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Abstract—In this article, we develop a mean field game model
for the economical analysis of the integration of purely electrical
vehicles (EV) or electrical hybrid oil-electricity vehicles (PHEV)
in the smart grid energy market. The framework we develop
allows for a consistent analysis of the evolution of the price of
electricity, of the timely demand, and possibly of the energy
reserves in the grid, when EV or PHEV owners buy and sell
electricity from their cars, selfishly but rationally, based on
collective price incentives.

I. INTRODUCTION

It is widely recognized [1], [2], [3] that the future intense
penetration of electrical vehicles (EV) and plug-in hybrid
electrical vehicles (PHEV) in the energy market will generate
an important additional energy demand, and therefore a new
strain to the electricity suppliers. At the same time, EV and
PHEV owners are not only energy consumers as EVs and
PHEVs can charge as well as discharge their battery contents
from or to the electrical grid. From this perspective, these
vehicles can be seen as an additional large dimensional energy
buffer to flatten the peaky daily and seasonal energy demands.
That is, EVs or PHEVs can connect to the smart grid and
sell their energy surpluses, when needed. It is therefore an
important economical and social challenge to enforce charge
and discharge policies to EVs and PHEVs in an optimal
manner. Here, optimality must be interpreted in the sense
of maximum individual revenue obtained by the EV and
PHEV owners when participating in the energy trades, as
well as maximum performance of the electricity grid, e.g. low
probability for blackouts, large energy reserves, etc. The price
at which the energy is sold or bought depends obviously on
the total demand and offer of all electrical vehicles present
in the network (and also on the existing energy consumption
by ancillary services in the grid). The electricity price is set
by the energy market, and we therefore assume the existence
of communications between EVs and the grid. Relevant im-
portant aspects of EV-to-grid communication protocols can be
found in e.g. [4], [5], [6]. Since each EV action impacts the
satisfaction of all other EVs, it impact the next actions of the
latter in return, all of them being therefore in competition.

This competitive interaction in which each vehicle owner
decides the amount of energy to be sold or bought at any time
given a global price can be analyzed using tools from dynamic
game theory [7]. For instance, in [8], the coexistence of a
number of PHEV groups aiming to sell part of their stored

energy to the smart grid are studied using non-cooperative
game theory. The authors propose in particular an algorithm
based on best response dynamics to allow PHEV groups to
reach a Nash equilibrium point [9]. Nonetheless, in practical
scenarios, the number of vehicles is extremely large and, thus,
elements from classical game theory are difficult to handle
and in general do not bring enough insight about the global
behavior of the market.

To overcome this problem, in this paper, we study the energy
trade when the number of vehicles tends to infinity and all
vehicles can be considered identical. Within this framework,
we model the game as a mean field game [10], [11]. As
opposed to N -player games where the objective is to follow
the evolution of the state X

(i)
t of every individual player

i ∈ {1, . . . , N} at every time instant t of the game, the object
of mean field games is rather to obtain the optimal distribution
m?(t,X) of the players being in state X at time t (all players
being in the same state at the same time behave similarly). As
a main consequence, it is possible in these games to follow
the state trajectory of all players at once and to capture the
behavior of the players depending only on (i) their initial state
X0 and (ii) the joint distribution m?(0, ·), at time t = 0. The
notion of Nash equilibrium in the context of mean field games
is extended to the notion of mean field equilibrium [10], [11].
A mean field equilibrium is now a fixed point solution to
a coupled system of stochastic partial differential equations
which includes a (backward) Hamilton-Jacobi-Bellman (HJB)
equation and a (forward) Fokker-Planck-Kolmogorov (FPK)
equation. The HJB equation determines the optimal controls
αt = αt(Xt), or actions, of the players (the EV owners) in
state Xt at time t, given any density measure m, while the
FPK equation determines the density m for a given control
function αt.

In [12], a mean field game approach to the study of oil
production in unlimited time is developed where the selfish
players are oil producers and the mean field variable is the oil
selling price. In this article, we develop a similar framework
to [12] but on a finite time horizon, applied to both EVs
and PHEVs, with vehicle owners as the selfish players and
electricity price as the mean field variable of interest. The
mean-field property relates presently to the fact that every
player’s action is driven not by the individual actions of each
other player but by the collective (or mean) behavior of all
players. Indeed, we will assume that the price for electricity
is driven both by the smart grid which may enforce policies
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at specific time instants but more importantly by the total
amount of energy bought at time t by the players. The state
evolution under study will be here the evolution of the quantity
Xt of electricity in the battery of the EV owners or the joint
quantity Zt = [Xt Yt]

T of electricity and oil in the battery and
tank of PHEV owners. This state is controlled by the quantity
αt(Xt) of electricity, or (αXt (Zt), α

Y
t (Zt)) of electricity and

oil, bought or sold by players in state Xt, or Zt, at time t.
The reminder of this article unfolds as follows. In Section II,

we introduce the mean field game model for the electrical ve-
hicle problem under consideration. In Section III, we develop
the fundamental equations describing a mean field equilibrium
of the systems under study. In Section IV, we run numerical
simulations and derive conclusions in both study scenarios.
Finally, in Section V, we conclude this work.

Notations: The notations ∂xF (X,Y ), ∂xF (X,Y ),
∂2xxF (X,Y ) and ∂2yyF (X,Y ) stand for the first and second
partial derivatives of the function F along the variables X
and Y . The notation dX for X a random process is the
differential notation following Itô’s definition. The notation
[x]+ stands for max(x, 0). The function δA is the indicator
function on the set A.

II. MODEL

In this section, we develop the two models of EVs and
PHEVs under study.

A. Electrical vehicles

Consider the game to be played by N electrical vehicle
owners who decide at all time on the optimal battery level
given a utility function encompassing the economical cost or
gain of filling or emptying the battery, the (psychological) cost
of operating on the battery at certain time instants of the day,
and the disutility for the user to have a nearly empty battery.

For player i ∈ {1, . . . , N}, we denote X(i)
t ∈ [0, 1] its state

variable, corresponding to its battery level at time t ∈ [0, T ].
We assume that player i modifies X(i)

t by a quantity α
(i)
t dt,

at time t. We also assume that player i consumes a quantity
g
(i)
t dt of energy at time t. We therefore have the state evolution

for each player given by the equation
d

dt
X

(i)
t = α

(i)
t − g

(i)
t

where we implicitly assumed the differentiability of the state
variable X(i)

t . This supposes in particular that electricity will
be bought or sold constantly, instead of by bursts. This is
a rather unrealistic assumption which will be made more
realistic when we consider the mean field limit.

The objective for player i is to minimize the cost for an
initial condition {X(j)

0 }j for all players over the time window
[0, T ], given by

v(i)
(
0, {X(j)

0 }j ; {α
(i)
t }t, {α

(−i)
t }t

)
=∫ T

0

[
α
(i)
t pt({α(j)

t }j) + hi(t, α
(i)
t ) + fi(t,X

(i)
t )
]
dt+ ki(X

(i)
T )

where α
(−i)
t = [α

(1)
t , . . . , α

(i−1)
t , α

(i+1)
t , . . . , α

(N)
t ]T are the

controls of all players but i at time t, the term pt({α(j)
t }j)

is the price of electricity (identical for all players) given
the instantaneous energy demand

∑
j α

(j)
t (we assume that

both buying and selling prices are equal), hi(t, α) is the
psychological cost for player i to perform a change αdt
in the battery level at time t (some time periods are more
appropriate than others to purchase or sell energy depending
on the player’s routine), fi(t,X) is the cost for player i to be
in state X at time t (typically, one does not wish to have a
low battery level in certain periods of time), and ki(X) is the
(terminal) cost of being at state X at time T (this avoids the
undesirable effect that all energy is sold in the last instants
of [0, T ]). Details on specific choices for these functions are
provided later.

In game theory, this formulation is known as an N -player
continuous-time differential game of pre-specified fixed dura-
tion T [7]. The notion of equilibrium in this game corresponds
to the state of simultaneous satisfaction of all players in the
sense of Nash [9], [13]. That is, the family of controls {α(i)

t }t,i
engender a Nash equilibrium if

v(i)
(
0, {X(j)

0 }j ; {α
(i)
t }t, {α

(−i)
t }t

)
≤v(i)

(
0, {X(j)

0 }j ; {α
′(i)
t }t, {α

(−i)
t }t

)
for each i, with {α′(i)t }t any admissible family of controls of
player i over t ∈ [0, T ].

The interest of Nash equilibria in the EV interaction lies in
the fact that, at such state, all the EVs are using a control policy
which is optimal with respect to the control policy of all the
other EVs. Otherwise stated, if the system is at equilibrium,
the unilateral deviation of any player would lead it to a higher
cost and, thus, none of the players has a particular interest on
unilaterally changing its control functions. However, analyzing
the Nash equilibrium of a game where N is a large number is
a very complex problem. In fact, even if a Nash equilibrium
exits, it would lead to solutions that are inherently difficult to
exploit. In particular, it is clear that, under this formulation,
any change in the battery level of a given player impacts all
other players which must react as a consequence. Instead, we
will consider a simplification of this framework by assuming
a fluid limit as N grows large. The foundations of this
approach were established in [14]; see also [15] for recent
results. Within this framework, instead of considering the
vector (X(1)

t , . . . , X
(N)
t ) of state spaces at time t, we consider

the variable Xt with density measure m(t,Xt) at time t,
defined as

m(t,X) = lim
N→∞

1

N

N∑
i=1

δ{X(i)
t ≤X}

(X)

assuming the existence of such a fluid limit. The control
variable is now a variable αt with density. Since it would be
inappropriate to assume that all individual players consume
exactly the same density of electricity per time instant, we
consider instead that the energy consumption is a random
variable with mean gtdt and with variance σ2

t at time t; this
is modelled through the variable gt[dt+σtdWt], where Wt is
a Brownian motion and the differential notation dWt must be
interpreted in the sense of Itô [16]. All other cost functions are



3

supposed identical for all players, so we substitute in particular
the functions h, k and f to hi, ki and fi, respectively, and
denote pt(m(t, ·)) the price of electricity given the density
m(t, ·) at time t.

With these updated notations, the objective for any given
user is to solve the following stochastic control problem

v(0, X0) = inf
(αt)t∈[0,T ]

E

[∫ T

0

C(αt, Xt,m, t)dt+ k(XT )

]
dXt = αtdt− gt [dt+ σtdWt] + dNt (1)

where dNt is a reflective variable to ensure that Xt remains
in [0, 1].

Regarding the cost function, C is given by

C(αt, Xt,m, t) = αtpt(m(t, ·)) + h(t, αt) + f(t,Xt).

It would stand then to reason to consider that pt(m)
writes as a function of the total instantaneous demand∫
αt(X)m(t,X)dX . However, for computational ease, we

will instead consider that prices are fixed not by the total
consumption

∫
αt(X)m(t,X)dX but by the total anticipated

consumption gt+ d
dt

[∫
Xm(t,X)dX

]
, where both quantities

only differ by an additional Brownian motion term when
σt > 0. That is, we assume that the energy providers do not
have the information on the instantaneous demand at time t
but are able to track the density m(t, ·) at all time. This is a
reasonable assumption as this only requires for the market to
obtain the status information feedback from a not-necessarily
large sample of electrical vehicles at different (sampled) time
instants.

We therefore define pt as

pt(m) = D(t, ·)−1
(
gt +

d

dt

∫
Xm(t,X)dX

)
where D(t, p) is the total energy demand function at time t
for a given price p. This function is central to create incentive
behavior among players. For instance, at peak demand periods
for electricity services other than EVs, pt may be increased
for negative EV electricity demand and decreased for positive
EV electricity demand so to enforce car owners to sell rather
than buy electricity.

This fluid limit formulation now defines a mean field game,
as introduced in [10], [11]. Our specific problem setting is
as a matter of fact very close to the work [12]. In this
framework, the solutions to the control problem (1) can be
seen as generalizations of Nash equilibria [9] in the equivalent
N -person game. It is in general difficult to prove that the
mean field solutions are well-defined limits of the N -person
game, see e.g. the discussions in [17]. Similarly, it is in general
difficult to prove the existence and uniqueness of solutions to
(1) and, if so, to derive a numerical method that is provably
converging to the solution as the discretization step tends to
zero, see e.g. [18]. We will not try to prove any of these aspects
here, our main target being rather to informally explore the
potentials of the mean field game setting to the economical
problem of optimal policies for EV and PHEV penetrations in
the smart grid. Similar to [12], only the numerical results will
convey a justification of the correct behavior of our method.

In the next section, we improve the EV framework by
turning the purely electrical vehicles into PHEVs, introducing
therefore the possibility for players to select between two
alternative sources of energy.

B. Hybrid vehicles

We now consider that players choose to buy, sell and
consume either electricity with the elastic price defined as
in Section II-A or a fix-priced alternative energy source, oil.
We consider immediately the mean-field game limit. In this
scenario, the state function becomes a two-dimensional vector
Zt = [Xt Yt]

T, where Yt ∈ [0, 1] is the content of the oil tank.
We now replace the control αt by a vector γt = [αXt αYt ]

T,
where αXt ∈ R is the content of electricity bought or sold
by the vehicle owner at time t and αYt ≥ 0 is the oil
content bought by the owner at time t (oil cannot be sold
once bought). In addition, we denote β(t, Zt) ∈ [0, 1] the
relative quantity of electricity being consumed by the PHEVs
at time t. That is, we assume that all vehicles have a common
policy of energy consumption in the considered time window.
Typically, taking β(t, Zt) = Xt/(Xt + Yt) translates a policy
where energy is consumed indistinctly of the energy source.
Note that, depending on the typical distances covered by
PHEV owners at time t (e.g. weekdays against weekends),
β(t, Zt) may explicitly depend on t. Alternatively, we may
have considered β(t, Zt) an additional control variable which
can be set optimally by the car owner depending on the status
of the energy market. For simplicity of analysis and because
this involves a somewhat unrealistic constant calculus from
the PHEV owners, we do not consider this scenario here. We
now call m the density for the variable Zt.

The price for electricity is given by the function pXt (m)
updated as follows:

pXt (m) =

D(t, ·)−1
(
gt

∫
Z

β(t, Z)m(t, Z)dZ +
d

dt

∫
X

Xm(t, Z)dX

)
.

The price for oil is given by pY = pYt , supposed constant
throughout [0, T ], which is a satisfying assumption on a
daily or even weekly basis. The optimal control problem now
formulates as:

v(0, Z0) = inf
(γt)

E

[∫ T

0

C(γt, Zt,m, t)dt+ k(ZT )

]

dZt =

[
αXt
αYt

]
dt−

[
β(t, Zt)

1− β(t, Zt)

]
gt [dt+ σtdWt] + dNt

where v(0, Z0) = v(0, Z0; {γt}t) assumes the dependence on
{γt}t and where

C(γt, Zt,m, t) = αXt p
X
t (m) + αYt p

Y + h(t, γt) + f(t, Zt)

with similar notations as previously.
Now that both mean field game formulations have been laid

out, we concentrate on solving these optimal control problems
in the next section.
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III. MEAN FIELD EQUILIBRIUM

In this section, we analyze the mean field game described
in the previous section. In this context, the notion of Nash
equilibrium introduced previously is extended to the notion of
mean field equilibrium [10], [11].

As already mentioned, the mean field equilibrium is ob-
tained as a solution to a coupled system of stochastic partial
differential equations constituted by a backward HJB equation
and a forward FPK equation. In this section, we detail these
fundamental equations in the EV and PHEV frameworks of
Section II-A and Section II-B, respectively.

A. Electrical vehicles

Consider the optimization problem of Section II-A, and
define the following value function,

v(u,Xu) = inf
(αt)t∈[u,T ]

E

[∫ T

u

C(αt, Xt,m, t)dt+ k(XT )

]
.

Then, the measure m?(t,Xt) and the control functions α?t
at the mean field equilibrium satisfy the following system
of coupled differential equations given the initial distribution
m(0, ·). First, an HJB equation determines the optimal trajec-
tory v?(t,Xt) in the control problem (1). That is,

0 = ∂tv(t,X) + inf
α
{α∂xv(t,X) + C(α,X,m?(t,X), t)}

− gt∂xv(t,X) +
1

2
g2t σ

2
t ∂

2
xxv(t,X). (2)

Then, an FPK equation determines the measure m?(t,Xt) of
the game state. Precisely, this is

∂tm(t,X) = −∂x [(α?t − gt)m(t,X)] +
1

2
g2t σ

2
t ∂

2
xxm(t,X)

(3)
where α?t is the argument of the infimum in (2). Details of
how these equations are obtained can be found in e.g. [19].

We assume here that the cost h(t, α) for control is quadratic
and reads

h(t, α) =
1

2
htα

2

with ht > 0 representing the unwillingness of the car owner
to buy or sell energy at time t. This choice is seemingly
non-natural as it implies that users are more willing to buy
or sell small quantities rather than large quantities of energy.
Nonetheless, under the mean field game formulation, this has
to be understood as the fact that, on average, only a limited
population of users at time t is willing (or able) to buy
energy. For instance, during nighttime, many EVs are plugged
to an electrical source so that ht is smaller at night (more
users can ask for energy). As such, intuitively, making the
(psychological) cost of buying or selling energy larger for
larger amounts of energy forces only part of the population
to buy or sell. As for the particular choice of a quadratic cost
rather than any other cost function, it is convenient for calculus
mostly and could be easily replaced by more appropriate
functions.

Under these conditions, from Pontryagin’s minimum prin-
ciple [19], we immediately have an expression of the optimal
control α?t as the minimizer of

inf
α
{α∂xv(t,Xt) + C(α,X,m?, t)} .

Precisely, we have

α?t = −
1

ht
[∂xv(t,Xt) + pt(m

?)]

possibly submitted to some boundary conditions to ensure that
Xt ∈ [0, 1] at all times. In the remainder of the article, we will
assume this condition always met, so that at no time we will
consider EV owners with completely full or completely empty
batteries.

The HJB equation now becomes

0 = ∂tv(t,X)−
(

1

ht
[∂xv(t,X) + pt(m

?)] + gt

)
∂xv(t,X)

− pt(m
?)

ht
[∂xv(t,X) + pt(m

?)] + f(t,X)

+
1

2ht
[∂xv(t,X) + pt(m

?)]
2
+

1

2
σ2
t g

2
t ∂

2
xxv(t,X)

which can be simplified as

∂tv(t,X) =
1

2ht
(∂xv(t,X) + pt(m

?))2 + gt∂xv(t,X)

− f(t,X)− 1

2
σ2
t g

2
t ∂

2
xxv(t,X)

and the FPK equation is

∂tm(t,X) =(
1

ht
[∂xv

?(t,X) + pt(m(t,X))] + gt

)
∂xm(t,X)

+
1

ht
∂2xxv

?(t,X)m(t,X) +
1

2
g2t σ

2
t ∂

2
xxm(t,X).

This defines the two fundamental differential equations to be
solved for the optimal EV policy. We now turn to the resolution
of the PHEV problem.

B. Hybrid electric-oil vehicles
Under the notations of Section II-B, and similar to the

previous section, we consider the value function

v(u, Zu) = inf
(γt)t∈[u,T ]

E

[∫ T

u

C(γt, Zt,m, t)dt+ k(ZT )

]
where we remind that Zt = [Xt Yt]

T] is a two-dimensional
vector, with a given initial distribution m(0, ·).

As in the EV formulation, we consider the cost function h
as quadratic, as follows

h(t, γt) =
1

2
hXt (αXt )2 +

1

2
hYt (α

Y
t )

2.

The HJB equation is here given by

− ∂tv
= inf

(γ)

{
pXt α

X + pY αY + h(t, γ) + (αX − gtβ)∂xv

+(αY + gt(β − 1))∂yv
}
+ f(t, Zt)

+
1

2
σ2
t g

2
t

[
β2∂2xxv + 2β(1− β)∂2x,yv + (1− β)2∂2yyv

]
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with notation γ = [αX αY ] and β = β(t, Zt).
Due to the parameter decoupling, the optimal (αXt )? and

(αYt )
? are easily found as

(αXt )? = − 1

hXt
(pXt (m?) + ∂xv)

(αYt )
? = − 1

hYt
(pY + ∂yv)

with possibly additional constraints to ensure (αYt )
? ≥ 0 and

Zt ∈ [0, 1]2. We will assume all these conditions met for
simplicity.

The FPK equation is in turn given by

∂tm =

− ∂x
[
(αX?t − βgt)m

]
− ∂y

[
(αY ?t + (β − 1)gt)m

]
+

1

2
g2t σ

2
t

[
β2∂2xxm+ (1− β)2∂2yym+ 2β(1− β)∂2xym

]
where we remind that β = β(t, Zt) depends explicitly on Zt.

Assuming σt = 0 to obtain compact forms, we then have,
after substitution, the HJB equation

∂tv =
1

2hXt

(
∂xv + pXt (m?)

)2
+

1

2hYt

(
∂yv + pYt

)2
+ gtβ∂xv + gt(1− β)∂yv − f

where m? is solution to the FPK equation

∂tm =

[
1

hXt
(∂2xxv

?) +
1

hYt
(∂2yyv

?) + gt [∂xβ − ∂yβ]
]
m

+

[
1

hXt
(pXt (m) + ∂xv

?) + βgt

]
∂xm

+

[
1

hYt
(pY + ∂yv

?) + (1− β)gt
]
∂ym.

with v? the solution to the HJB equation.
For β(t, Zt) = Xt

Xt+Yt
, we have in particular

gt [∂xβ − ∂yβ]m =
1

Xt + Yt
gtm.

In all generality, we cannot go further with the resolution
of these equations which need to be solved numerically. This
is the target of the next section in which simulation results are
provided.

IV. SIMULATIONS

In this section, we provide simulation results for the elec-
trical vehicle schemes developed in Section II-A and Section
II-B.

A. EV analysis

We first consider the scenario of Section II-A. We assume
a realistic 24-hour scenario where players have an average
consumption rate and a possibility to buy or sell that depend
on specific periods of the day (t = 0 stands for midnight
and t = 1 for midnight a day after). However, for the
sake of simplified interpretation, we consider only a rough
approximation of the system parameters. Note in particular
that all parameters chosen below are designed in the interest

of readability of the results and do not rely on explicit models
taken from the literature.

Specifically, the demand function D(t, p) is an affine func-
tion of the price. We take here p = (D(t, p))

+
+ 0.5, which

ensures a positive selling price. The major trend is satisfying
as it assumes that the more electricity is drained from the
smart grid, the more expensive additional withdraws of energy.
The threshold pt ≥ 0.5 provides a price for the electricity
sold. Also note that D does not depend explicitly on t and,
therefore, we assume here that the reserves in the electricity
grid do not fluctuate sufficiently during the day to impact the
price of the electricity dedicated to electrical vehicles. We
may typically have chosen to change the threshold 0.5 so to
encourage selling electricity at peak hours. We take the mean
consumption rate gt in such a way that gt > 0 at any time and
with two consumption peaks in the morning and in the evening
(to model e.g. EV owners leaving to work and returning).
This is depicted precisely in Figure 1. The variance σ2

t on
the consumption is taken equal to 0.01 at all time, ensuring a
standard deviation of the order of 10%. We then consider ht
to be maximal at night (since most EVs are then plugged) and
minimal in the middle of the day (assuming that most EVs
cannot be plugged at workplaces). This is given precisely in
Figure 2. The cost f is given by f(t,X) = 10(1 − X)2 in
order to constrain the players to fill their batteries. Finally, the
boundary and initial constraints for the resolution of the system
of HJB and FPK equations enforce the following policies:

• m(0, ·) is a triangle distribution centered at 0.5 and with
support [0.3, 0.7],

• v(T,X) = 2(1−X)2 is a cost on being far from X = 1,
• ∂xm(0, ·) = ∂xm(1, ·) = ∂xv(0, ·) = ∂xv(1, ·) = 0 in

order to force the energy content to lie in [0, 1].

To solve the system of equations in (m, v), we proceed
by solving sequentially the HJB and FPK equations using a
simple fixed-point algorithm until convergence. We do not
ensure here that this algorithm does converge, neither do
we ensure that the solution obtained is the solution sought
for. Using a finite difference method on a sampling of 192
points on both time and battery level axes, the above scheme
leads to the density evolution m? depicted in Figure 3. A
few observations can be already made from this figure. From
t = 0 to t = 0.1, the tendency is for the EVs to charge large
amounts of electricity, which is due to the fact that players are
more willing to charge in nighttime than in daytime. Then,
due to both the increase in consumption and the decreased
willingness to buy electricity (or the impossibility to do so for
some players) around t = 0.3, the average quantity diminishes.
The low consumption at t = 0.5, in spite of the low willingness
to buy electricity, then generates a slight increase in the mean.
At t = 0.7, the sharp electricity consumption then generates
a large loss. After t = 0.8, electricity is bought again so to
satisfy the final conditions. It is interesting to note that, due
to the small variance σ2

t that was chosen, the overall tendency
is for m? to concentrate into a single mass. This is a usual
phenomenon which determines the steady state if time were to
continue with constant values for all time-dependent system
parameters.
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Fig. 1. Mean energy consumption gt of EVs as a function of time.

From the expression of m?, v?, and the equations derived
in Section III, it is now possible to obtain much information
about the system. In particular, it is interesting to follow the
electricity demand D(t, pt(m

?)) and the price pt(m?) defined
here as (we remind that both quantities only differ by an
additional term 0.5 if both are positive)

pt(m
?) = 0.5 +

[
gt +

d

dt

∫
Xm?(t,X)dX

]+
.

This is depicted in Figure 4, where we see that the overall
tendency is to buy larger amounts of electricity early in time.
The price is therefore decreasing with time but for a slight
increase around the peak time t = 0.7. The price curve
has very sharp edges that can be interpreted as before as
a consequence of the evolution of gt and ht mainly. With
this elementary linear price policy, it is therefore possible to
reduce the expected refills at peak hours, e.g. around t = 0.7.
Obviously, this interpretation has to be taken with extreme
care. In particular, note that at t = 1 the demand is very low,
while it should coincide with the demand at time t = 0 if we
had been analyzing a weekly or monthly behavior instead of
a single day behavior. Such a property should appear if the
terminal cost constraint were reinforced.

B. PHEV analysis

In this second section, we wish to analyze the behavior of
hybrid vehicles as described in Section II-B. Since solving
three-dimensional differential equations is time-consuming,
we only provide results for the time scale discretized in
12 samples and for the “spatial” scales discretized both in
16 samples. For each differential equation, the resolution is
performed by iterating the resolution of the two-dimensional
differential equations along time and electricity scales for each
fixed oil tank level, and time and oil scales for each fixed
battery level. Then the system of HJB and FPK differential
equations is solved by further iterating a fixed point algorithm
as in the previous section. For simplicity of interpretation,
we consider here a time-independent scenario where both
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Fig. 2. Willingness h−1
t of players to operate energy transactions as a

function of time.
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gt = 0.2 and ht = (125, 125)T are constant with time.1

We take the electricity price policy to be, as above, pX =(
D(t, pX)

)+
+0.5. The oil price is set to pY = 0.7. This is a

natural choice as it is expected that an approximate quantity
gt = 0.2 will be asked for at any time to cover for the energy
consumed, hence a price for electricity pXt ' 0.7. We impose a
constraint f(t, Z) = 20(2−X−Y )2, where Z = [X Y ]T. The
relative consumption β of oil and electricity is proportional to
the total quantity of energy, that is β(t, Z) = X/(X + Y )
and therefore 1− β(t, Z) = Y/(X + Y ). We take σt = 0 for
simplicity. The boundary constraints are identical to those in
the previous section. As for the terminal constraint on v, it
imposes that v(T,Z) = 10(2− (X + Y ))2.

We consider the scenario where m(0, ·) is a (properly trun-
cated and scaled) Gaussian distribution with mean (0.4, 0.6)T

and covariance 0.02I2, with I2 the 2 × 2 identity matrix.
That is, we assume that, initially, most vehicles have more
oil than electricity. This is depicted in Figure 5. We then let
the system evolve freely under the above set of constraints. It
is natural to guess that the overall behavior is a decrease of
either or both quantities of oil and electricity to zero if the
prices are too high, or an increase of either or both quantities
to one, if the prices are more reasonable. What is interesting to
observe is the trajectory jointly followed by the players. The
resulting distribution m?(1, ·) is depicted in Figure 6. What
we observe in the aforementioned conditions is that the initial
distribution has shifted towards an increase of both electricity
and oil levels, with a bigger increase of the mean battery level.
Another observation is that the distribution tends to stretch
along the X = Y diagonal in the figure, translating the fact
that oil and electricity are seen almost as equivalent goods due
to the loosely constraining energy cost policy.

Among the different further analyses, in Figure 7, we
consider a section of the distribution of the optimal transaction
policy (αXt )? and (αYt )

? at time t = 0+, for Yt = 0.5 and
Yt = 0.9 (we remind that both (αXt )? and (αYt )

? are functions
of t, Xt and Yt). That is, we observe the initial behavior
of players with half-filled oil tanks and almost completely
filled oil tanks. It is observed that, for users with a very low
level of electricity, buying electricity is an appealing choice.
This can be interpreted by the fact that, as few players are
in strong need for energy, it is possible to acquire a large
quantity of electricity at a reasonable price. Those players
with low reserves of electricity are the main beneficiaries. For
users with already a reasonable level of electricity though,
electricity and oil are seen as equivalent goods. As a matter
of fact, our results also show that, at time t = 0+, the price of
electricity equals pXt = 0.706 ' pYt . That is, the players with
low electricity levels draw as much electricity as is needed to
reach an equilibrium price with oil. Now, it is also observed
that, for users with large quantities of oil, electricity becomes
a compelling purchase in order to further increase the total
quantity of energy (since f imposes Xt + Yt to be close to
2), hence a larger incentive for buying electricity when the
battery level is not large. When both battery and tank levels

1Such a large value for the entries of ht is motivated by faster algorithm
convergence reasons, although it inhibits as a counterpart fast variations of m
along time.
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Fig. 5. Initial distribution m(0, ·) at time t = 0, as a function of both levels
of battery and oil tank.
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Fig. 6. Final distribution m(1, ·) at time t = 1, as a function of both levels
of battery and oil tank.

are alike, we see that the quantity of electricity purchased is
the same as the quantity of oil purchased.

Obviously, from the very generic setting of both EV and
PHEV problems, many more scenarios can be carried out
so to evaluate the actual impact of the EVs and PHEVs on
realistic smart grid scenarios. The simulations above and their
interpretations only provide a framework of understanding of
fully rational vehicle owner’s behavior.

V. CONCLUSION

In this article, we proposed a game theoretical framework
to model the behavior of electrical vehicle and hybrid vehicle
owners aiming at selfishly maximizing their satisfaction, under
electricity pricing policy constraints. As the number of selfish
players is large, players are alike, and the pricing policy
depends on the action of all participants, we then turned the
problem into a mean field game, for which we obtain the
fundamental differential equations. We solved these equations
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Fig. 7. Optimal transactions at time t = 0+ for players with different oil
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numerically, from which conclusions were drawn which give
new insights on the way to optimize the electrical vehicle
penetration in the smart grid.
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