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1.1 Introduction

Femtocell base stations (FBSs), also known as Home eNodeBs (HeNBs), are short-range

low-power and low-cost base stations with third party backhaul (e.g., DSL or cable mo-

dem). They are usually deployed and controlled by end-users who desire better indoor

signal transmission and reception. With the help of such FBSs, the network operator is able

to extend the high quality coverage inside peoples’ homes without the need of additional

expensive cellular towers. At the same time, FBSs offload traffic from the overlay macrocell

network and subsequently improve the overall network capacity. Nevertheless, despite FBSs

promise, many concerns still remain, especially cross-tier interference. Two particular as-

pects of FBSs give rise to serious interference issues: (a) the co-channel spectrum sharing

between femtocells and macrocells as well as among femtocells, (b) the ”random” location

of user-installed FBSs (they can be deployed anywhere inside the macrocell area with no-

prior warning). First, unlike Wi-Fi access points, FBSs serve users in licensed spectrum,

to guarantee Quality-of-Service (QoS). Moreover, instead of allocating dedicated licensed

channels to FBSs, sharing the spectrum is preferable from an operator’s perspective (higher

spectral efficiency). Secondly, FBSs are installed by end-users in a ”plug-and-play” manner,

which translates into ”randomness” in their locations. For these two reasons, interference in

two-tier networks is quite different than in conventional cellular networks, which endangers

their successful co-existence. A typical scenario is the ”Dead Zone” or ”Loud Neighbor”

problem, where mobile users transmit and receive signals at positions near FBSs but far

from the macrocell BSs, causing significant macro-to-femto interference in the uplink. In

the downlink, these users likewise suffer from low signal to interference ratios (SIRs) be-

cause of the strong interference from the FBSs. These affects are akin to the well known

near-far problem, but exacerbated by the de-centralization and lack of coordinated power

control inherent in two-tier networks. In addition, because of the non-existent coordination

between FBSs and macrocell BSs, centralized cooperation to mitigate cross-tier interfer-

ence is deemed infeasible, hence two-tier networks need to adopt decentralized strategies for

interference management.

Game Theory (GT) is a mathematical tool that analyzes interactions among decision
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makers. GT is seen as a natural paradigm to study and analyze wireless networks where

players compete for the same resources. The importance of studying the coexistence between

macro- and femtocells from a game theoretical perspective is multi-fold: First, by model-

ing the dynamic spectrum sharing among network players (MBSs, FBSs, MUEs, FUEs) as

games, the behaviours and actions of players can be analyzed in a formalized structure, by

which the theoretical achievements in GT can be fully utilized. Second, GT equips us with

various optimality criteria for the spectrum sharing problem, which are of key importance

when it comes to analyzing the equilibria of the game. Third, the application of GT enables

us to derive efficient distributed algorithms for self-organized networks relying only on partial

information. In order to achieve this, the theory of learning in games is of high importance

allowing players to choose the right strategies and gradually learn from their environment

through trials and errors until convergence. The expected contribution is this chapter is as

follows:

In the first section of the chapter, we show that the deployment of femtocell networks

is cast into a dynamic spectrum sharing problem with different interference scenarios such

as femtocell-to-femtocell and femtocell-to-macrocell interference. Femto base stations and

their associated femtocell user equipments (FUEs) need to to autonomously determine their

transmission strategies in order to maximize their own performance metrics. Often, this con-

figuration is described by the power allocation scheme, channel/carrier selection, modulation

scheme, etc. However, the transmission configuration of one femto-base station affects the

performance of other FBS and all their associated FUEs. Hence, this scenario is clearly a

competition of selfish autonomous devices for radio resources. Under these conditions, GT

appears as one of the paradigms to study these types of networks. Finally, in this section,

we provide the fundamental concepts of game theory required to understand the results

presented in the rest of this chapter.

The second section tackles one of the most important issues in self organized networks,

namely learning. Due to their non-coordinated nature, femtocells opportunistically share the

spectrum with the macrocell network while mitigating their interference towards among oth-

ers. In order to do so, femtocells need to self-organize and optimize their strategies/actions

(power level, carrier allocation etc) taking into account their side information. Learning
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is an inherent part of self-organization paradigms and is crucial for developing and adapt-

ing multi-agent strategies based on their perceived reward. The problem boils down as to

how femtocells gradually learn from their environment (through trials-and-errors) while at

the same time not interfering with the overlay macrocell network. Furthermore, learning is

adamantly driven by the type of information available at every agent where the possibility

of exchanging their local information drives the learning efficiency (and convergence) and

thereby their respective payoffs. For this purpose, we will investigate both private and public

information exchange among femtocells.

The third section looks into the QoS provisioning of femtocell networks, in which fem-

tocells mitigate their interference towards the overlay macrocell network. Tools from game

theory and Stochastic geometry are used to come up with decentralized algorithms to achieve

the equilibrium of the game.

The fourth section investigates the spectral efficiency of femtocell networks using the

framework of potential games. Here, typical problems such as power allocation and channel

selection are tackled in detail. We put in evidence the existence of the following paradoxes

(observable only in decentralized networks): In a multi-carrier system, increasing the number

of channels each device can use highly reduces the global performance of the system. Hence,

it is more beneficial for a given network to constraint the devices to use a single channel

rather than allowing them to simultaneously use several channels. Finally, we discuss sev-

eral decentralized algorithms which allow self-configuring femtocell networks to achieve the

equilibrium.

1.2 System Model

Consider a set of M = {1, . . . , M} macrocell base stations (MBS) each one operating over

an exclusive fixed frequency band and serving their respective macrocell user equipments

(MUEs) following a time division multiple access (TDMA) policy. At each time interval,

each MBS serves one of its corresponding MUE aiming to guaranteing a minimum time-

average signal to interference plus noise ratio (SINR) over their communication duration.
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We assume that there exists a set N = {1, . . . , N} of N frequency bands over which MBS

can operate. Let Γ
(m)
0 , m ∈ M, denote the minimum time-average SINR offered by MBS

m over its corresponding fixed frequency band. Consider now a set K = {1, . . . , K} of K

femtocells underlaying the M-cell N -frequency band macrocell system. Each femtocell can

use any of the available frequency bands to serve its corresponding femto end-users (FUE)

as long as it does not induce a lower time-average SINR than the minimum required by the

MUE, i.e., Γ
(1)
0 , . . . , Γ

(M)
0 . At each time interval each FBS serves one FUE over one of the

available channels following a TDMA policy.

Let t ∈ {1, . . . ,∞} be a discrete time index. For all (j, k, m) ∈ M2 × N , h
(n)
1,j,k repre-

sents the channel realization between MBS k and MUE j over channel m at time t. For all

(j, k, m) ∈ K×M×N , h
(n)
2,j,k represents the channel realization between MBS k and FUE j

over channel n at time t. For all (j, k, m) ∈ M×K×N , h
(n)
3,j,k represents the channel realiza-

tion between FBS k and MUE j over channel n at time t. Finally, for all (j, k, m) ∈ K2 ×N ,

h
(n)
4,j,k represents the channel realization between FBS k and FUE j over channel n at time t.

Denote by h(t) the vector of all channel realizations at time t. All channel realizations, i.e.,

each component of h(t), are independent and identically distributed following a probability

distribution which is a parameter of the network. Let the finite set denoted by H be the

set of all possible vectors h(t), for all t > 0. Finally, channel realizations at time t are

independent of those at time t − 1, for all t > 0.

Let pk,max and p0,m, with k ∈ K and m ∈ M, be the maximum transmit power of FBS k and

MBS m, respectively. For all k ∈ K, let the N -dimensional vector pk(t) =
(
p

(1)
k (t), ..., p

(N)
k (t)

)

denote the power allocation vector of FBS k ∈ K at time t. Here p
(n)
k (t) is the transmit power

of femtocell k over frequency band n at time t. In the channel selection problem, all FBSs

are assumed to transmit only over one frequency band at each time t at a given power level

not exceeding pk,max. Let Lk be the number of power levels of FBS k, i.e.,
pk,max

Lk
, . . . , pk,max.

For all (k, ℓ, s) ∈ K × {1, . . . , LK} × N , denote by the N -dimensional vector

q
(ℓ,n)
k =

ℓ

L
pk,maxe

(N)
n , (1.1)

the power allocation (PA) vector when FBS transmits over channel n at power level ℓ. Denote
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also by q
(0,0)
k , with k ∈ K, the N -dimensional null vector, i.e., q(0,0) = (0, . . . , 0). Thus, FBS

k has Nk = Lk · S + 1 possible PA vectors, q(0,0), q
(1,1)
k , . . . , q

(Lk,N)
k .

For all (k, n) ∈ K ×N , let γ
(n)
k be the SINR of FUE k at time t and for all m ∈ M, let

γ
(nm)
0,m be the SINR of the MUE in the macrocell m at time t. Let also the set Mn ⊂ K, with

n ∈ N , be the set of MBS using channel n. Then, we can write that

γ
(n)
k

(t)=
p
(n)
k

(t)
∣∣∣h(n)

4,k,k
(t)
∣∣∣
2

σ
(n)2

k
+

∑

m∈Mn

p0,m|h(n)
2,k,m

(t)|
2
+

∑

j∈K\{k}

p
(n)
j

(t)|h(n)
4,k,j

(t)|
2

(1.2)

and for all m ∈ M,

γ
(nm)
0,m (t)=

p0,m

∣∣∣h(nm)
1,m,m(t)

∣∣∣
2

σ2
0,m+

∑

j∈Mnm\{m}

p0,j|h(nm)
1,m,j

(t)|
2
+

∑

i∈K\{k}

pi,max|h(nm)
3,m,i

(t)|
2

, (1.3)

where for all m ∈ M, nm is the channel used by MBS m and σ
(nm)
0,m

2
and σ

(nm)
k

2
is the noise

power over MUE m and the noise power over FUE k on the frequency band n.

All FBSs are interested in optimizing a given interference mitigation metric denoted by

u : R
N ·K+M → R, which determines at each instant t the impact of the interference on

the macro system based on the observation of all the SINR levels γ
(n)
k and γ

(nm)
0,m , with

(k, n) ∈ K ×N and m ∈ M.

In the case of multiple access channels (MACs), femtocell base stations communicate

with a single receiver using a common channel. This case can happen when femto user

equipments compete for the same resources in the uplink, or when FBSs compete for backhaul

resources. We assume that there exists a set N = {1, ..., N} of N frequency bands over which

transmitters operate. If N > 1 channels are available, then there exists N independent or

parallel MACs, where transmitters in different MACs do not interfere each other. Moreover,

the channel gain from transmitter k ∈ K to the receiver over channel n ∈ N is denoted by

h
(n)
k . We assume a block flat-fading channel model such that channel realizations remain

constant during the transmission of M consecutive symbols. All the channel realizations,
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∀k ∈ K and ∀n ∈ N are drawn from a Gaussian distribution with zero mean and unit

variance. The power allocated by transmitter k to channel n is denoted by p
(n)
k . Each

transmitter is power-limited wherein for the ith transmitter, its transmit power cannot exceed

pk,max, i.e., ∀k ∈ K,
∑N

n=1 p
(n)
k ≤ pk,max. The received SINR on channel n for transmitter k,

denoted by γ
(n)
k for all ∀(k, n) ∈ K ×N is:

γ
(n)
k =

p
(n)
k |h(n)

k |2
∑K

j 6=k p
(n)
j |h(n)

j |2 + σ2
(1.4)

1.3 Game Theory and Self-Organized Femtocell Networks

In the following, we introduce basic concepts and definitions of game theory which will be

used throughout the chapter.

1.3.1 Strategic-Form Games

The spectrum sharing between the macro and femtocells can be respectively modeled by the

following two non-cooperative static games in strategic form (with i ∈ {a, b}):

G(i) =
(
K,
(
P(i)

k

)

k∈K
, (uk)k∈K

)
. (1.5)

Let K be the set of players (i.e., FBSs). An action of a given FBS k ∈ K is a particular

power allocation (PA) scheme, i.e., an N -dimensional PA vector pk =
(
p

(1)
k , . . . , p

(N)
k

)
∈ P(i)

k ,

where P(i)
k is the set of all possible PA vectors which FBS k can use either in the game G(a)

(i = a) or in the game G(b) (i = b). An action profile of the game i ∈ {a, b} is a super vector

p = (p1, . . . , pK) ∈ P(i),

where P(i) is a set obtained from the Cartesian product of the action sets P(i)
k , for all k ∈ K,
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i.e., P(i) = P(i)
1 × . . . × P(i)

K , where,

P(a)
k =

{(
p

(1)
k , . . . p

(N)
k

)
∈ R

N : ∀n ∈ N , p
(n)
k > 0, (1.6)

and
∑

n∈N

p
(n)
k 6 pk,max}, and

P(b)
k =

{
pk,max en : ∀n ∈ N , en =

(
e(1)

n , . . . , e(N)
n

)
(1.7)

and ∀r ∈ N \ n, en(r) = 0, and e(n)
n = 1

}
.

In this chapter, we respectively refer to the games G(a) and G(b) as the PA game and CS

game. Let us denote by p−k any vector in the set

P(i)
−k

△
= P(i)

1 × . . . × P(i)
k−1 × P(i)

k+1 × . . . × P(i)
K (1.8)

with (i, k) ∈ {a, b} × K. For a given k ∈ K, the vector denoted by p−k represents the

strategies adopted by all the players other than player k. With a slight abuse of notation, we

write any vector p ∈ P(i), with i ∈ {a, b}, as
(
pk, p−k

)
, in order to emphasize the k-th vector

component of the super vector p. The utility for player k in the game G(i) is its spectral

efficiency uk : P(i) → R+, with i ∈ {a, b} and

uk(pk, p−k) =
∑

n∈N

Bn

B
log2

(
1 + γ

(n)
k

)
[bps/Hz] (1.9)

where γ
(n)
k is the SINR of Femto base station k over channel n.

1.3.2 Potential Games

Potential games (PG) [38] are a class of games for which existence of pure NE is guaranteed.

Definition 1 (Exact Potential Game) Any game in strategic form defined by the 3-tuple
(
K, (Pk)k∈K , (uk)k∈K

)
is an exact potential game if there exists a function φ (p) for all p ∈ P
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such that for all players k ∈ K and for all p′
k ∈ Pk, it holds that

uk(pk, p−k) − uk(p
′
k, p−k) = φ(pk, p−k) − φ(p′

k, p−k).

Definition 2 (Exact Constrained Potential Game) Any game in normal form defined

by the 4-tuple
(
K, {Pk}k∈K , {ck}k∈K , {fk}k∈K

)
is an exact constrained potential game (PG)

if there exists a function φ (s) for all p ∈ PSE such that for all players k ∈ K and for any

pair of actions (pk, p
′
k) ∈

{
fk

(
p−k

)}2
, it holds that

ck(pk, p−k) − ck(p
′
k, p−k) = φ(pk, p−k) − φ(p′k, p−k).

Using the spectral efficiency utility function (1.9), the following proposition holds:

Proposition 1 The strategic games G(i), with i ∈ {a, b}, are exact potential games with

potential function

φ(p) =
∑

n∈N

Bn

B
log2

(
σ2

n +
K∑

k=1

p
(n)
k g

(n)
k

)
. (1.10)

In fact, the games G(i), i ∈ {a, b} are not only potential games but also best-response potential

games [40]. A BRPG is a PG which verifies:

arg max
qk∈P

(i)
k

uk

(
qk, p−k

)
= arg max

qk∈P
(i)
k

φ
(
qk, p−k

)
. (1.11)

Indeed, the utility function (1.9) can be written in terms of the potential function (1.10) as

follows

∀k ∈ K, uk

(
pk, p−k

)
= φ

(
pk, p−k

)
− υk

(
p−k

)
,

where

υk

(
p−k

)
=
∑

n∈N

Bn

B
log2


σ2

n +
∑

j∈K\{k}

p
(n)
j g

(n)
j


 ,

and by inspection, it becomes clear that both G(a) and G(b) satisfy the condition (1.11).

In other words, condition (1.11) shows that the individual utility maximization problem is
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equivalent to maximizing a common function.

1.3.3 The Concept of Equilibrium

Our interest is to find a strategy profile p such that no player is interested in changing its own

strategy. Once the network configuration p∗ is reached, any unilateral deviation of a given

player decreases its own utility. A network configuration p∗ is known as a Nash equilibrium

[19].

The Nash equilibrium (NE) is an important concept in the field of game theory wherein

an N.E corresponds to a profile of strategies p∗ = (p∗1, ..., p
∗
K) for which each player’s strategy

p∗1 ∈ P is an N.E if it satisfies:

∀k ∈ K and ∀pk ∈ PK , uk(p
∗
k, p

∗
−k) ≥ uk(pk, p

∗
−k) (1.12)

That is, at the NE, any unilateral deviation from the strategy profile pk of player k,

∀k ∈ K will not increase its utility function. Hence, at the NE there does not exist any

motivation for a player to deviate from the NE strategy profile. As players are selfish and

decide by themselves their strategy, one question arises: does an NE lead to an efficient game

outcome? The NE is generally inefficient and non-optimal, however it is a lower bound in

the case of non-cooperation between players.

Definition 3 (Satisfaction Equilibrium) An action profile p+ is a satisfaction equilib-

rium for the game G′ =
(
K, {Pk}k∈K, {fk}k∈K

)
if

∀k ∈ K, p+
k ∈ f−k

(
p+

k

)
. (1.13)

Definition 4 (Efficient Satisfaction Equilibrium) Define a function ck : Pk → [0, 1] for

all k ∈ K and consider the game G′. For all (k, p∗k, p
′
k) ∈ K × P2

k , the action p′k is said to be

more costly that action p∗k if ck (p′k) > ck (pk). An action profile p∗ ∈ P is an ESE if and
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only if:

∀k ∈ K, p∗
k ∈ arg min

pk∈fk(p∗
−k)

ck (pk) . (1.14)

Then, p∗ is one of the efficient SE (ESE) of the game G′.

Definition 5 (Logit Equilibrium): Consider the Markov game G = {G(h(t))}t>0. The

mixed strategy profile π∗ = (π∗
1, ..., π

∗
L) ∈ △ (A1) ,× . . . ,×△ (AK) is a logit equilibrium, if

∀k ∈ K,

π∗
k = βk

(
ûk

(
π∗

−k

))
, (1.15)

where the Nk dimensional vector ûk (π−k) =
(
û

k,q
(0,0)
k

(π−k) , û
k,q

(1,1)
k

(π−k) , . . . , û
k,q

(Lk,N)

k

(π−k)
)

is the expected interference minimization metric, i.e., for all k ∈ K and for all (ℓk, nk) ∈

{1, . . . , Lk} × N ∪ {(0, 0)}),

u
k,q

(ℓk,nk)
k

(π−k)=E
∑

p−k∈P−k

(∏
j∈K\{k} π∗

j,pj

)
u(h,q

(ℓk,nk)

k
,p−k)h.

and:

βk(ûk) =
exp

(
1
κk

ûk

)

∑
(i,j)∈N×L exp

(
1
κk

ûk

) (1.16)

Where ∀k ∈ K and ∀(s, l) ∈ N × L, βk(ûk) > 0 regardless of the estimation vector ûk.

Definition 6 (Best-Response Correspondence) In a non-cooperative game described

by the 3-tuple
(
K, (Pk)∀k∈K , (uk)∀k∈K

)
, the relation BRk : P−k → Pk such that

BRk(p−k)=arg maxqk∈Pk
uk(qk,p−k), (1.17)

is defined as the best-response correspondence of player k ∈ K, given the actions p−k adopted

by all the other players.

Definition 7 (Best Response Dynamics) Let the action profile p(t) = (p1(t), . . . , pK(t))

be the result of a best-response dynamics at time t. Then, for all k ∈ K, and for all t ∈ N

and t > 0, the vector pk(t) can be obtained as follows: (1) In the sequential best-response
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dynamics (round-Robin order):

pk(t)∈BRk(p1(t),...,pk−1(t),pk+1(t−1),...,pK(t−1)), (1.18)

(2) in the simultaneous best-response dynamics:

pk(t) ∈ BRk

(
p−k(t − 1)

)
, (1.19)

where p(0) can be any vector p ∈ P.

1.4 Learning mechanisms for femtocell networks

Two mechanisms for interference mitigation, inspired by evolutionary game theory and

reinforcement-based learning [21] to support the coexistence of a macrocell network and

underlaid self-organized femtocells are herein compared in terms of achievable performances

as well as needed signalling. In both approaches, femto base stations rely on the measure-

ments fed back by their user equipments in order to update their strategy until an eventual

convergence.

1.4.1 Evolutionary-based approach

The first interference mitigation mechanism is based on the concept of evolutionary game

theory, where each FBS chooses its strategy against other FBSs located within the same

network. FBSs observe the behavior of other competitors, learn from the observations, and

make the best decision based on their instantaneous payoff, as well as the average payoff of

all other femtocells. The game theoretic model G(ev) =
(
K, (Ak)k∈K , (uk)k∈K

)
is formulated

as follows:

• K = {1, ..., K} is the set of players (i.e., femtocell base stations),

• At
k = {ak,s

t }k∈K where a
k,n
t is the action of FBS k at time t is to transmit over a carrier
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n.

• Rt
k =

∑
n log2

(
1+SINR

)
is the reward of FBS k transmitting in sub-carrier n at time

t. Moreover, the average payoff of the entire population is defined as: R̄t
k =

∑
k Rt

k

K
.

In the aforementioned mechanism, an entity which is referred to as HNB-Gateway [25] col-

lects the payoffs for all femtocells and calculates the average rate of the entire femtocell

network. The payoff Rt
k of FBS k is then compared with the average payoffs R̄t

k and in the

case when it is less that the average rate of the femtocell network, a random strategy is

chosen and the whole process is repeated again.

1.4.2 Q-learning based approach

The Q-learning model consists of a set of states n ∈ N and actions a ∈ A aiming at finding

a policy that maximizes the observed rewards over the interaction time of the agents/players

(i.e., femtocells). Every FBS k ∈ K explores its environment, observes its current state s,

and takes a subsequent action a, according to a decision policy π : s → a. With their ability

to learn, the knowledge about other players’ strategies is not explicitly needed by FBS k.

Instead, a Q-function maintains the knowledge about other players in the network locally,

based on which decisions are made. Several authors have shown that Q-learning converges

to optimal values in Markov decision process environment. Thus, the goal of the agent is to

find an optimal policy π∗(s) for each state s, which maximizes a cumulative measure of the

rewards over time.

The expected discounted reward over an infinite horizon is given by:

V π(s) = E
{
γt × r(st, π

∗(st))|s0 = s
}

, (1.20)

where 0 ≤ γ ≤ 1 is a discount factor and r is the agent’s reward at time t. Furthermore,
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Equation (1.20) can be rewritten as:

V π(s) = R(s, π∗(s)) + γ
∑

v∈S

Ps,v(π(s))V π(v), (1.21)

where R(s, π∗(s)) = E{r(s, π(s))} is the mean value of reward r(s, π(s)), and Ps,v is the tran-

sition probability from state s to v. Moreover, the optimal policy π∗ satisfies the optimality

criterion:

V ∗(s) = V π∗

(s) = max
a∈A

(
R(s, a) + γ

∑

v∈N

Ps,v(a)V ∗(v)

)
, (1.22)

It is generally difficult to explicitly calculate the reward R(s, a) and transition probability

Ps,v(a). However, through Q-learning, the knowledge of these values can be gradually learnt

and reinforced with time. For a given policy π, define a Q-value as:

Q∗(s, a) = R(s, a) + γ
∑

v∈S

Ps,v(a)V π(v), (1.23)

which is the expected discounted reward when executing action a at state s and then following

policy π thereafter.

We make use of the Q-learning algorithm to iteratively approximate the state-action

value function Q(s, a). Here, the FBS keeps trying all actions in all states with non-zero

probability and must sometimes explore by choosing at each step a random action with

probability β ∈ (0, 1). Alternatively, FBSs can make use of the Boltzmann exploration

strategy with the temperature parameter κ, where the action a in state s is taken with a

probability P (a|s), and the femtocell receives a reinforcement r. The actions are chosen

according to their Q-values as:

p(a|s) =
eQ(si,a)/κ

∑
a′ 6=a eQ(si,a′)/κ

. (1.24)

The game is defined as follows: G(rl) =
(
K, (Pk)k∈K , (uk)k∈K

)
where

• K = {1, ..., K} is the set of players (i.e., femtocell base stations),



1.5. QOS PROVISIONING FOR FEMTOCELL NETWORK 15

• St
k = {sk,n

t }k∈K where s
k,n
t ∈ {0, 1}. The state of every FBS k at time t in sub-carrier n

indicates whether FBS k generates interference towards MUE and the QoS of MUE is

violated, (i.e., C0 < Γ0).

• At
k = {ak,n

t }k∈K where a
k,n
t is the action of FBS k at time t is to transmit over a set of

sub-carrier C ∈ {1, ..., Nsub}.

• Rt
k = 1{Γ0−C0}

∑
n∈C log(1 + SINR) is the reward of FBS k transmitting in the set C at

time t.

In the Q-learning process, in which FBS k performs the exploration step with probability

β. A new Q-value, i.e., Q(St+1
k , At+1

k ), which is the expected payoff for the future iterations,

is obtained based on previous value, i.e., Q(St
k, A

t
k), along with the new observed payoff

Rk
t+1(S

k
t+1). Moreover, the Q-learning is updated as follows:

Q(St
k, A

t
k) = (1 − α)Q(St

k, A
t
k) + α

[
Rk

t+1(S
k
t+1) + γ max

Bt+1
k

Q(St+1
k , Bt+1

k )
]

(1.25)

where α is the players’ willingness to learn from its environment and γ is the discount factor.

1.5 QoS provisioning for femtocell network

The focus is on a fully decentralized approach for solving interference mitigation from the

FBS to the macrocell user equipments (MUEs). The underlying assumption is that MUEs

feed back messages to their corresponding macrocell BS containing their instantaneous SINR

(decoded by all FBSs). The repetitive observation of the SINR is used by the FBS to

dynamically configure their frequency band and power levels such that a minimum time-

average SINR can be guaranteed at the macrocells. We make use of recent results in game

theory and stochastic approximation applied to the problem of femto-to-macrocell cross-tier

interference.

The interference minimization problem is modeled by a stochastic game made of a se-

quence of strategic games played at different states, e.g., channel realizations. Let us de-
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note by G(h(t)) = (K, {Ak}k∈K, {φ}k∈K) the static strategic game and let us denote by

G = {G(h(t))}t>0 the stochastic game where at each time t, the game G(h(t)) is played,

with t ∈ {1, . . . ,∞}. In order to define the stochastic game, a short and long-term formula-

tion is given:

Let us describe the network during the interval from t − 1 to t by the game G(h(t)) =

(K, {Ak}k∈K, {u}k∈K). Here, K represents the set of FBS in the network. For all k ∈ K, the

set of actions of FBS k is the set of PA vectors, i.e., Ak = {q(ℓ,n)
k : ℓ ∈ {0, . . . , Lk}, and n ∈

N}. Finally, u : H×A1 ×AK → R+ is the payoff or interference minimization metric of all

femtocells.

At each time t > 0 and for all k ∈ K, FBS k chooses its action from the finite set Ak

following a probability distribution πk(t) =
(
π

k,q
(1,1)
k

(t), ..., π
k,q

(Lk,Nk)

k

(t)
)

where π
k,q

(lk,nk)

k

is

the probability that femtocell k plays action q
(lk,nk)
k at time t, i.e.,

π
k,q

(lk,nk)

k

= Pr
(
pk(t) = q

(lk ,nk)
k

)
. (1.26)

where (lk, nk) ∈ {1, ..., LK} × S ∪ {(0, 0)} In the following, we describe the long-term game

G, and we introduce the method which each FBS uses to choose the probability distribution

πk(t), at each time t.

Long-Term Formulation

The long-term behaviour of the network is modeled by the succession of static strategic games

G = {G (h(t))}t>0. This succession produces a Markov game G = {G(h(t))}t>0, where at

each stage t the game G(h(t)) is played assuming that the network is described by the vector

h(t). According to the system model, the actual state of the network h(t) follows a Markov

chain with transitions following the rule, ∀ (h′, h′′) ∈ H2, Pr (h(t) = h′ |h(t − 1) = h′′ ) =

Pr (h(t) = h′) = πh′. Here, πh′ , for all h′ ∈ H, are parameters obtained from previous

channel modeling studies. Note that transitions between states are independent of the actions

of the transmitters. The game G = {G(h(t))}t>0 proceeds in infinitely many stages. At each

stage t ∈ {0, . . . ,∞}, FBSs choose their corresponding actions p1(t), . . . , pK(t). When doing
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so, each FBS k observes a noisy sample ũk(t) of the corresponding instantaneous interference

minimization metric u(h(t), pk(t), p−k(t)), i.e.,

ũk(t) = u(h(t), pk(t), p−k(t)) + εk,pk(t)(t), (1.27)

where, ∀(ℓk, nk) ∈ {1, . . . , Lk} × S ∪ {(0, 0)}, and ∀k ∈ K, ε
k,q

(ℓk,nk)

k

(t) is the realization at

time t of a random variable ε
k,q

(ℓk,nk)

k

which represents the additive noise on the observation

of the instantaneous performance u(t) when FBS k plays action q
(ℓk ,nk)
k . Here, we assume

that Eε
k,q

(ℓk,nk)

k

= 0.

Our behavioral assumption is that all FBS are interested on choosing the probability

distribution πk(t) ∈ △ (Ak) to optimize the time-average interference minimization metric

at each time t > 0, i.e., ūk(t), which is calculated empirically based on the observations ũk(t)

as follows,

ūk(t) =
1

t

t∑

n=1

ũk(n). (1.28)

To choose the optimal probability distribution πk(t), the FBS relies on estimations of the

time-average interference minimization metric obtained with each of its actions. For all

(ℓk, nk) ∈ {1, . . . , Lk} × S ∪ {(0, 0)}, let û
k,q

(ℓk,nk)

k

(t), be the estimation of time-average

interference minimization metric obtained by playing action q
(ℓk ,nk)
k . This estimation is

calculated as follows,

û
k,q

(ℓk,nk)

k

(n) = 1
T

k,q
(ℓk,nk)
k

(t)

∑t
n=1 ũk(n)1{

pk(n)=q
(ℓk,nk)

k

}, (1.29)

where, T
k,q

(ℓk,nk)

k

(t) =
∑t

n=1 1{
pk(n)=q

(ℓk,nk)

k

}. Once the Nk-dimensional vector of estimations

of FBS k is obtained, i.e., ûk =
(
û

k,q
(0,0)
k

, û
k,q

(1,1)
k

, . . . , û
k,q

(Lk,S)

k

)
for all k ∈ K, it is used

to determine the optimal probability distribution πk(t) =
(
π

k,q
(0,0)
k

, π
k,q

(1,1)
k

, . . . , π
k,q

(Lk,S)

k

)

at each time t. For doing so, we define the function βk : R
Nk → △ (A). Note that the

probability distribution βk (ûk(t)) must take into consideration that, FBSs must experiment

between different actions such that the estimation vector ûk(t) is improved at each time t,

but also FBSs must optimize their respective interference minimization metric.
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1.5.1 Exploration vs. Performance Optimization

Femtocells face a trade-off between optimizing their time-average utility by taking the action

that does it at each time t, and trying out different actions so as to improve the estimation of

the time-average interference mitigation metric obtained with each action. This implies that

a reasonable behavioral rule would be to choose the actions which yield high payoffs more

likely than actions yielding low payoffs, but in any case, always letting a non-null probability

of playing any of the actions. Following the results in [20], the behavioral rule described

above can be modeled by the probability distribution βk(ûk(t)) satisfying:

βk(ûk(t)) ∈ arg maxπk∈△(Ak)

[∑
pk∈Ak

πk,pk
ûk,pk

(t) + κkH(πk)
]

(1.30)

where H represents the Shannon entropy function. For all k ∈ K, the parameter κk > 0

represents the interest of FBS k to choose other actions rather than the optimal one in order

to improve the time-average interference minimization metric. The unique solution to the

right hand side of the optimization problem in (1.30) is written as (1.16):

βk(ûk(t))=

(
β

k,q
(0,0)
k

(ûk(t)),β
k,q

(1,1)
k

(ûk(t)),...,β
k,q

(Lk,S)
k

(ûk(t))

)
, (1.31)

In order to achieve the LE of game G = {G(h(t))}t>0. Assume that the estimation

of the time-average interference minimization metric and the mixed strategy of FBS k are

calculated as follows, ∀k ∈ K and ∀(ℓk, nk) ∈ {1, . . . , Lk} × N ∪ {(0, 0)},






û
k,q

(ℓk,nk)
k

(t) = û
k,q

(ℓk,nk)
k

(t−1)+

α(t)

1{
pk(t)=q

(ℓk,nk)
k

}

π
k,q

(ℓk,sk)
k

(t)

(
ũ(t)−û

k,q
(ℓk,nk)
k

(t−1)

)
,

π
k,q

(ℓk,nk)
k

(t) = π
k,q

(ℓk,nk)
k

(t−1)+

λ(t)

(
β

k,q
(ℓk,sk)
k

(ûk(t))−π
k,q

(ℓk,nk)
k

(t−1)

)
,

(1.32)

where, ûk(0) ∈ R
Nk and πk(0) ∈ △ (Ak) are arbitrary initializations and λ and α are learning
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rates chosen such that

lim
T→∞

T∑

t=0

α(t) + λ(t) = +∞ (1.33)

lim
T→∞

T∑

t=0

α(t)2 + λ(t)2 < +∞, and, (1.34)

lim
t→∞

λ(t)

α(t)
= 0. (1.35)

Then, both learning processes (1.32) converge for all k ∈ K. Additionally, and it holds that,

lim
t→∞

πk(t) = π∗
k, (1.36)

lim
t→∞

û
k,q

(ℓk,sk)

k

(t) = uk(π
∗
−k), (1.37)

where π∗ = (π∗
1, . . . , π

∗
K) is a LE of the game G = {G(h(t))}t>0.

1.6 Spectral Efficiency in Femtocell Networks

Spectral efficiency in femtocell networks is instrumental for the successful deployment of

femtocells. Here, Femtocells access the spectrum in a parallel multiple access mode. Two

particular deployment scenarios are hereafter studied: (a) FBSs strategically split their

transmit power between the available channels, and (b) FBSs use only one channel at a

time. In both cases, FBSs maximize their individual spectral efficiency. Problems (a) and

(b), which respectively correspond to a decentralized power allocation and channel selection

problem, are modeled by strategic form games.

1.6.1 Power Allocation Problems

The PA game G(a) models the scenario where FBSs allocate any power level to any of their

own channels subject to the power constraints given in (1.6)
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It is proved in [24] that the game G(a) is an exact potential game, and hence at least one

NE in pure strategies exists. Similarly, at least one NE in mixed strategies exist because the

action spaces, P(a)
k for all k ∈ K are convex and compact in their respective finite dimensional

spaces, and the utility is jointly continuous [43]. Furthermore, the game G(a) is shown to

have a unique NE strategy profile in pure strategies, p† ∈ P(a) with probability one, solution

of the following optimization problem:

p† ∈ arg max
p∈P(a)

φ (p) . (1.38)

The components of the vector p† in (1.38) are for all (k, s) ∈ K ×N ,

(p
(n)
k )† =




Bn

B

1

βk
−

σ2
n +

∑

j∈K\{k}

(p
(n)
j )†g

(n)
j

g
(n)
k




+

, (1.39)

where, βk is a Lagrangian multiplier chosen to saturate the power constraints (1.16).

Assuming that each transmitter knows its actual channel gains gk =
(
g

(1)
k , . . . , g

(N)
k

)
,

the bandwidth of all channels b = (B1, . . . , BN), and its own actual PA vector pk, each

transmitter can determine its best response (1.19) based on a common message from the

receiver, and hence obtain the unique outcome of the game using the best response dynamics

(BRD) in which the sequential best response dynamics of any potential game converges to

an NE [36].

It is worth noting that the sequential BRD in the game G(a) lead to the same result as the

iterative water-filling algorithm (IWFA) presented in [33] but under a different setting. One

of the main drawbacks of the iterative BRD (and IWFA) is its large time for convergence

as well as its required signaling (message κ(t)). To overcome this problem, other algorithms

such as the simultaneous water-filling algorithm (SWFA), which follows the simultaneous

best-response dynamics (Def. 7) was proposed [34].

Different information drive different convergence behaviors. In terms of convergence, the
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IWFA (iterative BRD) always converges. The SWFA (simultaneous BRD), at least on the

interference channel, converges to an NE depending on the channel realizations and the

number of active transmitters [34]. In the interference channel PA game in [34], when the

SWFA converges, hence it converges faster than the IWFA. Finally, the IWFA requires a

(broadcast) signaling message (the multiple access interference over each channel) every time

that a given transmitter updates its PA vector. Conversely, SWFA requires one message after

all transmitters have updated their PA vector.

1.6.2 Channel Selection Problems

Here, a constraint is imposed onto the femtocells, in which they can only transmit over one

channel at a time. It is ready to check that every femto BS has to saturate its transmit power

to maximize its utility. Indeed, ∀k ∈ K and ∀p−k ∈ P(b)
−k, φ

(
pk en, p−k

)
< φ

(
pk,max es, p−k

)

where en =
(
e
(1)
n , . . . , e

(N)
n

)
∈ R

N , ∀r ∈ N \ n, e
(r)
n = 0, and e

(n)
n = 1. The problem

under investigation is therefore a channel selection problem. Technically, the main difference

between G(a) and G(b) is that the latter is a finite game (|K×N | < +∞). As a consequence,

the number of pure NE is generally more than 1.

The game G(b) is an exact potential game (Prop. 1) and thus, following Lemma 2.3 in

[38], the game G(b) has always at least one NE in pure as well as mixed strategies. To identify

an upper-bound of the number of NE, basic tools from graph theory in which L ∈ N multiple

pure NE strategy profiles exist, and 1 6 L 6 SK−1.

Assuming that the game is played repeatedly, one can exploit Prop. ?? to state that BRD

converges to an NE. The best response of transmitter k ∈ K in the game G(b) is

BRk

(
p−k

)
= {pk ∈ Pk : pk = pk,maxen∗

k
and n∗

k = (1.40)

arg max
n∈N

BN
B

log2

(
1+

pk,maxgk,n

σ2
n+

∑
j∈K\{k} pj,maxgj,n

)
},

and can be determined locally by each transmitter using the feedback message, the knowledge

of its own channel realizations and the bandwidth of each channel.
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Besides the BRD (iterative and sequential, Def. 7), when the set of actions is discrete,

other dynamics such as fictitious play [42], reinforcement learning (RL) [36], among some

others, converge to equilibrium in the game G(b), and more importantly, the information

assumptions can be significantly relaxed [41].

Let us denote by pk(t) ∈ P(b)
k and h(t) ∈ H the action taken by player k and the

vector of channel realizations at time t. Hence, for all k ∈ K, uk : H × P(b) → R, and

uk

(
h(t), pk(t), p−k(t)

)
represents the instantaneous utility obtained by player k at time t.

For the ease of notation, we use the equality uk(t) = uk

(
h(t), pk(t), p−k(t)

)
. At each time

t, each player k ∈ K chooses its action pk(t) following a probability distribution πk(t) =(
π

k,p
(1)
k

(t), . . . , π
k,p

(N)
k

(t)
)
, where ∀k ∈ K and ∀pk ∈ P(b)

k , πk,pk
(t) represents the probability

that player k plays action pk ∈ P(b)
k at time t, i.e., πk,pk

(t) = Pr (pk(t) = pk). In the fictitious

play (FP) [42], player k ∈ K must observe the actions of all the other players at each time t

and be able to calculate the empirical probability distributions πj(t), for all j ∈ K \ {k}. At

each time t, the action of player k is:

pk(t) ∈ arg max
pk∈P

(b)
k

Eπ−k
uk(pk, p−k). (1.41)

In the reinforcement learning (RL), e.g. replicator dynamics [37], transmitters k ∈ K observes

a numerical sample ũk(t) of its obtained utility at each time t and its set of actions P(b)
k are

supposed to be known. At each time t, transmitter k chooses its PA vector following the

probability distribution πk(t), which is updated based on ũk(t), as follows,

π
k,p

(n)
k

(t) = π
k,p

(n)
k

(t−1) (1.42)

+λk(t)ũk(t)

(
1

{pk(t)=p
(n)
k

}
−π

k,p
(n)
k

(t−1)

)
,

where λk(t) is such that 0 6 λk(t)ũk(t) 6 1, for all k ∈ K and t > 0.

The FP converges (at least in probability) to NE in potential games [39]. On the contrary,

the convergence of the RL is conditioned on the initial strategies of the dynamics πk(0), for all

k ∈ K [37]. Moreover, in the FP, players must be able to solve at each time t, the optimization

problem (1.41). Hence, the computational capabilities depend on the complexity of the
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utility function. Conversely, in RL only arithmetic operations are required, since the utility

is assumed to be observed at each time t. Besides, In the FP players are supposed to know

the structure of the game and observe the actions of all the other players. In RL, players

know only their own actions and are able to observe a numerical value of the obtained utility.

Finally, in the FP players are assumed to be myopically rational, i.e., players take the action

which maximizes their instant utility. In contrast, the rationality assumption is not required

in the RL case. Here, players take randomly (subject to a probability distribution) an action

which might or not maximize its own utility. Note that unlike RL, FP is too demanding in

terms of information assumptions.

1.7 Conclusions and open issues

In this chapter, we have looked at the strategic interaction between the macrocell and un-

derlaid femtocells from a game theoretic perspective. Different game theoretic formulations

were investigated along with different information assumption. It turns out that game the-

ory along with learning theory are two key enabling frameworks for the analysis and design

of femtocell networks. Yet, more work is needed for addressing the strategic interaction of

femtocells such as in the case of hierarchy and cooperation among femtocells.
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