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Abstract—Future low cost wireless networks are expected to
provide high data rates with low power consumption. A dense
deployment of distributed small-cells, within the existing network
infrastructure, is one of the candidate solutions to achieve this
goal. Unfortunately, the aggregate signal resulting from the
transmission of these multiples small cells can be considered
as an electromagnetic (EM) pollution for passive users who do
not carry wireless devices. These users are victim of primary
electromagnetic ’smokers” and request from operators to be
spared from these new base stations. The aim of this contribution
is to propose an electromagnetic friendly environment with
minimum EM pollution, while satisfying the quality of service
requirements. The technique employed, called Distributed Space-
Time Reversal (DSTR), focuses the energy on active users
(equipped with wireless devices) and is able to spare passive users
from EM waves. In this contribution, we provide a theoretical
analysis of the technique and show the impact of active/passive
users with respect to the number of cells.

I. INTRODUCTION

Recently, wireless networks are experiencing an ever-
growing mobile devices’ traffic demand [1]. This is causing a
non-negligible increase of the electromagnetic (EM) pollution
in the environment. Therefore, the concept of ”Green Com-
munications” [1] has recently received considerable attention.
It consists of finding intelligent and innovative solutions to
improve the energy efficiency, to reduce the electromagnetic
pollution on passive users and to enhance the performance
metrics of wireless communications in dense networks where
more and more devices have to transmit.

Few methods can be used to minimize the radio waves
impinging passive users. One of the considered strategies
supports algorithms performing real time users’ localization
[2]-[4] and differentiation between people with and without
wireless devices. Then, beamforming and beamnulling are
applied for active and passive users, respectively. In this
approach, the angular resolution of the antennas, as well as
the real time user’s localization, are considered challenging
issues. A possible alternative is the adoption of time reversal
techniques [5]. The operation principle of the TR technique
consists in exploiting the environmental multi-path and the
channel reciprocity, to focus temporally and spatially an elec-
tromagnetic (EM) signal towards the active users [6], [7].

Time reversal (TR) is used in acoustics and ultrasound do-
mains [8], [9] since more than a decade, while the application
of TR method in wireless communications is quite recent
[5], [10]-[12]. In [5], a TR approach is used to alleviate the
interference that a transmitter may cause to an un-intended
receiver belonging to the same single cell with one antenna
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at the base station. The performance depends mainly on the
propagation characteristics (number of paths, path loss as well
as the power delay profile (PDP)).

In this contribution, we extend the analysis proposed in
[5] to the case of a distributed multiple input multiple output
(MIMO) small cell setting by replacing the delay domain by
the space domain. We show in particular how the TR can
be implemented in a distributed manner with multiple small
cells even in the case of channels with a limited number of
paths. The performance is analyzed theoretically and assessed
by simulations to show the reduction in terms of EM pollution
towards passive users.

The rest of the paper is organized as follows. Section II
introduces the multipath channel and the system model. Sec-
tion III gives the performance of a TR-based transmission in
terms of pollution on passive users. Section IV shows how the
active user’s location affects the overall system performance.
Simulation results and analysis are presented in Section V
whereas conclusions are drawn in Section VI.

II. SYSTEM MODEL

A. Channel Model

We consider a single input single output channel where the
received signal can be written as [13]
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This may be interpreted as the output of a complex baseband
time-varying linear channel with an impulse response equal to
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After sampling, the channel can be expressed as:

L-1

h(k,t) = a(t)g(kT — 1), 3)
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where T is the sampling period and g is the filter at the
transmitter side. Note that, in this paper, we assume slow
fading and time invariant channels for both active and passive
users. The discrete representation of the channel impulse
response (CIR) at time k£ may be modeled as
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where hg; = ho[l], L, and hp; = h,[l], L, represent the
I*" tap complex amplitude and the number of taps of the
channel between the transmitter and an active and passive
user, respectively. To gain some insight into the TR system
while keeping the model analytically tractable, the CIRs
associated with different receivers at different locations are
assumed to be independent, i.e., the paths of each CIR are
uncorrelated. Moreover, each h,[l], h,[l] is a random variable
with associated means (m,,m,) and energy.

E[|hq[1)]] = P[] (6)
E[|hy[1]]?] = PP[I), 7

where PDP® = [P°[0], P*[1],...P*][L — 1]],PDP?P =
[PP[0], PP[1],...PP[L — 1]] are the vectors of power delay
profile for active and passive users respectively.

B. TR Description

In traditional TR-systems, the end user transmits a delta-like
pilot pulse which propagates to the base station through the
multi-path channel. Subsequently, the base station estimates
the channel and time reverses the received waveform. A
normalized time reversed version of the received signal is then
used as a basic waveform, obtained as

h[La —1— k]

glk] = k=0,1,...L,—1. (8)
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The multi-path channel forms a natural matched filter to the
basic waveform g[k],k = 0,1, ..., L, — 1, and hence a peak is
expected at the receiver [5].

The base station loads the data stream on the basic wave-
form and transmits the signal to the end user.. In practice,
since the baud rate is much lower than the sampling rate, an
up/down sampling (Fig. 2) is performed using a rate back-off
factor D equal to the ratio of the sampling and the baud rate
[14].

Let us consider the simple case given by a single antenna
base station, an active and a passive user. If the sequence of
information symbols are denoted by x[k] and assumed to be
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Figure 2. The block diagram of a TR-based communication system.

ii.d complex random variables with zero mean and a variance
P, the transmitted signal can be expressed as:

slk] = (17 x g)[] ©)
where z[PI[k] is an up-sampled sequence of x[k] given by:

2IPI[k] = { g[k/D], it kmod D =0

if k mod D#0

The received signal y[k] at the receiver is the result of
the convolution of the transmitted signal s[k] and h[k] plus
an additive white Gaussian noise (AWGN) n[k] with zero
mean and variance 2. The receiver simply performs a one-
tap gain adjustment to the received signal, i.e., a multiplication
by a coefficient (3, and then down-samples it with the back-off
factor D. The signal before down-sampling can be written as:

y PR = B(aPx g o« h) (K] + Bilk). (10)
Then, the down-sampled signal y[k] is
(2L-2)/D
ylkl = Y Blhxg)Dlalk —1 +pnlk], (D
1=0

where L is equal to the number of channel taps; with
k=0,1,...,2L-2, and n[k] = R[DEk|, white Gaussian additive
noise with zero mean and a variance of o2.

III. PERFORMANCE ANALYSIS

In this section, we consider M small-cells and compare
the performance of the TR approach for active and passive
users. Accordingly, we compute the signal to noise ratio (SNR)
experienced by each user, and propose a strategy to minimize
the EM pollution on the passive ones. Subscripts ’a’ and ’p’
are added to equation (11) to consider active and passive users,
respectively.

A. Active user’s case
The active user’s received signal can be written as:

M (2Lq:;—2)/D
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By denoting P as the power of the transmitted signal z[k]
and neglecting the noise term, the received power P, may be

written as:
M (2L.;—2)/D
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where F, represents the expectation over x.
Since the signal-to-noise ratio (SNR) for the active user  For (Lqi —1)/D & N

depends on each CIR realization, the average SNR is then
given by

E[P,
E[SNR}150] = %- (20)
Within this setting we have two cases:
x For (Ly; —1)/D € N
p (2L4i—2)/D
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2D
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with v = Z P2(l), A, Bi, Cy, Dy, E; and F; given in
1=0
equations (12), (13), (14), (15), (16) and (17) respectively.

Due to lack of space, we do not provide the case for
(Lai —1)/D ¢ N. It can be found in [15].

As D increases (sampling rate much greater than the baud
rate), the summation will reduce to only one term (first channel
sample element) and the F(SN R?) will gradually decrease in
both cases. Then,

M P M M

E(SNRjys0) =) E(SNE{)+—5> > By (23)
i=1 @ =1 j=1
i

with Ly; and L,; are equals to the number of channel taps
between the active user and the considered small cell ¢ and j
respectively. B;; is given in equation (22).
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B. Passive user’s case

In this part, the expected SNR for a passive user
(un-intended receiver) is compared to the one obtained for
the active user. The received signal from the transmitter at the
victim receiver may be expressed as:

M (
Yplk] = Z
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> (hpixg)[Dllafk — 1] +nylk], (24)
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where L; = (Lq; + Lp;)/2. Since the SNR for a passive user
depends on each CIR realization, the average SNRY is given
by

E(P,
E[SNRP| = (2 )
UP
P (2L—2)/D
=2 | 2 @+ D)+ A7+ B,
p u=0

(25)
where A, B, C! and D, are given in (26), (27), (28) and
(29) respectively. Note that that the average SN RP depends

on the power delay profile or the total energy of the active
user.

Then,
M P M M
E(SNR} 190) =Y SNE{+—5> > Bj;  (30)
i=1 P =1 j=1
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with L,; and L,; are equal to the number of channel taps
between the passive user and the considered small cell ¢ and
J» and with Bj; given by (31).

The choice of an active user affects then directly the EM
pollution of the passive users. Hence, an efficient choice of the

active user of interest has to be used as a candidate receiver.
The goal will be, therefore, to minimize the sum of E (SN RP)
on all the passive users.

IV. OPTIMIZATION

Consider a scenario with K active users and M passive
users. A specific active user has to be chosen in order
to minimize the electromagnetic waves on the majority of
passive users. On the other hand, E(SN R®) is a discontinuous
function and its optimization is not trivial. Out of the possible
strategies, the following algorithm may be adopted

M

min E[SNRY],

(32)
i€{A} =

where A is the set of the active users and ,j are the active
and passive user’s indexes, respectively.

V. SIMULATION RESULTS
A. Validation of the theoretical results

In order to validate the theoretical results, Monte Carlo
simulations have been carried out averaging over 100 channel
realizations, taking the same power delay profile and the same
number of taps for passive and active users. For completeness,
different PDPs for active and passive users with different
length of taps have also been considered. Let L, = L, = 16,
M = 4 and all the channel taps distributed according to
the same Gaussian distribution N (0,1) (rectangle distribution).
Additionally, we let D € [1,40]. We note that, in order
to show the relationship between the sampling rate and the
average SNR at the receiver, the latter has been computed as
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o \ + Simulation USERS’ DISTRIBUTION.
% 30rs g .
: \ M—r\\ /”% =20 dB Active User Number Number of Taps | PDP Distribution
U;’ 20 e ° < ! User 1 50 Exponential
- \ T —— . \ P _10dB User 2 100 Random
% 10 Sl \//% User 3 120 Random
é T —— . \\ P _0dB User 4 150 Rectangle
= ) \// a User 5 180 Exponential
azﬁ '\\ User 6 200 Exponential
E/ Passive User Number | Number of Taps | PDP Distribution
1% 10 20 30 40 User 1 100 Exponential
D User 2 80 Exponential
User 3 110 Exponential
Figure 3. MISO passive user with rectangle distribution. User 4 90 Exponential
User 5 120 Exponential
User 6 130 Exponential
User 7 150 Exponential
. . User 8 40 Exponential
a function of the former. Fig. 3 shows the full match between
the theoretical study and simulation in the passive user case
with 3 plots corresponding to 3 different values of 7132-
p
20
19.5\ /
B. Optimization = \ / \
) 19 / \
In order to show the outcome of the optimization method S 18.5
described in the previous Section, let A = 6 and M = 8. w 1 \ /
The Rayleigh fading channel’s characteristics considered in the = T 18 \ /
simulation are described in Table I, for all the passive users. 17.5 S
By looking at Fig. 4 (Unoptimized) and Fig. 5 (Optimized), .
M 1 3 4 5 6
we can see that Z E[SN Rﬁ? | decreases when the number of Active Users
J=1 Figure 4. Sum of expected SINRP versus number of active users-

active users increase if a good optimization process is applied
(exploit the diversity effect brought by the higher number of
users).

Unoptimized.
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C. Deployment Limit

In order to show the sufficient number of small cells needed
for a working TR-base implementation, we consider 87 small
cells as described in Fig. 1, letting the number of multi-path
between the considered user and the small cell 7 be ai, where
« related to the path-loss coefficient factor, and the received
power from each small cell is normalized by . Taking o =
0.9 the resulting threshold is 59 small cells (Fig. 6), distributed
around the considered user. Note that E(SNR) saturates after
a certain number of small cells. In fact, with farther small-
cells there are more chances to have long channel impulse
responses. After a certain threshold the power corresponding
to far small cells become negligible and not affect the SNR
experienced by passive user.

VI. CONCLUSIONS

In this paper, we proved that the SNR of active and passive
users depends only on the power delay profile of channels
between the base station and the considered users. Moreover,
we saw how the SNR at the receiver is directly affected by
the choice of the back-off factor D. Thus, the latter is an
important parameter driving the choice of the best active user
to serve. Our numerical findings show that TR can effectively
decrease the EM pollution towards passive users. Accordingly,
an appropriate optimization has to be performed to achieve
this goal and increase the overall system performance. As TR
works only with high number of multi-paths, we solve this
restriction by deploying a network of small cells. Finally, TR

could be used in a network of small cells and may be one of
the original technique to focus the most amount of energy to
the considered user techniques (active user) and decrease the
energy toward all the other users (passive+active).
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