforementioned
works depend on the assumption that each transmitter and
receiver knows the full CSI. However, this is hard to realize
as the capacity feedback channel is typically limited. It has
been shown in [6]-[9] with limited feedback bits the maximum
multiplexing gain can be also achievable in a SISO system
as well as single input multiple output (SIMO) and MIMO
system, where feedback rate is still high for practical IA
implementation. However, when the channel is time varying,
it would be sufficient to feedback the difference of consecutive
CSL

In this paper, we investigate IA scheme using differential
feedback over time-correlated MIMO interference channels
with distortion caused by the channel estimation errors and the
quantized CSI feedback delay. The main contribution of this

paper is summarized as follows. 1) We derive the minimum
differential feedback rate for the time-correlated MIMO block-
fading channels. 2) We investigate the relationship between the
CSI distortion and feedback interval with feedback capacity
constraint. Further, we prove the existence of optimal feedback
interval in order to minimize the distortion. 3) The sum rate in
our situation is provided as a function of the feedback interval,
and we obtain an optimal value of average sum rate.

The rest of the paper is organized as follows. In section II,
we describe the system model. Section III derives the relation-
ship between the CSI distortion and the minimum differential
feedback, as well as the existence of the optimal feedback
interval for the time-correlated channels. In section IV, we
discuss the sum rate performance based on this differential
feedback IA scheme with distortion and the optimal feedback
interval. In section V, we provide the simulation results.

II. SYSTEM MODEL

In this paper, we consider a K-user IA scheme with
time-correlated MIMO block-fading channels, as shown in
Fig. 1, where each transmitter and receiver is equipped
with N; and N, antennas respectively. The ¢-th transmit-
ter 7;, t =1,2,..., K, transmits d; independent spatial data
streams to its corresponding receiver R;, ¢ = 1,2, ..., K. The
down-link channel coefficient H;i(n), i,k =1,2,--- | K, is
constant throughout a block, and temporal correlated with
each other in different block index n. The up-link channel
is modeled as a limited feedback channel with a capacity
constraint per fading block.

The received signal at the ¢-th receiver is defined as

yvi(n) =H; (n)X; (n) + E H;, (n)X) (n) +n; (n),
k#i
i = 1727"' 7K7 (2)

where y; denotes the N, x 1 output signal vector at R;, and
X, is the V; x d; input signal vector at 7;. H;i, (n) represents
the n-th channel coefficients from 7; to R; which is a N, x
Ny matrix with independent and identically distributed (i.i.d)
complex Gaussian entries satisfying CA'(0,07). n; is a N,. x
1 noise vector at the ¢-th receiver, modeled as i.i.d complex
Gaussian variables satisfying CN(0, 03).

A. Differential Feedback Model

Using the maximum likelihood (ML) channel estimation,
the CSI of transmitter 7 to receiver R; can be estimated at
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Fig. 1. System model: K-user IA with differential feedback
the ¢-th receiver with orthogonal pilots, and the estimation
matrix can expressed as [10]
Hi(n) = Hix(n) + He(n), 3)
where H;j(n) is the actual channel coefficients, Hgy(n)
denotes the channel estimation matrix with ML estimation, and
the entries are i.i.d. complex Gaussian variables CN (0,0}%).
H.(n) is the channel estimation error matrix, which is inde-
pendent of H;x(n), and the entries are independent complex
Gaussian distributed with CA/(0, 07 — o7).
As H.(n) is independent of H;x(n) in (3), Hix(n) is
written as [11] o2
H;i(n) = ;gHik(n) + ¥ (n), 4

where o and o2 denote the variances of Hj,(n) and H;:(n)
respectively. ¥, (n) is independent of H;;(n) with the entries
are CN (0, a,%(ai% - O‘%)/U%).

The output of the feedback channel is quantized as [10]

H,k(n) = Hlk(n) + Eik(n), 5)
where Hyy, (n) denotes the channel quantization matrix with
i.i.d. complex Gaussian entries, and E;;(n) is an independent
additive quantization error matrix, the entries are modeled as
i.i.d. complex Gaussian variables satisfying CA(0, d4), and d4
represents the average channel quantization distortion.

For time-correlated channel, we consider the differential
feedback. As the previous channel quantization matrix H; (n)
is known both at receiver and transmitter, the differential CSI
can be formulated as

o (n) = Dif f (Fu (n) B (n= 1)), (6)
where H, ;1 (n) represents the differential CSI between
H,;, (n) and Hy;, (n — 1), and Diff(-) denotes the differential
function. Furthermore, as we assumed that the CSI feedback
channel has a limited feedback bits b per fading block with T
blocks in each feedback interval, the total number of bits to
quantize the CSI is T" x b.

B. CSI Delay Model

The time-correlated channel can be modeled as a first-order
Autoregressive process (AR1) [12], where the channel remains
constant for a block duration and changes from block to block.
The current channel fading matrix H;; (n) and its delayed
version H;i (n — 1) can be expressed as

Hj(n)=aHy(n—1)+V1—-a?Wy, (n), (1)

where W, (n) is a noise matrix, which is independent of
H;, (n — 1), and the entries are i.i.d. complex Gaussian vari-
ables CA(0,07). The parameter « is the time autocorrelation
coefficient, which is given by the zero-order Bessel function
of first kind o = Jo (27 f47) , where fy denotes the maximum
Doppler frequency in Hertz, and 7 denotes the time interval.
In the block fading feedback system, given the number of
the feedback block T, the time interval can be calculated as
T =T Toiock, Where Tpocr; 1S the duration of every block.

Considering n = NT + t, the channel coefficient
of the t¢-th block in the N-th period Hjz(n) is ex-
pressed as H;, (IV,¢). In a practical communication system,
H;; (N, 1) can be only used in the next feedback interval
{H,,(N+1,1),Hx(N+1,2),...Hyx(N + 1,T)}. Hence,
the feedback delay is T'.

Next, we derive the relationship between H;, (N +1,¢) and
H;x(N,1). From (7), we obtain

Hip (N +1,1) = ay (aTHik(M 1) +4/1 - Oé%WT>

+1/1 — a2Wy, (8)
where oy = Jo(27 fqtTriock) denotes the time autocorre-
lation coefficient of ¢ blocks, and ar = Jo(27 faT Thiock)
denotes the time autocorrelation between adjacent feedback
periods.
Substituting (4), (5) int02(8) yields )
Ho(N +1,8) = ataT%I_ka(N, 1) + ataT%He(N, 1)
h h

+ ik (N,1) + apy /1 — a2 Wrp + /1 — a2W,. (9)

From (9), we can see that the first term is correlated with
the quantized CSI and other terms act as the distortion of the
feedback CSI.

III. RELATIONSHIP BETWEEN THE DISTORTION AND THE
FEEDBACK INTERVAL

In this section, we discuss the CSI distortion with channel
estimation and delayed CSI feedback. First, we derive the
minimum differential feedback rate of time-correlated MIMO
block-fading channels, assuming that a CSI distortion is given.
When the previous channel quantization matrix Hy(n — 1) is
known at both the receivers and the transmitters, the minimum
differential feedback rate can be written as

N; = inf {1 (Hik(n);Hik(nﬂHik(n - 1)) :

(10)

E[d (Hix(n). He(m)] < Aa}
function,

where  inf{-} =~ denotes an  Infimum
I (I:Izk(n)ﬂzk(n)'ﬁzk(n - 1))
information between Hy(n) and H;z(n) when Hy(n—1) is
given. d (ﬂik(n),f{ik(n)) = Hﬂzk(n) - }_Lk(n)H denotes
the quantization distortion.

represents the mutual



Since the entries of H;y, ﬂik and H;; are i.i.d. complex
Gaussian variables, the minimum differential feedback rate is
written as

Ny = inf {N,Nt T (hik(n); Fge (1) | Fogi (12 — 1)) :

E|d (has(n). hi(m)) | < daf . (1D

where 64 = A4/ (N-N;) denotes the average channel quanti-
zation distortion, hzk( ), hir(n) and h;x(n — 1) represent the
entries of Fl;.(n), Hy,(n) and Hy(n — 1), respectively.
Lemma 1: Given a one-dimensional channel quantiza-
tion distortion constraint dgq, and the (n — 1)-th channel
quantization element A, (n — 1), the mutual information

I (ilik(n); hix ()| g (n — 1))

2\ 2 _ a2 <a? —02)
I>]log a2<ag)+(1 a)a,gﬂr Rt <1+a20h>
g% (Sd 5d O' 5
h h
A (12)
where o}, o2 denote the variances of h and h respectively,
and « is the time autocorrelation coefficient.
The proof of Lemma I can be found in Appendix A.
Substituting (12) into (11), the minimum feedback rate in the
differential feedback system is given by

2 2
Ny = N, N;log <a2<£‘) + a 6;1 )0,21
h

2_g2 2
" (”;I,édf’h) (1 +a? Z%)?
From (13), we can see the relationship between the minimum
differential feedback rate and the average CSI distortion dg4.
Thus 64 can be written as )
2
o2 — (Lh) o2 - a2
h o? h
h 5 (14)

is calculated as

13)

0q = ~;
2NN — a2 (=4
In the block fading system, the numberhof feedback block and
feedback delay is 7', which means that « in (14) is given
by ar = Jo(27 faT Thiock) and Ny = Tb. Then, combining
(22) and (14), with causal feedback constraint, the quantization
distortion d between h,(n) and hi(n — 1) is given by

2 2
2 2  (op 2 2 2 ( 2 2
0_2 Uh (a?) O'}Al Qg oy (0; — oy,
2 h h 2 h
dZOZT - o D) +OZT 3
QN Ny — 0(2

ai [0
ol 3 h
fl

+ (1 - aQT) U;QL + (0}% —U,%)

Tb
1—-2%&
2
INNE — o2 <63>

o
h

+o2, (15)

which is a measurement of the quality of the periodic feedback
system. From (15), we can obtain that d is a function of ap and
T. In a periodic feedback system with limited feedback, ar
is related to 1. Therefore, the quality of feedback information
measured by d (T") can be expressed as a function of 7T'.

As we can see in (15), with extension of feedback period,
in one hand, the increase of the feedback rate results in the
decrease of quantization error. But in the other hand, the
time correlation reduces and feedback delay becomes worse.
Intuitively, there exists an optimal 7" to minimize the distortion

d(T). The detailed proof is given in Appendix B. Moreover,
as the loss of sum rate is mainly caused by the distortion in
(15), the sum rate is negatively correlated with distortion.

IV. INTERFERENCE ALIGNMENT WITH PERIODIC
DIFFERENTIAL FEEDBACK

In this section, we consider IA with periodic differential
feedback, as well as the impact of CSI distortion caused by
imperfect estimation quantization and delay on average sum
rate in one feedback period.

Each source transmits a linear combination of d; scalar sym-
bols T; = {t},¢2,--- ,t¥'} to the corresponding destination
by modulating the symbols onto the transmit direction vectors
V,; = {v},vf7~~- ,vfi}, that is, a

X, =V,T; = Z VI, (16)
. m=1
where the dlrectlon vectors v;" is a Ny >< 1 complex Gaussian

vector with |[v7|)?
power constraint.
When all of the interference is aligned to an interference

subspace of the receiver space, each receiver computes a

1 2
{ui7ui 7'u

=1, and E ||tm|| d% to satisfy the

receive direction vector U; = f’} to zero-force

the interference, where |[ur|® = 1.

As each transmitter and receiver knows the previous quan-
tized CSI H, (N — 1,1), each receiver needs to estimate
H;i(N,1) to calculate the differential information and feeds
them back to transmitter through feedback channels during
T blocks of the N-th feedback period. With casual con-
straint, quantization CSI H,;(N,1) can be only recovered
by the k-th transmitter at the (N + 1)-th feedback period
and use them to design the precoding vectors V; (N +1)
and U; (N +1), i =1,2,--- , K, respectively, satisfying the
following conditions

@ (N + 1) H; (N, 1) 97 (N +1) =0, Vi,m #p,

@7 (N + 1)) Hy, (N, 1) ¥ (N + 1) = 0, Vm, p, k # i,

@ (v + 1) "B (V1) 97 (N +1)| 2 ¢, Yiom, (17)
where c is a positive constant independent of P.

Finally, the received signal at the ¢-th receiver node is
written as

(ﬁ;"(NH))Hyi:(

Y

a” (N+1))"H;; (N+1,8) 9™ (N+1) ¢

™ (N4+1))"Hy (N+1,8) 92 (N+1) 7

pFm
K d;
DN @ (N+1) T Hy (N+1,4) 95 (N+1) 8
k#i p=1
@ (N+1))"n;,
(18)

fort=1,2,---,T.

For simplicity, we ignore the label (N,t) in the flowing.
Substituting (9) into (18), and considering the IA conditions
in (17), it yields (19), where the second term and the third
term are residual interference caused by imperfect CSIL.

From (19), the achievable average sum rate is given by



d.,', 2
@)y = @) Havrer + S @) (at (aT%He Far®, + /1 a%WT) /1= a%Wt> TPt
h

p#m (19)
K d; 2 ,
+ g > (@m) <at (aTg—;He Far®y 4+ /1— aQTWT) +/I- agwt) I 4 (@) ;.
1 p= 3
2
- 1 X d; % (ﬁZm)H H;;vm where each node has 2 antennas with transmit power P = 15
R = — 1 1 : dB and {d; = 1,7 = 1,2, 3} data stream. Th coding and
e TZZ o8 +Ii1(t)+zi2(t)—|—08 {d; ¢ :2,3} ream. The precoding

t=1 i=1 m=1

As we can see in (20), the average sum rate is also a funC&lz(le
of T. With the analysis in section III, the average sum rate
is a monotonic convex function of 7', and this will be further
verified in section V by numeric results.
V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we first provide the simulation results of the
distortion caused by estimation quantization and delay in a
feedback period. Then, we discuss the relationship between the
average sum rate and feedback intervals. Due to the analysis
in previous sections, they can both generate optimal values

which are equal in the simulation results.
A. Distortion Caused by Channel Estimation and Delay
The relationship between feedback interval and distortion

has been shown in Fig. 2. In this section, we consider the
variances of the channel coefficient, noise and estimation error
are 07 =1, 0§ =1, 02 = 02 — o7 = 0.2, respectively. Also,
we assume the duration of each fading block is 7 = 1 ms, and
the Doppler frequency is 9.26 Hz corresponding to 5 km/h
moving speed and 2 GHz Carrier Frequency.

As shown in Fig. 2, d(T') is a monotonic convex function of
T in the limited and periodical feedback system. The distortion
decrease at first is due to the increase of feedback rate
caused by extension of feedback period. But when 1" becomes
large, the time correlation o decreases, which causes the
distortion gradually increase. Additionally, we can also see
as the limited constraint per fading block b increases, the
distortion decreases.

1.1
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0.7
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0 5 10 15 20

feedback interval (T)

Fig. 2. The relationship between average distortion and feedback blocks, for
Ny =2,N;=2,06? =1and a}% =1.2.

B. Average Sum Rate
We consider the similar system setup as section A. In addi-
tion, we assume there are 3 users in the interference channel

decoding vectors are calculated by the general interference-
minimization scheme [5]. We also give the numerical results
in Fig. 3. Note that the relationship between Ryum and T is
consistent with the consequence of distortion as the analysis
in section III, as well as the optimal values. Furthermore, as b
increases, the average sum rate improves as shown in Fig. 3.

Rsum
N
N

T

[oaN o oo
(&)

1

Fig. 3. The relationship between average sum rate and feedback blocks, for
K =3 N, =2N; =20} =1, U’% = 1.2, P = 15dB per user and
{d; =1,i=1,2,3}.
VI. CONCLUSIONS

In this paper, we have investigated the delayed differential
feedback IA scheme over time-correlated MIMO block fading
channels. We found the CSI distortion was a monotonic convex
function of the feedback interval, and we proved the existence
of the optimal value of feedback interval to minimize the
distortion. We also discussed the relationship between the
average sum rate in one feedback period and the feedback
interval, which is similar as CSI distortion. In the end, we
provided the numeric results to support the analysis.
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APPENDIX A
PROOF OF LEMMA 1
Combining (3), (4), (5) and (7), we get
2 2

I:Izk(n) = a%ﬁik(n -1+ agg Eix(n—1)+a®;p(n—1)
h

h
+v1—a?W;,(n) + He(n).
21



The one-dimensional form of (21) is expressed as

2
Lk(n) =« 2h,k(n 1)+ a%eik(n — 1)+ athp(n—1)

5, h
1 = a2wi(n) + he(n).
(22)
The mutual information I (ﬁzk(n), Rk (n)|hix(n — 1)) in(11)
is written as

1= h (ha(n) hax(n = 1))

—h(mummmmxmﬂn—ly.
substituting (22) into (23) yields 3)

(

2
I=h a%eik(n— D4k (n—1)+vV1— 02w (n)+he(n)
h

—W(thN%Mn—lﬁ)

(24
Considering the inequality £ (e;5(n)|hix(n—1)) <
h(eix(n)), and h(e;x(n)) = h(ex(n — 1)), it yields
2

I>h a%eik(n— D+ o (n—1)+v1— a2wi(n
h
—h(e;x(n—1))
(25)
As eip(n—1), Yi(n — 1), wir(n) and h.(n) are complex
Gaussian variables and independent with each other, according
to the rate distortion theory of continuous-amplitude sources,

we have
2 1—a2 (0? - J,QZ) 2
1>log o? U—g +( )U,QL+ h 1+a20—g
g% 5d 5d g%
R h
(26)
APPENDIX B

PROOF OF EXISTENCE OF THE OPTIMAL FEEDBACK

INTERVAL (T)
We prove the existence of the optimal 7" by finding the

extreme value of d (7). For simplicity, we assume z =
27 faT Tpi0ck 18 @ continuous variable. Thus, the time cor-
relation is expressed as ar = Jo(27fqT Thiocr) = Jo(x),
and feedback block is calculated as a nearest integer of
T = x/(27 faTviock)- Then, (15) is rewritten as

op 1 — 2k

%) \ gke Jﬂx)(g )2

where k = b/(2m NNy faTpiock ), and d(z) is a continuously
differential function of z. Then, the first-order derivative of
d(w) is given by

d(2) =250 (@) (%)

d(z) = Jo(z)? (27)

SN
F“ K\J‘F‘M

2(2%—1)J1 ()

2\ 2
(r-ser(2))
3
klnz(.]o(;c)—(”h) Jo(xf)
2 2\ 2 b
(]
" (28)

where Jy(z) = —-L Jo(x), and J,,(x) denotes a first kind n-th
order Bessel function. As lin% Jo (z) =1 and lir% Ji(xz) =0,
the first-order derivative of d(x) is given by

;-)N

(29)

21 2\ 2
o
%
By taking a special value (there may exist many other val-

ues), ¢ = 3/2, which enables the value of the first order Bessel
function larger than the zero-order one, i.e. Ji () > Jo (3),

we have
=d(@)],_s
2
e g 28 ) eme (1) wgay)
>2§k*]0(%) <0h> h

> 28k (3)* (2

(30)
Using Taylor expansion, we have 22% = 1 + %1n2 -k +
1(31n2-k)® 4 ... Therefore, we obtain
2 ﬁk—1)—km2>3km2—km2>o. 31)
Substituting (31) into (30), it yields
d
—d > 0. 32
=C 62

As d —d(z) is a continuous function of z, combining (29) and
(32) we can obtain there exists a x satisfying ZLd(z) = 0,

when 0 < 2 < % Thus, the existence of the opt1ma1 T is

proved.
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