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Abstract—This article proposes a large system approximation
of the ergodic sum-rate (SR) for cellular multi-user multiple-
input multiple-output uplink systems. The considered system has
various degrees of freedom, such as clusters of base stations
(BSs) performing cooperative multi-point processing, randomly
distributed user terminals (UTs), and supports arbitrarily con-
figurable antenna gain patterns at the BSs. The approximation
is provably tight in the limiting case of a large number of
single antenna UTs and antennas at the BSs. Simulation results
suggest that the asymptotic analysis is accurate for small system
dimensions. Our deterministic SR approximation result is applied
to numerically study and optimize the effects of antenna tilting
in an exemplary sectorized 3D small cell network topology.
Significant SR gains are observed with optimal tilt angles and we
provide new insights on the optimal parameterization of cellular
networks, along with a discussion of several non-trivial effects.

I. INTRODUCTION

One of the most pressing issues in designing next generation
cellular networks is to support the exponentially increasing
demand for wireless data-rate, given generally scarce spectrum
resources. Several approaches and architectures to tackle this
challenge have been investigated. One promising solution is
to increase the frequency spatial reuse through cell densifi-
cation. This is the main motivation for the rise of small cell
networks (SCNs) [1], [2]. Base station (BS) cooperation, i.e.,
coordinated multipoint transmission and reception (CoMP) [3],
and 3D beamforming (3D-BF) [4], [5] can be used to mitigate
the induced inter-cell interference. A simple form of 3D-BF is
antenna tilting. Antennas used for this technique can adjust the
vertical tilt of their main beam, while maintaining a directive
beam pattern. This shapes the physical channel by increasing
the signal-to-noise ratio (SNR) for the intended user terminals
(UTs), while reducing interference from non-desired UTs.

Short UT to BS distances in dense networks should result
in a more pronounced tilting effect, as the change in tilting
angles to focus on different users is larger compared to the
case of closely co-located UTs being farther away from the
BS. Shorter distances also reduce the “illuminated area” of
the antennas, further enhancing the possibility to isolate UTs.
Hence, sufficient support for simple vertical tilting improves
interference management and increases system capacity [6].
Exploiting tilting is only possible in 3D cell planning, as the
2D approach prevalent in today’s system analyses does not
offer the necessary spatial degrees of freedom.

This work puts some effort in modeling the combination
of SCN, CoMP, and antenna tilting in a coherent analytical
framework, relying on large dimensional random matrix theory
(RMT) [7], [8]. In [9], an RMT approach was presented
to evaluate the sum-rate (SR) in systems with randomly
distributed UTs, with the goal of optimizing BS placement.
Previous work on the impact of antenna elevation angles on the
ergodic mutual information of multiple-input multiple-output
(MIMO) systems [10] is more centered on the antenna technol-
ogy. Also, random UT placement is usually not modeled. We
also mention that, in [11], a 3D system model similar to ours is
used to analyze the performance of antenna tilting for almost
the same topology. However, the scope of that article is on the
downlink case. Furthermore, a simple matched filter precoding
is assumed at the BS, in order to derive exact performance
formulas. Our work assumes instead a more involved system
model, for which the exact performance analysis is intricate,
hence the random matrix analysis. As such, our work allows
for a more generic system analysis of the long-term benefits
of antenna tilting in various cellular scenarios.

The main contributions of this paper can be summarized as
follows: (i) We build upon the results in [9] and extend the
deterministic SR approximation to support the modeling of
clusters of cooperating BSs. We also incorporate a 3D antenna
gain pattern, which approximates a standard sector antenna [4].
(ii) We exploit the results from (i) to numerically analyze and
optimize the effects of antenna tilting on the achievable SR of a
SCN. Additionally, the impact of the number of BS antennas in
a simple system model is considered. As opposed to standard
numerical simulation tools, we show that the implementation
of our equations is simple and considerably improves the
simulation effort.

II. SYSTEM MODEL

We consider an uplink multi-user MIMO (MU-MIMO)
system in a 3D network topology, consisting of K UTs and
a number of BSs organized in B clusters. Cluster i consists
of Bi BSs, which act as a distributed antenna system and
Ki corresponding single-antenna UTs, where Ki satisfies
K =

∑B
i=1Ki. The BSs within clusters can independently

perform tilting. In each cluster i, the BSs are fully coop-
erating in the sense that they jointly decode the messages
received from the Ki UTs. Communication between the BSs
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Fig. 1. Multi-cluster example for SCN deployment.

within a cluster is done through an infinite capacity backhaul
link. We define BSi,k, i = 1, . . . , B, k = 1, . . . , Bi as
the kth BS of cluster i. BSi,k uses Ni,k antennas and we
denote Ni =

∑Bi
k=1Ni,k, N =

∑B
i=1Ni. BSi,k has Ki,k

attached users, thus Ki =
∑Bi
k=1Ki,k. We also denote UTi,k,l,

l = 1, . . . ,Ki,k, as the lth UT of BS k in cluster i. Note
that, since the BSs are cooperating within a cluster, the
Ki users UTi,1,1, . . . ,UTi,Bi,Ki,Bi attached to cluster i could
have simply been indexed by UTi,1, . . . ,UTi,Ki ; however, our
notation is more convenient to study the system performance
for different clustering scenarios.

The placement of the BSs is arbitrary in the 3D model and
UTi,k,l is placed according to a random distribution at the
position xi,k,l, i = 1, . . . , B, k = 1, . . . , Bi, l = 1, . . . ,Ki,k.
An illustrative example for a possible topology with B =
2, B1 = 1, B2 = 2,K1,1 = 2,K2,1 = 3, and K2,2 = 2 is
shown in Figure 1. In the following, we use the indices i or
j to identify a cluster, k to identify a base station, and l to
identify a user; whenever this scheme is possible.

A. Uplink Channel Model

We now define the fading channel model for the interaction
between the previously defined UTs and BSs. Let yi ∈ CNi
be the stacked received signal vector at the BS antennas of
cluster i. The overall received vector y ∈ CN of all clusters
is then given by

y
∆
=

y1

...
yB

 =
√
ρulHs + n =

√
ρul

H1

...
HB

 s + n

=
√
ρul

H1,1 · · · H1,B

...
. . .

...
HB,1 · · · HB,B


s1

...
sB

+

n1

...
nB

 (1)

where si ∼ CN (0, IKi) is the transmit vector of all UTs
in cluster i and si = (si,1,1, . . . , si,Bi,Ki,Bi )

T , with si,k,l
the transmit symbol of UTi,k,l. Here CN (0,V) describes a
vector valued complex Gaussian distributed random variable
with zero mean and covariance matrix V. Additionally, ni ∼

CN (0, INi) is the noise vector of cluster i and ρul is the trans-
mit SNR, identical for every UT. We denote Hi,j ∈ CNi×Kj
the channel matrix from all UTs of cluster j to all antennas
of cluster i and Hi = [Hi,1, . . . ,Hi,B ] ∈ CNi×K . The
vector channel from UTi,k,l to the BSs of cluster i is denoted
hi,j,k,l ∈ CNi , such that Hi,j = [Hi,j,1, . . . ,Hi,j,Bj ], where
Hi,j,k = [hi,j,k,1, . . . ,hi,j,k,Kj,k ].

We model hi,j,k,l as

hi,j,k,l = F
1
2

i,j,k,lgi,j,k,l (2)

where gi,j,k,l ∼ CN (0, 1
N INi) and we define Fi,j,k,l =

diag
(
fi,1(xj,k,l) INi,1 , . . . , fi,Bi(xj,k,l) INi,Bi

)
.

The functions fi,z(xj,k,l) determine the variance of the
channel coefficients, i.e., fi,z(xj,k,l) is the path loss (PL)
from UTj,k,l (at position xj,k,l) with respect to BSi,z . In
the following, any positive, bounded, and integrable function
f can be used. We take for f the specific model defined
in the next subsection, to allow us to model antenna tilting
capabilities at the BSs.

B. Pathloss Model

The PL function used in this paper is a combination of dis-
tance dependent loss and the 3D antenna gain pattern proposed
in [4]. The model presented there is a simplified 3D repre-
sentation of the commonly used Kathrein 742215 antenna. It
discards explicit side lobes in favor of constant gain outside
the main lobe. The antenna gain G(∆φi,z,j,k,l,∆θi,z,j,k,l) =
G(∆φ,∆θ) depends on the relative angles between the direct
line from UTj,k,l to BSi,z and the main lobe of the antenna
pattern; both in horizontal (azimuth, ∆φ) and vertical (tilt,
∆θ) direction.

We denote ∆xi,z,j,k,l = UTx − BSx = ∆x, where the
superscript indicates the x-coordinate of the respective UT or
BS. Similarly, ∆y = BSy − UTy and ∆z = BSz − UTz . The
distance di,z,j,k,l = d between UTj,k,l and BSi,z , as well as the
corresponding gain G(∆φ,∆θ) are related to the respective
BS and UT positions through (3) and (6). Given the main
lobe tilt (θBS) and azimuth (φBS) angle with respect to the
ground and to the south orientation, respectively, and calling
atan2(y, x) the four-quadrant inverse tangent function, we have

d =
√

∆x2 + ∆y2 + ∆z2 (3)
∆φ = atan2(∆x,∆y)− φBS (4)

∆θ = atan2(
√

∆x2 + ∆y2,∆z)− θBS (5)
with − 180◦ < θBS , φBS ≤ 180◦.

In order to obtain the PL function f , we then express the
antenna gain G as follows (all “G-values” in Decibel):

G(∆φ,∆θ) = Gh(∆φ) +Gv(∆θ) where (6)

Gh(∆φ) = Gm −min
{

12 [∆φ/HPBWh]
2
,FBRh

}
Gv(∆θ) = max

{
−12 [∆θ/HPBWv]

2
,SLLv

}
We denote Gm the maximum antenna gain, set to 18 dBi,
HPBWv the vertical half power beam width, set to 6.2◦,



HPBWh the horizontal half power beam width, set to 65◦,
FBRh the azimuth front-to-back ratio, set to 30 dB, and SLLv
the tilt side lobe level, set to −18 dB relative to Gm. All these
values are taken in accordance with the Kathrein 742215 an-
tenna model, which we chose due to its low complexity. Even
though, it was not conceived to be used in the context of 3D-
BF, but rather as a (constant tilt) sector antenna representation.

Hence, the overall PL factors contained in Fi,j,k,l are

fi,z(xj,k,l) = 10
G(∆φi,z,j,k,l,∆θi,z,j,k,l)

10 · d−α (7)

where α ∈ [2, 5] is the PL exponent, whose value we leave
unspecified for the moment. We note that fi,z(xj,k,l) is a
bounded function, as d > 0. Further details on this section
and how to obtain and motivate (7) are given in [4].

III. ASYMPTOTICALLY ACHIEVABLE SUM-RATE

In this section, we study the performance of the system
modeled in Section II and derive a large system approximation
of the SR for a generic clustering scenario.

A. Sum-Rate

We are interested in the ergodic SR under linear detection
at the receivers, i.e., the clusters of BSs, under different co-
operation levels or clustering. We assume that the cooperating
BSs within cluster i perform a joint linear minimum-mean-
square-error (MMSE) decoding on yi. Non-linear techniques,
such as successive interference cancellation, at the receivers
are not considered due to implementation complexity. We
recall that the linear MMSE receiver maximizes the signal-
to-interference-plus-noise ratio (SINR).

For simplicity, we assume that all receivers have sufficient
channel state information (CSI) to perform MMSE decoding.
More precisely, we assume that cluster i knows perfectly: (i)
The matrix Hi,i, or equivalently all channel vectors hi,i,k,l,
and (ii) the covariance matrix

(
HiH

H
i + 1

ρul
INi

)
. Assump-

tion (i) is rather natural as the BSs can estimate the hi,i,k,l
based on dedicated pilot sequences sent by the UTs. The
information (ii) can be obtained through approximating the
covariance matrix by the sample covariance matrix of the
received data. Note in particular that we do not demand that
Hi is completely known at cluster i, which would be rather
difficult to motivate.

Under these assumptions, the achievable ergodic SR nor-
malized per UT is given by

Rul
sum(ρul) =

1

K

B∑
i=1

Bi∑
k=1

Ki,k∑
l=1

E
[
log
(
1 + γul

i,k,l

)]
(8)

where the expectation (E) is taken with respect to the channels
and the UT positions, and γul

i,k,l is the SINR of UTi,k,l with
respect to the BSs of cluster i given by

γul
i,k,l = hHi,i,k,l

(
HiH

H
i − hi,i,k,lh

H
i,i,k,l +

1

ρul
INi

)−1

hi,i,k,l.

(9)

The goal of cell planning is to optimize Rsum with respect
to variable BS parameters (e.g., placement, number and orien-
tation of antennas). To do this one takes into account statistical
information available at the BSs, such as user locations and
channel statistics. This paper is particularly interested in the
performance gains obtained by controlling antenna tilting. We
assume here that the user positions are statistically known, i.e.,
xj,k,l is a random variable with known probability distribution,
generally referred to as the UT distribution. This random UT
placement poses a problem for optimization methods relying
on repeated random sampling. Now both the channel and the
(previously fixed) UT positions need to be repeatedly sampled,
thus increasing computational complexity. An alternative to
Monte-Carlo (MC) simulations, based on deterministic equiv-
alents from random matrix theory, is proposed in the following
subsection.

B. Asymptotic Analysis

In order to reduce the complexity of the optimization prob-
lem and to obtain tractable and insightful expressions of the
system performance, we propose a large scale approximation.
This allows us to state the SR expression in a compact form.
The large scale approximation is mathematically based on the
assumption that the system dimensions (number of users and
number of antennas) all grow large at the same speed. Also,
we need some technical assumptions in the following.

Denoting ci,z =
Ni,z
K , ci = Ni

K , and c = N
K , we assume

A 1. N1, . . . , NB ,K1, . . . ,KB →∞, such that for all i, z:

0 < lim sup ci,z ≤ lim sup ci ≤ lim sup c <∞.

We also denote N →∞ the convergence regime of A 1.

A 2. The variables xj,k,l are independent random variables
with finite second order moment, identically distributed across
j, and with distribution function Fj,k.

Adapting and applying the steps in [9] to (8) and (9) yields
a large scale approximation of the ergodic SR under MMSE
detection for the case of joint decoding within clusters.

Proposition 1 (Deterministic SR approximation). Assume A 1
and A 2, then

Rul
sum(ρul) −−−−→

N→∞
R̄ul

sum(ρul) (10)

where

R̄ul
sum(ρul) =

B∑
i=1

Bi∑
k=1

Ki,k

K

∫
log
(
1 + γ̄ul

i (x)
)
dFi,k(x)

with

γ̄ul
i (x) =

Bi∑
k=1

Ni,k
N

fi,k(x)Ψi,k(ρul)



and Ψi,k, k = 1, . . . , Bi the unique non-negative solution to
the fixed-point equation

Ψi,k(ρul) =(
1

ρul
+

B∑
j=1

Bj∑
d=1

Kj,d

K

∫ 1
cfi,k(x)dFj,d(x)

1 +
∑Bi
k̃=1

Ni,k̃
N fi,k̃(x)Ψi,k̃(ρul)

)−1

.

(11)

Sketch of proof: The start of the proof follows the outline
given in [9]. We introduce the symbol a.s.−→ for almost sure
convergence. Since the Fi,i,k,l are bounded in spectral norm
and ρul > 0, we have from [12, Lemmas F.4 and F.8]:

γul
i,k,l −

1

K
trFi,i,k,l

(
HiH

H
i +

1

ρul
INi

)−1
a.s.−→ 0.

Applying [12, Theorem 2.1] to the second term on the left-
hand side, we obtain

γul
i,k,l −

1

N

Bi∑
b=1

Ni,bfi,b(xj,k,l)Ψ
◦
i,b

a.s.−→ 0 (12)

with Ψ◦i,1(ρul), . . . ,Ψ
◦
i,Bi

(ρul) the unique non-negative solu-
tions to

Ψ◦i,b(ρul) =(
1

ρul
+

B∑
j̃=1

Bj̃∑
k̃=1

Kj̃,k̃∑
l̃=1

1
N fi,b(xj̃,k̃,l̃)

1 +
∑Bi
b̃=1

Ni,b̃
N fi,b̃(xj̃,k̃,l̃)Ψ

◦
i,b̃

(ρul)

)−1

.

We then need to prove that Ψi,b(ρul) → Ψ◦i,b(ρul) for all i, b
and all ρul > 0. First, we need to show that Ψi,b(ρul) exists
and is a solution to the implicit equation (11). Then, writing
the difference, one can show by standard manipulations and
inequalities that

max
i,b

∣∣Ψi,b(ρul)−Ψ◦i,b(ρul)
∣∣

≤ C(ρul) max
i,b

∣∣Ψi,b(ρul)−Ψ◦i,b(ρul)
∣∣+ εN

for some sequence εN
a.s.−→ 0, as N → ∞, and C(ρul)

a constant (independent of N ) that converges to 0 as
ρul → 0. Therefore, taking ρul in the connected set B =
{x : C(x) < 1/2},

max
i,b

∣∣Ψi,b(ρul)−Ψ◦i,b(ρul)
∣∣ ≤ εN

1− C(ρul)
.

We then have on B, for all i, b,

Ψi,b(ρul)−Ψ◦i,b(ρul)
a.s.−→ 0.

We prove that both Ψ◦i,b and Ψ◦i,b are analytic functions (more
precisely, they are Stieltjes transforms of negatively supported
measures) on C\R+. Thus, we can use the Vitali convergence
theorem and the identity theorem to show, that the above
convergence holds for all ρul > 0. From the convergence
mapping theorem, we obtain

γul
i,k,l − γ̄ul

i (xi,k,l)
a.s.−→ 0

Fig. 2. Considered sectors in the 3 BS Model.

and finally

Rul
sum(ρul)− R̄ul

sum(ρul) −−−−→
N→∞

0

which completes the proof.
This result provides an immediate approximation formula

for the SR performance of large dimensional systems. Based
on our notations, it is particularly easy to use Proposition 1
to evaluate the performance of various clustering scenarios.
Adapting the indices of the maps between the BSs and their
associated clusters, will be enough.

Although this approximation is provably valid only for
large system dimensions, it happens to be accurate for small
system dimensions, as well. We will provide evidence for this
assertion in Section IV. Moreover, implementing Proposition 1
as a replacement for MC simulations of (8) is straightforward.
The fixed-point equation converges provably and usually fast,
even under simple fixed-point iteration, and the integrals can
be evaluated numerically with arbitrary precision. The major
advantage in terms of calculating the large scale approximation
over MC simulation approaches lies in its accuracy and speed,
as is evidenced in the next section.

IV. NUMERICAL APPLICATION

A. Simulation Model

We now use Proposition 1 to analyze the effect of antenna
tilting on the uplink SR with MMSE detection in a sectorized
cell scenario. The model consists of 3 BSs with a height
of 15 m arranged to form a hexagonal grid, as depicted in
Figure 2. The distance between the BSs and the cell center
is set to 50 m. The azimuth angles of each BS are fixed at
180◦ for BS1, 60◦ for BS2, and −60◦ for BS3. All azimuth
angles are given with respect to the south direction and positive
values in clockwise direction, i.e., all BSs point to the cell
center. Only UTs belonging to the 3 sectors in-between the
BSs are considered. Taking the directivity of the antenna
pattern into account this configuration already includes the
strongest interferers. Tilting angles are given with respect to
the ground and positive values mean upward tilting. Each
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BS is equipped with 12 antennas and each sector contains 8
uniformly distributed UTs. The antenna pattern and PL model
are given in Section II-B. For simplicity of interpretation, we
assume that all BSs use the same tilt angle. The transmit power
ρul is chosen such that the received SNR from a UT located
at the cell center is 5 dB; assuming maximal antenna gain and
a PL exponent of α = 3.6.

In the following, we compare two different cases of cooper-
ation. We define the case of full cooperation (denoted FCoop)
where the cell consists of a single cluster formed by all 3 BSs.
The second case is that of no cooperation (denoted NCoop) in
which we assume 3 clusters constituted by a single BS each.

B. Optimal Tilting

We first set the PL exponent to α = 3.6 and compare
in Figure 3 the SR performance of NCoop against FCoop
for different tilting angles. We provide in this figure MC
simulations based on 90 000 random channel realizations (300
samples of 24 UTs, each evaluated for 300 channel samples),
as well as the theoretical results from Proposition 1.

We observe that, even for these small system dimensions,
the theoretical results based on Proposition 1 are extremely
accurate in comparison with the MC simulations. In terms of
system performance, we first see that tilting too low does not
allow for sufficient users to be served. Therefore, there is a
global trend, for both NCoop and FCoop, to tilt high in order
to reach sufficiently many UTs. For the NCoop case, we see
however that for some critical tilting angle, the interference
level starts to become large; quickly reducing the SR. For the
FCoop scenario, a non-straightforward behavior is observed.
Two local SR maxima appear in a region above the critical
tilt angle for NCoop. This is due to a trade-off between
covering more UTs and, at the same time, maintaining a
sufficiently low inter/intra-cluster interference level. Even in
the FCoop scenario users share the same frequency resource,
hence interference is the main SR limiting factor. Also, for
overly high tilt angles, the closest UTs to the BSs experience
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low antenna gain and the SR dramatically drops.
In Figures 4 and 5, we focus on the influence of the PL on

the optimal tilt angle and the corresponding SR. These anal-
yses are overly computationally intensive using MC methods,
thus no accuracy markers are shown. More explicitly, Figure 4
shows the impact of different PL exponents on the optimal
tilting angle for both the NCoop and the FCoop scenarios.
For PL exponents less than 4.5, the optimal tilt depends on
the cooperation type. In the case of NCoop, the reduction
of both the SNR and the interference-to-noise ratio (INR)
compensate each other for varying PL, thus resulting in an
almost constant optimal tilt. In the FCoop case, one observes
an optimal tilt of approximately 67◦ for α > 3.6, being
consistent with the explanations above. However, a distinctive
discontinuity is present around α ' 3.6, where the optimal
tilt angle suddenly jumps to 76◦ for lower PL exponents.
Referring back to Figure 3, this corresponds to a change in
the local maximum constituting the global maximum. We now
focus our attention to the normalized SR as a function of PL,
which is depicted in Figure 5. One sees that, for the NCoop
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scenario, moderate PL levels of up to 2.7 have a beneficial
effect. This can be explained through the interference being
attenuated for increasing PL. Higher PL exponents result in too
much power loss, which over-shadows the positive effect. For
very high PL exponents –larger than 3.8– we notice that inter-
cluster interference is completely drowned out. Thus, the SR
gain from optimal tilting in this regime is equivalent to the SR
gain achieved by using NCoop instead of FCoop. We finally
observe that non-optimal tilting, resulting from selecting the
wrong local maximum in Figure 3, leads to a reduction in the
achievable SR of about 10% in the FCoop scenario; both at
very low and very high PL exponents. In summary we see that
the optimal tilt depends in a non-obvious manner on the PL
exponent and analyzing this behavior is more convenient with
our proposed tools than using an MC approach.

C. Changing the number of BS antennas

The effect of the ratio c on the SR is demonstrated by
adjusting N in Figure 6. Here, all BSs are assumed to have
equal numbers of antennas; the other parameters are as for
Figure 3. It is observed that growing N also augments the
SR. However, this is only partly due to increased degrees
of freedom. Additionally, the larger N improves the MMSE
receiver’s capabilities to reject interference. Hence, one can
tilt reasonably higher to increase the received signal energy
and still tolerate the incurred additional (mainly inter-cluster)
interference. This also changes the previously discussed local
maxima balance of interference vs. signal energy, in favor
of gathering more signal energy. Consequently, the rightmost
maximum becomes predominant. The enhanced interference
management also explains another observation: The optimal
tilting angles in the NCOOP case converge to the correspond-
ing lower local optimal tilt of the (inter-cluster interference
free) FCOOP case. Finally we remark that even with very

high/low numbers of BS antennas, the resulting tilting changes
are too small to severely impact the SR.

V. CONCLUSION

We have presented a large scale approximation of the
normalized ergodic SR under MMSE detection for small cell
MU-MIMO uplink systems with clusters of cooperating BSs,
assuming random user placement. We specifically studied the
impact of antenna tilting on the resulting ergodic SR. This
result was used to analyze and numerically optimize the per-
formance of a sectorized cell scenario, assuming cooperative
or non-cooperative BSs, as a function of antenna tilting. The
existence of locally optimal tilts, due to a basic SNR versus
interference trade-off, were observed from which insightful
conclusions were drawn. We observed in particular that, for
high PL scenarios, appropriate tilting can replace the SR gain
brought by BS cooperation. This suggests that 3D-BF is of
particular interest for small cell networks.
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