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ABSTRACT

The conflict between cooperation in distributed state esti-

mation and the resulting leakage of private state information

(competitive privacy) is studied for an interconnected two re-

gional transmission organizations (RTOs) model of the grid.

Using an information theoretic rate-distortion-leakage (RDL)

tradeoff model, each RTO communicates at a rate chosen to

optimize an objective function that is dependent on two op-

posing quantities: a rate-distortion based pricing function that

encourages cooperation, and a leakage function that impedes

it. It is shown that strictly non-zero pricing incentives are re-

quired to achieve non-trivial target distortions.

Index Terms— Competitive privacy, distributed state

estimation, rate-distortion-leakage tradeoff, pricing mecha-

nisms

1. INTRODUCTION

The electric power industry is undergoing profound changes

as greater emphasis is placed on the importance of a smarter

grid that supports sustainable energy utilization. Technically,

power system estimation and control are likely to involve

many more fast information gathering and processing devices

(e.g. Phasor Measurement Units) [1]. Economically, the

deregulation of the electricity industry has led to the creation

of many regional transmission organizations (RTOs) within

a large interconnected power system [2]. Both technical

and economic drivers suggest the need for more distributed

estimation and control in power system operations.

Traditionally, state estimation requires a central coordina-

tor that estimates the state using measurements from all the

RTOs. More recently, a distributed approach to this problem

has been considered; however, distributed state estimation re-

search has dominantly focused on two-tier hierarchical mod-

els [3] in which each local control center (e.g., an RTO) esti-

mates independently, and at a higher level, a central coordi-

nator receives the estimation results from the individual areas
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and coordinates them to obtain a system-wide solution. How-

ever, this model does not scale with increasing measurement

rates due to communication and reliability challenges inher-

ent in systems with one coordination center. Furthermore, the

physical interconnectedness of the RTOs makes the problem

of wide area monitoring and control important and immedi-

ate. This requirement of estimating state precisely and often

is driving the need for a fully distributed approach (without a

central coordinator) to state estimation wherein the local con-

trol centers interactively estimate the system state as a whole.

In [4], the authors introduce a competitive privacy no-

tion at the level of the RTOs to capture the conflict between

sharing data for distributed estimation (utility/benefit to all

RTOs) and withholding data for economic and end-user pri-

vacy reasons. Assuming that the RTOs are willing to coop-

erate, they present an information-theoretic rate-distortion-

leakage framework for a two-RTO network and show that

each RTO has to tolerate a level of information leakage pro-

portional to the fidelity (distortion) required at the other RTO.

A natural question that arises is whether such a cooperation

can be achieved via incentives. In this paper, we address this

question by introducing a pricing-based objective function at

each RTO that depends on two opposing quantities: a rate-

distortion based pricing function that encourages cooperation,

and a leakage function that impedes it. We show that strictly

non-zero pricing incentives are required to achieve non-trivial

target distortions.

This paper is organized as follows: in Sec. 2, we describe

our model and in Sec. 3 we develop our main results. We

illustrate our results in Sec 4 and conclude in Sec. 5.

2. SYSTEM MODEL AND PROBLEM

FORMULATION

In [4], the authors present a linearized noisy Gaussian mea-

surement model at the RTOs; thus, a vector of measurements

at each RTO is a noisy linear function of the system states,

i.e. Y1 = X1 + αX2 + Z1, Y2 = βX1 + X2 + Z2 where

α > 0, β > 0. The states, X1, X2, are assumed to be in-

dependently Gaussian distributed and the additive Gaussian

noises, Z1, Z2, are assumed to be independent of the RTO

states and of fixed variances σ2
1 , σ

2
2 . RTO j, j ∈ {1, 2},



encodes (quantizes) its measurement vector at a rate (in bits

per measurement) Rj . The encoding is subject to satisfying

two constraints: a distortion requirement of the state esti-

mate at the other RTO (cooperation) and a leakage require-

ment (privacy) on the information leaked about its state to the

other RTO. Let Dj and Lj denote the fidelity (distortion) and

leakage requirements of the estimate at RTO j, j ∈ {1, 2}
where Dj is the mean square error between the original and

reconstructed state vectors and Lj is the average mutual in-

formation between the state vector at each RTO and the re-

vealed data and measurement vector at the other RTO. We

refer the reader to [4] for additional details. For notational

convenience, throughout the sequel, we develop the results

for RTO j and denote the other RTO by i ∈ {1, 2} \ {j}.

For this model, the authors show the optimality of an en-

coding scheme in which each RTO encodes its measurements

to satisfy the distortion constraint at the other RTO and toler-

ates a resulting level of privacy leakage. We summarize the

resulting the rate-distortion-leakage tradeoff in the following

theorem.

Theorem 2.1 [4] The rate-distortion-leakage tradeoff

(R1, R2, D1, D2, L1, L2) is given as follows. For RTO j, j ∈
{1, 2}, and i ∈ {1, 2} \ {j}, we have

• Di < Dmax,i:

Rj =
1

2
log

(

cjm
2
j

Di −Dmin,i

)

, and (1)

Lj =
1

2
log

(

m2
j

m2
jDmin,j + n2

j (Di −Dmin,i)

)

; (2)

• Di ≥ Dmax,i: Rj = 0 and Lj = log (Vi/(Vi − qj)) /2,

where q1 = β, q2 = α, V1 = 1+α2+σ2
1 , V2 = 1+β2+σ2

2 ,

E = α + β, cj = V1V2−E2

Vi
, n1 = V2−βE

V1V2−E2 , n2 = V1−αE
V1V2−E2 ,

m1 = αV2−E
V1V2−E2 , m2 = βV1−E

V1V2−E2 and

Dmin,1 = 1−
(β2V1 + V2 − 2βE)

(V1V2 − E2)
, (3a)

Dmin,2 = 1−
(V1 + α2V2 − 2αE)

(V1V2 − E2)
, (3b)

Dmax,j = 1−
1

Vj

. (3c)

Assuming perfect knowledge of the system parameters at

both RTOs, we model the state estimation problem as two

independent optimization problems.

We write Rj(Di) to denote the feasible set of rates Rj

at RTO j for which a target distortion Di can be achieved

at RTO i. From the achievable rate-distortion-leakage trade-

off in [4] we have that, if Di < Dmax,i, then Rj(Di) =
[

log
(

cjm
2
j/(Di −Dmin,i)

)

/2,∞
)

, else Rj(Di) = [0,∞).

Let Rmin,j

(

Di

)

, log
(

cjm
2
j/(Di −Dmin,i)

)

/2 denote the

minimal rate at which RTO j encodes its observation to guar-

antee a distortion Di at RTO i.
We define an objective function uj : Rj → [0,∞) as:

uj(Rj) = −Lj(Di(Rj)) + hj(Rj) (4)

where Di(Rj) represents the distortion-rate function at RTO

i, Lj(Di(Rj)) represents the leakage of information at RTO j
when it transmits at rate Rj to satisfy a distortion requirement

Di at RTO i, and hj(Rj) is the economical reward that RTO

j receives for cooperating with RTO i at rate Rj . We write

(R∗

j , L
∗

j (R
∗

j )) to denote the rate-leakage pair that maximizes

the objective function.

3. PRICING MECHANISMS

Before presenting the proposed pricing mechanisms, we

briefly analyse the particular case where hj(·) = 0. The

objective of each RTO is to choose its own communication

rate that will minimize its leakage. From Theorem 2.1, we

have that:

Lj(Rj) = −
1

2
log
(

Dmin,j + cjn
2
j2

−2Rj
)

.

Note that Lj(Rj) strictly increases with Rj . This implies

that the optimal strategy is R∗

j = 0 if Di ≥ Dmax,i, and

R∗

j = Rmin,j(Di), otherwise. Thus, the achievable distor-

tion pair is the minimum required distortions (D1, D2) and

the achievable leakages L∗

j

(

R∗

j

)

, j ∈ {1, 2}, are given in (2)

and replacing Di with Di. Thus, in the absence of any incen-

tives to cooperate, minimizing the leakage will either lead to

a trivial solution (R∗

j = 0, j ∈ {1, 2}) or an enforced coop-

eration to achieve a desired target distortion pair (D1, D2).

3.1. Linear pricing

We start by analyzing a simple pricing scheme where the in-

centive RTO j receives for cooperating increases linearly with

the rate Rj . In this case, the objective function of RTO j
is given by uj(Rj) = −Lj(Di(Rj)) + pjRj . We observe

that lim
Rj→∞

uj(Rj) = ∞, i.e., the rewarding mechanism com-

pletely dominates the leakage term and, thus, the RTOs are

incentivized to exchange data at infinitely large rates.

Since each RTO is cooperating to achieve a target distor-

tion at the other RTO, we now consider a pricing mechanism

that explicitly takes this into account. We consider the fol-

lowing objective function:

uj(Rj) = −Lj(Di(Rj)) + pj(Dmax,i −Di(Rj)) (5)

=
1

2
log
(

Dmin,j + cjn
2
j2

−2Rj
)

−

pj
(

Dmin,i + cjm
2
j2

−2Rj
)

+ pjDi,max, (6)

where in (5) RTO j is rewarded proportionally to the reduc-

tion in the distortion at the other RTO (Dmax,i−Di(Rj)), and



(6) results from substituting (1) and (2) in (5). We thus have

lim
Rj→∞

uj(Rj) = 1/2 log(Dmin,j)+ pj(Dmax,i − Dmin,i) <

∞ and therefore it is not necessarily optimal for RTO j to

perfectly share its observation.

From the objective function and its first order derivative,

we further classify the optimal solution in different categories

as described below. To this end, we define

T1,j ,
n2

j

(2 ln 2)m2

j
Dmin,j

,

T2,j ,
n2

j

(2 ln 2)[n2

j
(Di−Dmin,i)+m2

j
Dmin,j ]

,

T3,j , log
(

1 +
n2

j

m2

j

Di−Dmin,i

Dmin,j

)/

[

2(Di −Dmin,i)
]

.

I. pj ≥ T1,j : for this case uj(Rj) increases with Rj , and

thus, R∗

j → ∞. This means that, if the price is high

enough, then the leakage term is dominated by the eco-

nomic incentives.

II. pj < T1,j : here uj(Rj) decreases for Rj ≤ R̃j(pj) ,
1
2 log

(

(2 ln 2)pjcjn
2

jm
2

j

n2

j
−(2 ln 2)pjm

2

j
Dmin,j

)

and increases for Rj >

R̃j(pj). We now have two sub-cases depending on the

relative order of R̃j(pj) and Rmin,j(Di) (recall that

Rmin,j(Di) is the inferior bound of the feasible rate

set).

1. pj < T2,j < T1,j : here R̃j(pj) < Rmin,j(Di) which

implies that, in the feasible domain, uj(Rj) increases

with Rj and the optimal rate R∗

j → ∞.

2. T2,j ≤ pj < T1,j : here R̃j(pj) ≥ Rmin,j(Di), i.e.,

R̃j(pj) lies inside of the feasible domain. Since the

function is convex, the optimal rate is on the bound-

ary. If T2,j ≤ pj ≤ T3,j , then uj(Rmin,j(Di)) ≥
lim

Rj→∞

uj(Rj) and the optimal rate is R∗

j = Rmin,j(Di),

else (if T3,j < pj < T1,j) the optimal rate is R∗

j → ∞.

Thus, depending on the system parameters and p1, p2, the op-

timal rates are on the borders of the feasible rate sets: either

R∗

j = Rmin,j(Di) or R∗

j → ∞, j ∈ {1, 2} which can viewed

as a solution involving a hard decision. Next we consider a

non-linear pricing model that will allow us a smoother manip-

ulation of the optimal rates w.r.t. the prices.

3.2. Non-linear pricing

Since the communication (source coding) rates are propor-

tional to the logarithm of distortions, we now consider a loga-

rithmic pricing function. The non-linear objective function of

RTO j is:

uj(Rj) = −Lj(Rj)− pj log(Di(Rj)) + pj log(Dmax,i)(7)

=
1

2
log
(

Dmin,j + cjn
2
j2

−2Rj
)

− pj log (Dmin,i+

cjm
2
j2

−2Rj
)

+ pj log(Dmax,i). (8)

Let T0,j = 0.5 , and T1,j ,
1
2

Dmin,in
2

j

Dmin,jm
2

j

,

T2,j , 1
2

Din
2

j

m2

j
Dmin,j+n2

j
(Di−Dmin,i)

,

T3,j , log
(

1 +
n2

j

m2

j

Di−Dmin,i

Dmin,j

)/[

2 log
(

1 +
Di−Dmin,i

Dmin,i

)]

.

Following a similar analysis as the previous subsection, we

obtain:

I. pj ≥ max {T0,j , T1,j}: for this case uj(Rj) increases

with Rj , and thus R∗

j → ∞.

II. pj ≤ min {T0,j , T1,j}: here uj(Rj) decreases with Rj ,

and thus R∗

j = Rmin,j(Di). If the price is lower than a

certain threshold, then the leakage term dominates the

economic incentives.

III. pj ∈ (T1,j , T0,j): here uj(Rj) is decreasing for Rj ≤

R̃j(pj) and increasing for Rj ≥ R̃j(pj) where

R̃j(pj) ,
1

2
log

(

cjn
2
jm

2
j (1− 2pj)

2pjmjDmin,j − n2
jDmin,i

)

.

We now have two sub-cases depending on the relative

order of R̃j(pj) and Rmin,j(Di).

1. T2,j < pj < T0,j : here Rmin,j(Di) ≤ R̃j(pj) and

R̃j(pj) lies inside of the feasible domain. Since the

function is convex, the optimal rate is on the bound-

ary. If T3,j < pj < T0,j , then uj(Rmin,j(Di)
) <

lim
Rj→∞

uj(Rj) and the optimal rate is R∗

j → ∞,

else (if T2,j < pj ≤ T3,j) the optimal rate is R∗

j =

Rmin,j(Di).

2. T1,j < pj ≤ T2,j : for this case Rmin,j ≥ R̃j(pj) which

implies that, in the feasible domain, uj(Rj) is increas-

ing with Rj and R∗

j → ∞.

IV. pj ∈ (T0,j , T1,j): here uj(Rj) increases for Rj ≤

R̃j(pj) and decreases for Rj ≥ R̃j(pj). The optimal

rate will depend again on the relative order of R̃j(pj)
and Rmin,j(Di).

1. T2,j < pj < T1,j : here Rmin,j(Di) ≤ R̃j(pj), i.e.

R̃j(pj) lies inside of the feasible domain. Since the

function is concave, the optimal rate is R∗

j = R̃j(pj)
which explicitly depends on pj .

2. T0,j < pj ≤ T2,j : here Rmin,j(Di) ≥ R̃j(pj) which

implies that, in the feasible domain, uj(Rj) is decreas-

ing with Rj and the optimal rate is R∗

j = Rmin,j(Di).

Notice that cases III and IV are mutually exclusive depending

on the relative order of T0,j and T1,j . Also, we obtain that,

depending on the system parameters and for a certain price

range the optimal rate R∗

j depends explicitly on pj . This de-

pendence will be illustrated via numerical simulations.



4. NUMERICAL SIMULATIONS

We illustrate our results for the non-linear pricing model for

the following parameters: α = 0.5, β = 0.9, σ2
1 = 0.1,

σ2
2 = 0.1. We choose the target distortions as Dj =

Dmin,j + (Dmax,j − Dmin,j)/2, j ∈ {1, 2}. For these pa-

rameters we have: Dmin,2 = 0.3088, Dmax,2 = 0.4764,

Dmin,1 = 0.2183, Dmax,1 = 0.2593, T1,1 = 1.5093,

T2,1 = 1.0548. T1,1 and T2,1 alongside with T0,1 = 0.5
are the vertical asymptotes.

We plot the optimal rate for RTO 1 as function of the p1
in Fig. 1. If the price is low (p1 < T2,1) the optimal rate is

R∗

1 = Rmin,1(D2). If the price is high (p1 ≥ T1,1) the op-

timal rate is R∗

1 → ∞. If T2,1 ≤ p1 < T1,1, the solution is

non-trivial and depends explicitly on p1, i.e., R∗

1 = R̃1(p1).
In Fig. 2, we observe that if p1 is below a certain thresh-

old, the leakage term dominates the economic incentive and

the resulting utility is negative. The optimal utility is increas-

ing with p1. Therefore, even though the leakage is increasing

with p1, this is compensated by the pricing function. Finally,

in Fig. 3, we observe that the distortion of RTO 2 decreases

with p1. Most interestingly, in contrast to the linear pric-

ing model, an RTO can be incentivized to reveal more than

needed to achieve the target distortion thereby further reduc-

ing the distortion of the other RTO. Furthermore, any distor-

tion D2 ∈ (Dmin,2, D2] can be achieved by a unique value of

the price p1.
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5. CONCLUSIONS

Based on the concept of competitive privacy [4], we have pre-

sented a pricing based optimization framework to study the

distributed state estimation problem at the RTO level. We

have shown that, in the absence of pricing incentives, pri-

vacy takes precedence over cooperation. Using linear and

non-linear pricing functions, we have shown that it is pos-

sible to incentivize the RTOs to cooperate and achieve their

desired distortion levels. Future work includes coupling the
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optimization problems which can lead to game theoretic so-

lutions.
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